AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025330333
RESEARCH ARTICLE

Personalized 3D-printed TDM/ZrO2 scaffolds laden with iPSC-derived SOX9+ sclerotomal progenitors for functional osteochondral regeneration

Yuqing Dong1,2 Zhijun Zhang3 Fengxiao Zhao1 Weihua Guo1,4* Jingfei Xiong5 Zhonghan Li5 Yuming Zhao2*
Show Less
1 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
2 Department of Pediatric Dentistry, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
3 Department of Stomatology, School of Clinical Medical, Chengdu Medical College, Chengdu, Sichuan, China
4 Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, Yunnan, China
5 Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Center of Growth Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
Received: 13 August 2025 | Accepted: 15 October 2025 | Published online: 23 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Osteochondral defects resulting from trauma or degenerative diseases are challenging to treat due to the complex hierarchical structure and limited self-healing capacity of articular cartilage. Recent advancements have identified SOX9-positive (SOX9+) sclerotomal progenitors (scl-progenitors), derived from human pluripotent stem cells, as a promising cell source capable of mimicking endochondral ossification and promoting osteochondral regeneration. A personalized three-dimensional (3D)-bioprinted scaffold was developed using treated dentin matrix (TDM)—a decellularized matrix rich in low-crystallinity hydroxyapatite, type I collagen, and osteoinductive factors—as the core bioactive material. To enhance mechanical strength and printability, the TDM was combined with methacrylated gelatin and zirconia nanoparticles. SOX9+ scl-progenitors were encapsulated within the hydrogel matrix and printed using extrusion-based 3D bioprinting to fabricate cell-laden scaffolds with tunable biomechanical and biological properties. The engineered constructs supported robust cell viability, proliferation, and differentiation toward osteochondral lineages in vitro. In vivo implantation in a nude rat knee osteochondral defect model demonstrated excellent biocompatibility and significant regeneration of both cartilage and subchondral bone tissue. This study presents a translatable and customizable platform integrating stem cell technology, natural biomaterials, and 3D bioprinting for osteochondral tissue engineering. The bioengineered construct offers substantial advantages for personalized osteochondral defect repair over conventional approaches.  

Graphical abstract
Keywords
Osteochondral regeneration
SOX9-positive sclerotomal progenitors
Three-dimensional bioprinting
Tissue engineering
Treated dentin matrix
Funding
This work was supported by grants from the National Nature Science Foundation of China (82270958), the Major Science and Technology Projects in Yunnan Province(202302AA310038), and West China Hospital of Stomatology, Sichuan University Interdisciplinary innovation projects with research and development projects (RD-03-202106).
Conflict of interest
The authors declare that they have no affiliations with or involvement in any organization or entity with any financial interest in the subject matter or materials discussed in this manuscript.
References
  1. Everhart JS, Abouljoud MM, Flanigan DC. Role of full-thickness cartilage defects in knee osteoarthritis (OA) incidence and progression: data from the OA initiative. J Orthop Res. 2019;37(1):77-83. doi: 10.1002/jor.24140
  2. Lee WY-w, Bin W. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives. J Orthop Transl. 2017;9:76-88. doi: 10.1016/j.jot.2017.03.005
  3. Shi W, Sun M, Hu X, et al. Structurally and functionally optimized silk‐fibroin gelatin scaffold using 3D printing. Adv Mater. 2017;29(29). doi: 10.1002/adma.201701089
  4. Levingstone TJ, Moran C, Almeida HV, Kelly DJ, O’Brien FJ. Layer-specific stem cell differentiation in trilayered tissue engineering biomaterials: towards development of a single-stage cell-based approach for osteochondral defect repair. Mater Today Bio. 2021;12. doi: 10.1016/j.mtbio.2021.100173
  5. Minnig MCC, Golightly YM, Nelson AE. Epidemiology of osteoarthritis_ literature update 2022–2023. Curr Opin Rheumatol. 2024;36(2):108-112. doi: 10.1097/BOR.0000000000000985
  6. Tang H, Zhu W, Cao L, et al. miR-210-3p protects against osteoarthritis through inhibiting subchondral angiogenesis by targeting the expression of TGFBR1 and ID4. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.982278
  7. Jiang L, Zhou X, Xu K, et al. miR-7_EGFR_MEGF9 axis regulates cartilage degradation in osteoarthritis via PI3K_AKT_mTOR signaling pathway. Bioengineered. 2021;12(1):8622-8634. doi: 10.1080/21655979.2021.1988362
  8. Costa E, Gonzalez-Garcia C, Gomez Ribelles JL, Salmeron- Sanchez M. Maintenance of chondrocyte phenotype during expansion on PLLA microtopographies. J Tissue Eng. 2018;9:2041731418789829. doi: 10.1177/2041731418789829
  9. Kovács B, Vajda E, Nagy EE. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int J Mol Sci. 2019;20(18). doi: 10.3390/ijms20184653
  10. Hsieh Y-H, Shen B-Y, Wang Y-H, Lin B, Lee H-M, Hsieh M-F. Healing of osteochondral defects implanted with biomimetic scaffolds of poly(ε-caprolactone)_hydroxyapatite and glycidyl-methacrylate-modified hyaluronic acid in a Minipig. Int J Mol Sci. 2018;19(4);1125. doi: 10.3390/ijms19041125
  11. Liao Y, Kang F, Xiong J, et al. MSX1(+)PDGFRA(low) limb mesenchyme-like cells as an efficient stem cell source for human cartilage regeneration. Stem Cell Reports. 2024;19(3):399-413. doi: 10.1016/j.stemcr.2024.02.001
  12. Xiong J, Ma R, Xie K, et al. Recapitulation of endochondral ossification by hPSC-derived SOX9+ sclerotomal progenitors. Nat Commun. 2025;16(1):2781. doi: 10.1038/s41467-025-58122-9
  13. Chen G Chen J, Yang B, et al. Combination of aligned PLGA gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials. 2015;52:56-70. doi: 10.1016/j.biomaterials.2015.02.011
  14. Grawish ME, Grawish LM, Grawish HM, et al. Demineralized dentin matrix for dental and alveolar bone tissues regeneration: an innovative scope review. Tissue Eng Regen Med. 2022;19(4):687-701. doi: 10.1007/s13770-022-00438-4
  15. Li M, Yang S, Song J, et al. Different grinding speeds affect induced regeneration capacity of human treated dentin. J Biomed Mater Res. 2021;110(4):755-767. doi: 10.1002/jbm.b.34954
  16. Wen B, Dai Y, Han X, et al. Biomineralization-inspired mineralized hydrogel promotes the__repair and regeneration of dentin_bone hard tissue. NPJ Regen Med. 2023;8(1):253-262. doi: 10.1038/s41536-023-00286-3
  17. Wen B, Huang Y, Qiu T, et al. Reparative dentin formation by dentin matrix proteins and small extracellular vesicles. J Endod. 2021;47(2):253-262. doi: 10.1016/j.joen.2020.11.017
  18. Chen J, Cui C, Qiao X, et al. Treated dentin matrix paste as a novel pulp capping agent for dentin regeneration. J Tissue Eng Regen Med. 2017;11(12):3428-3436. doi: 10.1002/term.2256
  19. Huang Y, Zhang Z, Bi F, et al. Personalized 3D‐printed scaffolds with multiple bioactivities for bioroot. Adv Healthc Mater. 2023;12(28):2300625. doi: 10.1002/adhm.202300625
  20. Rehman SRU, Augustine R, Zahid AA, Ahmen R, Tariq M, Hasan A. Reduced graphene oxide incorporated GelMA hydrogel promotes angiogenesis for wound healing applications. Int J Nanomedicine. 2019;14:9603-9617. doi: 10.2147/IJN.S218120
  21. Sennerby L, Dasmah A, Larsson B, Iverhed M. Bone tissue responses to surface-modified zirconia implants: a histomorphometric and removal torque study in the rabbit. Clin Implant Dent Relat Res. 2005;7(Suppl 1):S13-S20. doi: 10.1111/j.1708-8208.2005.tb00070.x
  22. Zhang J, Huang D, Liu S, et al. Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Mater Sci Eng. 2019;105:110054. doi: 10.1016/j.msec.2019.110054
  23. Li R, Guo W, Yang B, et al. Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials. 2011;32(20):4525-4538. doi: 10.1016/j.biomaterials.2011.03.008
  24. Lan T, Bi F, Xu Y, et al. PPAR-γ activation promotes xenogenic bioroot regenerationby attenuating the xenograft induced-oxidative stress. Int J Oral Sci. 2023;15(1):10. doi: 10.1038/s41368-023-00217-4
  25. Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev. 2010;16(1):105-115. doi: 10.1089/ten.TEB.2009.0452
  26. Tang H, Bi F, Chen G, et al. 3D-bioprinted recombination structure of Hertwig’s epithelial root sheath cells and dental papilla cells for alveolar bone regeneration. Int J Bioprint. 2022;8(3):512. doi: 10.18063/ijb.v8i3.512
  27. Ebrahimi M, Ojanen S, Mohammadi A, et al. Elastic, viscoelastic and fibril-reinforced poroelastic material properties of healthy and osteoarthritic human tibial cartilage. Ann Biomed Eng. 2019;47(4):953-966. doi: 10.1007/s10439-019-02213-4
  28. Li J, Wang P, Xie Z, et al. TRAF4 positively regulates the osteogenic differentiation of mesenchymal stem cells by acting as an E3 ubiquitin ligase to degrade Smurf2. Cell Death Differ. 2019;26(12):2652-2666. doi: 10.1038/s41418-019-0328-3
  29. Kim H, Park S, Kim K, Ku S, Seo J, Roh S. Enterococcus faecium L-15 cell-free extract improves the chondrogenic differentiation of human dental pulp stem cells. Int J Mol Sci. 2019;20(3):624. doi: 10.3390/ijms20030624
  30. Wang T, Chen Y, Zhu X, et al. IFT80 and TRPA1 cooperatively regulate bone formation by calcium signaling in response to mechanical stimuli. Metabolism. 2025;166:156159. doi: 10.1016/j.metabol.2025.156159
  31. Menendez M T TC, Wade K, et al. siRNA screening identifies the host hexokinase 2 (HK2) gene as an__important hypoxia-inducible transcription factor 1 (HIF-1) target gene in toxoplasma gondii-infected cells. mBio. 2015;6(3):e00462. doi: 10.1128/mBio.00462-15
  32. Wang Z-Y, Yiu L, Li S-P, et al. Hypoxia inducible factor 1α promotes interleukin-1 receptor antagonist expression during hepatic ischemia-reperfusion injury. World J Gastroenterol. 2022;28(38):5573-5588. doi: 10.3748/wjg.v28.i38.5573
  33. Zayed M, Newby S, Misk N, Donnell R, Dhar M. Xenogenic implantation of equine synovial fluid-derived mesenchymal stem cells leads to articular cartilage regeneration. Stem Cells Int. 2018;2018:1073705. doi: 10.1155/2018/1073705
  34. Zheng ZY, Jiang T, Huang ZF, et al. Fatty acids derived from apoptotic chondrocytes fuel macrophages FAO through MSR1 for facilitating BMSCs osteogenic differentiation. Redox Biol. 2022;53:102326. doi: 10.1016/j.redox.2022.102326
  35. Liu ES, Raimann A, Chae BT, Martins JS, Baccarini M, Demay MB. c-Raf promotes angiogenesis during normal growth plate maturation. Development. 2016;143(2): 348-355. doi: 10.1242/dev.127142
  36. Zhou X, von der Mark K, Henry S, Norton W, Adams H, de Crombrugghe B. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 2014;10(12):e1004820. doi: 10.1371/journal.pgen.1004820
  37. van den Borne MPJ, Raijmakers NJH, Vanlauwe J, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture1. Osteoarthritis Cartilage. 2007;15(12):1397-1402. doi: 10.1016/j.joca.2007.05.005
  38. Alberton P, Dugonitsch HC, Hartmann B, et al. Aggrecan hypomorphism compromisesarticular cartilage biomechanical propertiesand is associated with increased incidenceof spontaneous osteoarthritis. Int J Mol Sci. 2019;20(5):1008. doi: 10.3390/ijms20051008
  39. Chen S, Fu P, Wu H, Pei M. Meniscus, articular cartilage, and nucleus pulposus a comparative review of cartilage-like tissues in anatomy, development, and function. Cell Tissue Res. 2017;370(1):53-70. doi: 10.1007/s00441-017-2613-0
  40. Gannon AR, Nagel T, Bell AP, Avery NC, Kelly DJ. Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network. Eur Cells Mater. 2015;29:105-123. doi: 10.22203/eCM.v029a09
  41. Richardson SM, Kalamegam G, Pushparaj PN, et al. Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods. 2016;99:69-81. doi: 10.1016/j.ymeth.2015.09.015
  42. Deng C, Zhu H, Li J, et al. Bioactive scaffolds for regeneration of cartilage and subchondral bone interface. Theranostics. 2018;8(7):1940-1955. doi: 10.7150/thno.23674
  43. Chen L, Yao F, Wang T, et al. Horizontal fissuring at the osteochondral interface: a novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann Rheum Dis. 2020;79(6):811-818. doi: 10.1136/annrheumdis-2020-216942
  44. Slattery C, Kweon CY. Classifications in brief: outerbridge classification of chondral lesions. Clin Orthop Relat Res. 2018;476(10):2101-2104. doi: 10.1007/s11999.0000000000000255
  45. Pereira RC, Martinelli D, Cancedda R, Gentili C, Poggi A. Human articular chondrocytes regulate immune response by affecting directly T cell proliferation and indirectly inhibiting monocyte differentiation to professional antigen-presenting cells. Front Immunol. 2016;7:415. doi: 10.3389/fimmu.2016.00415
  46. Freeman FE, Kelly DJ. Tuning alginate bioink stifness and composition for controlled growth factor delivery and to spatially direct MSC fate within bioprinted tissues. Sci Rep. 2017;7(1):17042. doi: 10.1038/s41598-017-17286-1
  47. Aboul-Soud MAM, Alzahrani AJ, Mahmoud A. Induced pluripotent stem cells (iPSCs)—roles in regenerative therapies, disease modelling and drug screening. Cells. 2021;10(9):2319. doi: 10.3390/cells10092319
  48. Yamashita A, Morioka M, Yahara Y, et al. Generation of scaffoldless hyaline car tilaginous tissue from human iPSCs. Stem Cell Reports. 2015;4(3)404-418. doi: 10.1016/j.stemcr.2015.01.016
  49. Song H, Park K-H. Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol. 2020;67(Pt 1):12-23. doi: 10.1016/j.semcancer.2020.04.008
  50. Jang Y, Jung H, Nam Y, et al. Centrifugal gravity-induced BMP4 induces chondrogenic differentiation of adiposederived stem cells via SOX9 upregulation. Stem Cell Res Ther. 2016;7(1):184. doi: 10.1186/s13287-016-0445-6
  51. Yan B Zhang Z, Wang X, et al. PLGA-PTMC-cultured bone mesenchymal stem cell scaffold enhances cartilage regeneration in tissue-engineered tracheal transplantation. Artif Organs. 2016;41(5):461-469. doi: 10.1111/aor.12805
  52. Wanjare M, Hou L, Nakayama KH, et al. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomater Sci. 2017;5(8):1567-1578. doi: 10.1039/c7bm00323d
  53. Schunck A, Kronz A, Fischer C, Buchhorn GH. Release of zirconia nanoparticles at the metal stem–bone cement interface in implant loosening of total hip replacements. Acta Biomater. 2016;31:412-424. doi: 10.1016/j.actbio.2015.11.044
  54. Yang Y, Bao H, Chai Q, et al. Toxicity, biodistribution and oxidative damage caused by zirconia nanoparticles after intravenous injection. Int J Nanomedicine. 2019;14:5175-5186. doi: 10.2147/IJN.S197565
  55. Eschweiler J, Horn N, Rath B, et al. The biomechanics of cartilage–an overview. Life (Basel). 2021;11(4):302. doi: 10.3390/life11040302
  56. Zhang M, Lu Q, Miller AH, Barnthouse NC, Wang J. Dynamic epigenetic mechanisms regulate age-dependent SOX9 expression in mouse articular cartilage. Int J Biochem Cell Biol. 2016;72:125-134. doi: 10.1016/j.biocel.2016.01.013
  57. Korhonen RK, Laasanen MS, Töyräs J, et al. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech. 2002;35(7):903-909. doi: 10.1016/s0021-9290(02)00052-0
  58. Lehtola T, Nummenmaa E, Tuure L, et al. Dexamethasone attenuates the expression of MMP-13 in chondrocytes through MKP-1. Int J Mol Sci. 2022;23(7):3880. doi: 10.3390/ijms23073880
  59. Chen C, Zhao W, Lu X, et al. AUP1 regulates lipid metabolism and induces lipidaccumulation to accelerate the progression of renal clearcell carcinoma. Cancer Sci. 2022;113(8):2600-2615. doi: 10.1111/cas.15445
  60. Barkley LR, Hong HK, Kingsbury SR, James M, Stoeber K, Williams GH. Cdc6 is a rate-limiting factor for proliferative capacity during HL60 cell differentiation. Exp Cell Res. 2007;313(17):3789-3799. doi: 10.1016/j.yexcr.2007.07.004
  61. Tu J, Wan C, Zhang F, et al. Genetic correction of Werner syndrome gene reveals impaired pro-angiogenic function and HGF insufficiency in mesenchymal stem cells. Aging Cell. 2020;19(5):e.13116. doi: 10.1111/acel.13116
  62. Li Z, Yan G, Diao Q, et al. Transplantation of human endometrial perivascular cells with elevated CYR61 expression induces angiogenesis and promotes repair of a full-thickness uterine injury in rat. Stem Cell Res Ther. 2019;10(1):179. doi: 10.1186/s13287-019-1272-3
  63. Gouttenoire J, Bougault C, Aubert-Foucher E, et al. BMP- 2 and TGF-beta1 differentially control expression of type II procollagen and alpha 10 and alpha 11 integrins in mouse chondrocytes. Eur J Cell Biol. 2010;89(4):307-314. doi: 10.1016/j.ejcb.2009.10.018
  64. Zhou N, Li Q, Lin X, et al. BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells. Cell Tissue Res. 2016;366(1):101-111. doi: 10.1007/s00441-016-2403-0
  65. Caron MJ, Welting TJ, Surtel DA, et al. BMP-2 and BMP- 7: differential regulation of chondrogenic differentiation. Osteoarthritis Cartilage. 2012;20(1):S151. doi: 10.1016/j.joca.2012.02.220
  66. Legendre F, Ollitrault D, Gomez-Leduc T, et al. Enhanced chondrogenesis of bone marrow-derived stem cells by using a combinatory cell therapy strategy with BMP-2/ TGF-β1, hypoxia, and COL1A1/HtrA1 siRNAs. Sci Rep. 2017;7(1):3406. doi: 10.1038/s41598-017-03579-y
  67. Chavez RD, Coricor G, Perez J, Seo HS, Serra R. SOX9 protein is stabilized by TGF-beta and regulates PAPSS2 mRNA expression in chondrocytes. Osteoarthritis Cartilage. 2017;25(2):332-340. doi: 10.1016/j.joca.2016.10.007
  68. Tew SR, Clegg PD. Analysis of post transcriptional regulation of SOX9 mRNA during in vitro chondrogenesis. Tissue Eng Part A. 2011;17(13-14):1801-1807. doi: 10.1089/ten.TEA.2010.0579
  69. Stegen S, Laperre K, Eelen G, et al. HIF-1alpha metabolically controls collagen synthesis and modification in chondrocytes. Nature. 2019;565(7740):511-515. doi: 10.1038/s41586-019-0874-3
  70. Guo W, Gong K, Shi H, et al. Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials. 2012;33(5):1291-1302. doi: 10.1016/j.biomaterials.2011.09.068
  71. Idaszek J, Costantini M, Karlsen TA, et al. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication. 2019;11(4):044101. doi: 10.1088/1758-5090/ab2622
  72. Zhang B, Huang J, Narayan RJ. Gradient scaffolds for osteochondral tissue engineering and regeneration. J Mater Chem B. 2020;8(36):8149-8170. doi: 10.1039/d0tb00688b
  73. Corrado F, Di Maio L, Palmero P, et al. Vat photo-polymerization 3D printing of gradient scaffolds for osteochondral tissue regeneration. Acta Biomater. 2025;200:67-86. doi: 10.1016/j.actbio.2025.05.042

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing