Personalized 3D-printed TDM/ZrO2 scaffolds laden with iPSC-derived SOX9+ sclerotomal progenitors for functional osteochondral regeneration
Osteochondral defects resulting from trauma or degenerative diseases are challenging to treat due to the complex hierarchical structure and limited self-healing capacity of articular cartilage. Recent advancements have identified SOX9-positive (SOX9+) sclerotomal progenitors (scl-progenitors), derived from human pluripotent stem cells, as a promising cell source capable of mimicking endochondral ossification and promoting osteochondral regeneration. A personalized three-dimensional (3D)-bioprinted scaffold was developed using treated dentin matrix (TDM)—a decellularized matrix rich in low-crystallinity hydroxyapatite, type I collagen, and osteoinductive factors—as the core bioactive material. To enhance mechanical strength and printability, the TDM was combined with methacrylated gelatin and zirconia nanoparticles. SOX9+ scl-progenitors were encapsulated within the hydrogel matrix and printed using extrusion-based 3D bioprinting to fabricate cell-laden scaffolds with tunable biomechanical and biological properties. The engineered constructs supported robust cell viability, proliferation, and differentiation toward osteochondral lineages in vitro. In vivo implantation in a nude rat knee osteochondral defect model demonstrated excellent biocompatibility and significant regeneration of both cartilage and subchondral bone tissue. This study presents a translatable and customizable platform integrating stem cell technology, natural biomaterials, and 3D bioprinting for osteochondral tissue engineering. The bioengineered construct offers substantial advantages for personalized osteochondral defect repair over conventional approaches.

- Everhart JS, Abouljoud MM, Flanigan DC. Role of full-thickness cartilage defects in knee osteoarthritis (OA) incidence and progression: data from the OA initiative. J Orthop Res. 2019;37(1):77-83. doi: 10.1002/jor.24140
- Lee WY-w, Bin W. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives. J Orthop Transl. 2017;9:76-88. doi: 10.1016/j.jot.2017.03.005
- Shi W, Sun M, Hu X, et al. Structurally and functionally optimized silk‐fibroin gelatin scaffold using 3D printing. Adv Mater. 2017;29(29). doi: 10.1002/adma.201701089
- Levingstone TJ, Moran C, Almeida HV, Kelly DJ, O’Brien FJ. Layer-specific stem cell differentiation in trilayered tissue engineering biomaterials: towards development of a single-stage cell-based approach for osteochondral defect repair. Mater Today Bio. 2021;12. doi: 10.1016/j.mtbio.2021.100173
- Minnig MCC, Golightly YM, Nelson AE. Epidemiology of osteoarthritis_ literature update 2022–2023. Curr Opin Rheumatol. 2024;36(2):108-112. doi: 10.1097/BOR.0000000000000985
- Tang H, Zhu W, Cao L, et al. miR-210-3p protects against osteoarthritis through inhibiting subchondral angiogenesis by targeting the expression of TGFBR1 and ID4. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.982278
- Jiang L, Zhou X, Xu K, et al. miR-7_EGFR_MEGF9 axis regulates cartilage degradation in osteoarthritis via PI3K_AKT_mTOR signaling pathway. Bioengineered. 2021;12(1):8622-8634. doi: 10.1080/21655979.2021.1988362
- Costa E, Gonzalez-Garcia C, Gomez Ribelles JL, Salmeron- Sanchez M. Maintenance of chondrocyte phenotype during expansion on PLLA microtopographies. J Tissue Eng. 2018;9:2041731418789829. doi: 10.1177/2041731418789829
- Kovács B, Vajda E, Nagy EE. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int J Mol Sci. 2019;20(18). doi: 10.3390/ijms20184653
- Hsieh Y-H, Shen B-Y, Wang Y-H, Lin B, Lee H-M, Hsieh M-F. Healing of osteochondral defects implanted with biomimetic scaffolds of poly(ε-caprolactone)_hydroxyapatite and glycidyl-methacrylate-modified hyaluronic acid in a Minipig. Int J Mol Sci. 2018;19(4);1125. doi: 10.3390/ijms19041125
- Liao Y, Kang F, Xiong J, et al. MSX1(+)PDGFRA(low) limb mesenchyme-like cells as an efficient stem cell source for human cartilage regeneration. Stem Cell Reports. 2024;19(3):399-413. doi: 10.1016/j.stemcr.2024.02.001
- Xiong J, Ma R, Xie K, et al. Recapitulation of endochondral ossification by hPSC-derived SOX9+ sclerotomal progenitors. Nat Commun. 2025;16(1):2781. doi: 10.1038/s41467-025-58122-9
- Chen G Chen J, Yang B, et al. Combination of aligned PLGA gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials. 2015;52:56-70. doi: 10.1016/j.biomaterials.2015.02.011
- Grawish ME, Grawish LM, Grawish HM, et al. Demineralized dentin matrix for dental and alveolar bone tissues regeneration: an innovative scope review. Tissue Eng Regen Med. 2022;19(4):687-701. doi: 10.1007/s13770-022-00438-4
- Li M, Yang S, Song J, et al. Different grinding speeds affect induced regeneration capacity of human treated dentin. J Biomed Mater Res. 2021;110(4):755-767. doi: 10.1002/jbm.b.34954
- Wen B, Dai Y, Han X, et al. Biomineralization-inspired mineralized hydrogel promotes the__repair and regeneration of dentin_bone hard tissue. NPJ Regen Med. 2023;8(1):253-262. doi: 10.1038/s41536-023-00286-3
- Wen B, Huang Y, Qiu T, et al. Reparative dentin formation by dentin matrix proteins and small extracellular vesicles. J Endod. 2021;47(2):253-262. doi: 10.1016/j.joen.2020.11.017
- Chen J, Cui C, Qiao X, et al. Treated dentin matrix paste as a novel pulp capping agent for dentin regeneration. J Tissue Eng Regen Med. 2017;11(12):3428-3436. doi: 10.1002/term.2256
- Huang Y, Zhang Z, Bi F, et al. Personalized 3D‐printed scaffolds with multiple bioactivities for bioroot. Adv Healthc Mater. 2023;12(28):2300625. doi: 10.1002/adhm.202300625
- Rehman SRU, Augustine R, Zahid AA, Ahmen R, Tariq M, Hasan A. Reduced graphene oxide incorporated GelMA hydrogel promotes angiogenesis for wound healing applications. Int J Nanomedicine. 2019;14:9603-9617. doi: 10.2147/IJN.S218120
- Sennerby L, Dasmah A, Larsson B, Iverhed M. Bone tissue responses to surface-modified zirconia implants: a histomorphometric and removal torque study in the rabbit. Clin Implant Dent Relat Res. 2005;7(Suppl 1):S13-S20. doi: 10.1111/j.1708-8208.2005.tb00070.x
- Zhang J, Huang D, Liu S, et al. Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Mater Sci Eng. 2019;105:110054. doi: 10.1016/j.msec.2019.110054
- Li R, Guo W, Yang B, et al. Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials. 2011;32(20):4525-4538. doi: 10.1016/j.biomaterials.2011.03.008
- Lan T, Bi F, Xu Y, et al. PPAR-γ activation promotes xenogenic bioroot regenerationby attenuating the xenograft induced-oxidative stress. Int J Oral Sci. 2023;15(1):10. doi: 10.1038/s41368-023-00217-4
- Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev. 2010;16(1):105-115. doi: 10.1089/ten.TEB.2009.0452
- Tang H, Bi F, Chen G, et al. 3D-bioprinted recombination structure of Hertwig’s epithelial root sheath cells and dental papilla cells for alveolar bone regeneration. Int J Bioprint. 2022;8(3):512. doi: 10.18063/ijb.v8i3.512
- Ebrahimi M, Ojanen S, Mohammadi A, et al. Elastic, viscoelastic and fibril-reinforced poroelastic material properties of healthy and osteoarthritic human tibial cartilage. Ann Biomed Eng. 2019;47(4):953-966. doi: 10.1007/s10439-019-02213-4
- Li J, Wang P, Xie Z, et al. TRAF4 positively regulates the osteogenic differentiation of mesenchymal stem cells by acting as an E3 ubiquitin ligase to degrade Smurf2. Cell Death Differ. 2019;26(12):2652-2666. doi: 10.1038/s41418-019-0328-3
- Kim H, Park S, Kim K, Ku S, Seo J, Roh S. Enterococcus faecium L-15 cell-free extract improves the chondrogenic differentiation of human dental pulp stem cells. Int J Mol Sci. 2019;20(3):624. doi: 10.3390/ijms20030624
- Wang T, Chen Y, Zhu X, et al. IFT80 and TRPA1 cooperatively regulate bone formation by calcium signaling in response to mechanical stimuli. Metabolism. 2025;166:156159. doi: 10.1016/j.metabol.2025.156159
- Menendez M T TC, Wade K, et al. siRNA screening identifies the host hexokinase 2 (HK2) gene as an__important hypoxia-inducible transcription factor 1 (HIF-1) target gene in toxoplasma gondii-infected cells. mBio. 2015;6(3):e00462. doi: 10.1128/mBio.00462-15
- Wang Z-Y, Yiu L, Li S-P, et al. Hypoxia inducible factor 1α promotes interleukin-1 receptor antagonist expression during hepatic ischemia-reperfusion injury. World J Gastroenterol. 2022;28(38):5573-5588. doi: 10.3748/wjg.v28.i38.5573
- Zayed M, Newby S, Misk N, Donnell R, Dhar M. Xenogenic implantation of equine synovial fluid-derived mesenchymal stem cells leads to articular cartilage regeneration. Stem Cells Int. 2018;2018:1073705. doi: 10.1155/2018/1073705
- Zheng ZY, Jiang T, Huang ZF, et al. Fatty acids derived from apoptotic chondrocytes fuel macrophages FAO through MSR1 for facilitating BMSCs osteogenic differentiation. Redox Biol. 2022;53:102326. doi: 10.1016/j.redox.2022.102326
- Liu ES, Raimann A, Chae BT, Martins JS, Baccarini M, Demay MB. c-Raf promotes angiogenesis during normal growth plate maturation. Development. 2016;143(2): 348-355. doi: 10.1242/dev.127142
- Zhou X, von der Mark K, Henry S, Norton W, Adams H, de Crombrugghe B. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 2014;10(12):e1004820. doi: 10.1371/journal.pgen.1004820
- van den Borne MPJ, Raijmakers NJH, Vanlauwe J, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture1. Osteoarthritis Cartilage. 2007;15(12):1397-1402. doi: 10.1016/j.joca.2007.05.005
- Alberton P, Dugonitsch HC, Hartmann B, et al. Aggrecan hypomorphism compromisesarticular cartilage biomechanical propertiesand is associated with increased incidenceof spontaneous osteoarthritis. Int J Mol Sci. 2019;20(5):1008. doi: 10.3390/ijms20051008
- Chen S, Fu P, Wu H, Pei M. Meniscus, articular cartilage, and nucleus pulposus a comparative review of cartilage-like tissues in anatomy, development, and function. Cell Tissue Res. 2017;370(1):53-70. doi: 10.1007/s00441-017-2613-0
- Gannon AR, Nagel T, Bell AP, Avery NC, Kelly DJ. Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network. Eur Cells Mater. 2015;29:105-123. doi: 10.22203/eCM.v029a09
- Richardson SM, Kalamegam G, Pushparaj PN, et al. Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods. 2016;99:69-81. doi: 10.1016/j.ymeth.2015.09.015
- Deng C, Zhu H, Li J, et al. Bioactive scaffolds for regeneration of cartilage and subchondral bone interface. Theranostics. 2018;8(7):1940-1955. doi: 10.7150/thno.23674
- Chen L, Yao F, Wang T, et al. Horizontal fissuring at the osteochondral interface: a novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann Rheum Dis. 2020;79(6):811-818. doi: 10.1136/annrheumdis-2020-216942
- Slattery C, Kweon CY. Classifications in brief: outerbridge classification of chondral lesions. Clin Orthop Relat Res. 2018;476(10):2101-2104. doi: 10.1007/s11999.0000000000000255
- Pereira RC, Martinelli D, Cancedda R, Gentili C, Poggi A. Human articular chondrocytes regulate immune response by affecting directly T cell proliferation and indirectly inhibiting monocyte differentiation to professional antigen-presenting cells. Front Immunol. 2016;7:415. doi: 10.3389/fimmu.2016.00415
- Freeman FE, Kelly DJ. Tuning alginate bioink stifness and composition for controlled growth factor delivery and to spatially direct MSC fate within bioprinted tissues. Sci Rep. 2017;7(1):17042. doi: 10.1038/s41598-017-17286-1
- Aboul-Soud MAM, Alzahrani AJ, Mahmoud A. Induced pluripotent stem cells (iPSCs)—roles in regenerative therapies, disease modelling and drug screening. Cells. 2021;10(9):2319. doi: 10.3390/cells10092319
- Yamashita A, Morioka M, Yahara Y, et al. Generation of scaffoldless hyaline car tilaginous tissue from human iPSCs. Stem Cell Reports. 2015;4(3)404-418. doi: 10.1016/j.stemcr.2015.01.016
- Song H, Park K-H. Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol. 2020;67(Pt 1):12-23. doi: 10.1016/j.semcancer.2020.04.008
- Jang Y, Jung H, Nam Y, et al. Centrifugal gravity-induced BMP4 induces chondrogenic differentiation of adiposederived stem cells via SOX9 upregulation. Stem Cell Res Ther. 2016;7(1):184. doi: 10.1186/s13287-016-0445-6
- Yan B Zhang Z, Wang X, et al. PLGA-PTMC-cultured bone mesenchymal stem cell scaffold enhances cartilage regeneration in tissue-engineered tracheal transplantation. Artif Organs. 2016;41(5):461-469. doi: 10.1111/aor.12805
- Wanjare M, Hou L, Nakayama KH, et al. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomater Sci. 2017;5(8):1567-1578. doi: 10.1039/c7bm00323d
- Schunck A, Kronz A, Fischer C, Buchhorn GH. Release of zirconia nanoparticles at the metal stem–bone cement interface in implant loosening of total hip replacements. Acta Biomater. 2016;31:412-424. doi: 10.1016/j.actbio.2015.11.044
- Yang Y, Bao H, Chai Q, et al. Toxicity, biodistribution and oxidative damage caused by zirconia nanoparticles after intravenous injection. Int J Nanomedicine. 2019;14:5175-5186. doi: 10.2147/IJN.S197565
- Eschweiler J, Horn N, Rath B, et al. The biomechanics of cartilage–an overview. Life (Basel). 2021;11(4):302. doi: 10.3390/life11040302
- Zhang M, Lu Q, Miller AH, Barnthouse NC, Wang J. Dynamic epigenetic mechanisms regulate age-dependent SOX9 expression in mouse articular cartilage. Int J Biochem Cell Biol. 2016;72:125-134. doi: 10.1016/j.biocel.2016.01.013
- Korhonen RK, Laasanen MS, Töyräs J, et al. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech. 2002;35(7):903-909. doi: 10.1016/s0021-9290(02)00052-0
- Lehtola T, Nummenmaa E, Tuure L, et al. Dexamethasone attenuates the expression of MMP-13 in chondrocytes through MKP-1. Int J Mol Sci. 2022;23(7):3880. doi: 10.3390/ijms23073880
- Chen C, Zhao W, Lu X, et al. AUP1 regulates lipid metabolism and induces lipidaccumulation to accelerate the progression of renal clearcell carcinoma. Cancer Sci. 2022;113(8):2600-2615. doi: 10.1111/cas.15445
- Barkley LR, Hong HK, Kingsbury SR, James M, Stoeber K, Williams GH. Cdc6 is a rate-limiting factor for proliferative capacity during HL60 cell differentiation. Exp Cell Res. 2007;313(17):3789-3799. doi: 10.1016/j.yexcr.2007.07.004
- Tu J, Wan C, Zhang F, et al. Genetic correction of Werner syndrome gene reveals impaired pro-angiogenic function and HGF insufficiency in mesenchymal stem cells. Aging Cell. 2020;19(5):e.13116. doi: 10.1111/acel.13116
- Li Z, Yan G, Diao Q, et al. Transplantation of human endometrial perivascular cells with elevated CYR61 expression induces angiogenesis and promotes repair of a full-thickness uterine injury in rat. Stem Cell Res Ther. 2019;10(1):179. doi: 10.1186/s13287-019-1272-3
- Gouttenoire J, Bougault C, Aubert-Foucher E, et al. BMP- 2 and TGF-beta1 differentially control expression of type II procollagen and alpha 10 and alpha 11 integrins in mouse chondrocytes. Eur J Cell Biol. 2010;89(4):307-314. doi: 10.1016/j.ejcb.2009.10.018
- Zhou N, Li Q, Lin X, et al. BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells. Cell Tissue Res. 2016;366(1):101-111. doi: 10.1007/s00441-016-2403-0
- Caron MJ, Welting TJ, Surtel DA, et al. BMP-2 and BMP- 7: differential regulation of chondrogenic differentiation. Osteoarthritis Cartilage. 2012;20(1):S151. doi: 10.1016/j.joca.2012.02.220
- Legendre F, Ollitrault D, Gomez-Leduc T, et al. Enhanced chondrogenesis of bone marrow-derived stem cells by using a combinatory cell therapy strategy with BMP-2/ TGF-β1, hypoxia, and COL1A1/HtrA1 siRNAs. Sci Rep. 2017;7(1):3406. doi: 10.1038/s41598-017-03579-y
- Chavez RD, Coricor G, Perez J, Seo HS, Serra R. SOX9 protein is stabilized by TGF-beta and regulates PAPSS2 mRNA expression in chondrocytes. Osteoarthritis Cartilage. 2017;25(2):332-340. doi: 10.1016/j.joca.2016.10.007
- Tew SR, Clegg PD. Analysis of post transcriptional regulation of SOX9 mRNA during in vitro chondrogenesis. Tissue Eng Part A. 2011;17(13-14):1801-1807. doi: 10.1089/ten.TEA.2010.0579
- Stegen S, Laperre K, Eelen G, et al. HIF-1alpha metabolically controls collagen synthesis and modification in chondrocytes. Nature. 2019;565(7740):511-515. doi: 10.1038/s41586-019-0874-3
- Guo W, Gong K, Shi H, et al. Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials. 2012;33(5):1291-1302. doi: 10.1016/j.biomaterials.2011.09.068
- Idaszek J, Costantini M, Karlsen TA, et al. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication. 2019;11(4):044101. doi: 10.1088/1758-5090/ab2622
- Zhang B, Huang J, Narayan RJ. Gradient scaffolds for osteochondral tissue engineering and regeneration. J Mater Chem B. 2020;8(36):8149-8170. doi: 10.1039/d0tb00688b
- Corrado F, Di Maio L, Palmero P, et al. Vat photo-polymerization 3D printing of gradient scaffolds for osteochondral tissue regeneration. Acta Biomater. 2025;200:67-86. doi: 10.1016/j.actbio.2025.05.042
