AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025390395
RESEARCH ARTICLE

Enhancing osteogenesis using 3D-printed porous tantalum scaffolds: A biomechanical, in vivo, and in vitro study

Mengxiao Tantai1,2,3† Yi Zhang1,2,3† Chengbin Wang2,3 Tongwei Du4 Sihao Yu1,2,3 Zhihai Zhang1,2,3 Hui Ma3 Junliang Song3 Dong Qu5 Gangning Feng1,2,3* Zhidong Lu1,2,3*
Show Less
1 Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
2 Institute of Osteoarthropathy, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
3 The First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia, China
4 State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
5 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi, China
†These authors contributed equally to this work.
Received: 23 September 2025 | Accepted: 11 October 2025 | Published online: 14 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Complex bone defects continue to pose significant challenges in the field of orthopedics, where restoring structural integrity and promoting osteointegration are essential for successful repair outcomes. Three-dimensional (3D) printing offers a robust approach for fabricating patient-specific scaffolds with precise architectural and functional control. In this study, we designed and fabricated porous scaffolds composed of tantalum and titanium alloys, both with identical porosity, utilizing 3D printing technology. We systematically compared their mechanical properties, in vitro osteogenic potential, and in vivo bone integration within a defect model. The porous tantalum (PTa) scaffolds demonstrated exceptional biocompatibility, enhanced cell adhesion, and significantly promoted the osteogenic differentiation of mesenchymal stem cells, as well as extracellular matrix mineralization. In vivo, the PTa scaffolds not only expedited bone repair but also improved osteoconductive ingrowth compared to their titanium counterparts. Multi-omics analyses further elucidated potential biological mechanisms underlying the superior performance of PTa. These findings underscore the potential of 3D-printed PTa as a promising scaffold material for the clinical repair of bone defects.  

Graphical abstract
Keywords
Biomaterials
Bone regeneration
Multi-omics analysis
Osteogenic differentiation
Porous tantalum
Funding
This work was supported by the Key R&D Project of the Ningxia Hui Autonomous Region (Project No. 2021BEG02037), the University-level Fund of Ningxia Medical University (Grant No. XT2024028) and Ningxia Natural Science Foundation (Grant No. 2025 AAC030863).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Zura R, Xiong Z, Einhorn T, et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 2016;151(11):e162775. doi: 10.1001/jamasurg.2016.2775
  2. Miron RJ. Advanced functional materials. Periodontology 2000. 2024;94(1):143-160. doi: 10.1111/prd.12517
  3. Zadpoor AA. Current trends in metallic orthopedic biomaterials: from additive manufacturing to bio-functionalization, infection prevention, and beyond. IJMS. 2018;19(9):2684. doi: 10.3390/ijms19092684
  4. Arabnejad S, Johnston B, Tanzer M, Pasini D. Fully porous 3D printed titanium femoral stem to reduce stress- shielding following total hip arthroplasty. J Orthop Res. 2017;35(8):1774-1783. doi: 10.1002/jor.23445
  5. Wauthle R, Van Der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217-225. doi: 10.1016/j.actbio.2014.12.003
  6. Melancon D, Bagheri ZS, Johnston RB, Liu L, Tanzer M, Pasini D. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants. Acta Biomater. 2017;63:350-368. doi: 10.1016/j.actbio.2017.09.013
  7. Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials. 2006;27(27):4671-4681. doi: 10.1016/j.biomaterials.2006.04.041
  8. Mao S, Liu Y, Wang F, et al. Design and biomechanical analysis of patientspecific porous tantalum prostheses for knee joint revision surgery. IJB. 2024;9(4):735. doi: 10.18063/ijb.735
  9. Liu Y, Bao C, Wismeijer D, Wu G. The physicochemical/ biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology. Mater Sci Eng C. 2015;49:323-329. doi: 10.1016/j.msec.2015.01.007
  10. Sagomonyants KB, Hakim‐Zargar M, Jhaveri A, Aronow MS, Gronowicz G. Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res. 2011;29(4):609-616. doi: 10.1002/jor.21251
  11. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290-295. doi: 10.1038/nbt.3122
  12. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8
  13. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359-362. doi: 10.1038/nmeth.1322
  14. Schwanhäusser B, Busse D, Li N, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337-342. doi: 10.1038/nature10098
  15. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40(D1):D109-D114. doi: 10.1093/nar/gkr988
  16. Dou X, Wei X, Liu G, et al. Effect of porous tantalum on promoting the osteogenic differentiation of bone marrow mesenchymal stem cells in vitro through the MAPK/ERK signal pathway. J Orthop Transl. 2019;19:81-93. doi: 10.1016/j.jot.2019.03.006
  17. Qian H, Lei T, Hua L, et al. Fabrication, bacteriostasis and osteointegration properties researches of the additively-manufactured porous tantalum scaffolds loading vancomycin. Bioact Mater. 2023;24:450-462. doi: 10.1016/j.bioactmat.2022.12.013
  18. Luo C, Wang C, Wu X, et al. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: a comprehensive study based on 3D-printing technology. Mater Sci Eng C. 2021;129:112382. doi: 10.1016/j.msec.2021.112382
  19. Fan L, Chen S, Yang M, Liu Y, Liu J. Metallic materials for bone repair. Adv Healthc Mater. 2024;13(3):2302132. doi: 10.1002/adhm.202302132
  20. Li JJ, Ebied M, Xu J, Zreiqat H. Current approaches to bone tissue engineering: the interface between biology and engineering. Adv Healthc Mater. 2018;7(6):1701061. doi: 10.1002/adhm.201701061
  21. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9(1):66. doi: 10.1186/1741-7015-9-66
  22. Bekmurzayeva A, Duncanson WJ, Azevedo HS, Kanayeva D. Surface modification of stainless steel for biomedical applications: revisiting a century-old material. Mater Sci Eng C. 2018;93:1073-1089. doi: 10.1016/j.msec.2018.08.049
  23. Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C. 2019;102:844-862. doi: 10.1016/j.msec.2019.04.064
  24. Zhang Y, Sun B, Zhao L, Yang G. Design and manufacturing of a novel trabecular tibial implant. Materials. 2023;16(13):4720. doi: 10.3390/ma16134720
  25. Qian H, Lei T, Lei P, Hu Y. Additively manufactured tantalum implants for repairing bone defects: a systematic review. Tissue Eng B Rev. 2021;27(2):166-180. doi: 10.1089/ten.teb.2020.0134
  26. Liu B, Ma Z, Li J, et al. Experimental study of a 3D printed permanent implantable porous Ta-coated bone plate for fracture fixation. Bioact Mater. 2022;10:269-280. doi: 10.1016/j.bioactmat.2021.09.009
  27. Jin J, Wang D, Qian H, et al. Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: a proof-of-concept study. Biomaterials. 2025;313:122756. doi: 10.1016/j.biomaterials.2024.122756
  28. Balla VK, Banerjee S, Bose S, Bandyopadhyay A. Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater. 2010;6(6):2329-2334. doi: 10.1016/j.actbio.2009.11.021
  29. Sautet P, Parratte S, Mékidèche T, et al. Antibiotic-loaded tantalum may serve as an antimicrobial delivery agent. Bone Joint J. 2019;101-B(7):848-851. doi: 10.1302/0301-620X.101B7.BJJ-2018-1206.R1
  30. Wang X, Liu W, Jiang C, et al. Research progress on the osteogenic properties of tantalum in the field of medical implant materials. J Mater Res Technol. 2024;30:1706-1715. doi: 10.1016/j.jmrt.2024.03.200
  31. Zhou Z, Liu D. Mesenchymal stem cell-seeded porous tantalum-based biomaterial: a promising choice for promoting bone regeneration. Colloids Surf B Biointerfaces. 2022;215:112491. doi: 10.1016/j.colsurfb.2022.112491

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing