3D-printed aerogel scaffolds with sodium para-aminosalicylate-encapsulated liposomes for intelligent drug delivery

Uncontrollable local drug release from drug-loaded scaffolds is a critical challenge in treating bone tuberculosis (BTB), often leading to bacterial resistance and treatment failure. This study proposes an intelligent composite aerogel scaffold that integrates external stimulus response, sustained-release, and structural design. Using direct ink writing and freeze-drying, we integrated sodium para-aminosalicylate-encapsulated liposomes and silk fibroin-modified superparamagnetic iron oxide nanoparticles into a hydroxyapatite scaffold, thereby constructing an aerogel scaffold with an extracellular matrix-like structure and controlled-release capacity. The incorporation of liposomes significantly suppressed drug burst release and extended the effective drug release period to 336 h. Furthermore, under remote, non-invasive triggering by an external alternating magnetic field, the scaffold maintained a stable local temperature at 42°C. This enabled an accelerated, on-demand release of the drug, overcoming the limitations of uncontrolled delivery. By combining precise three-dimensional printing, liposome-based sustained release, and dynamic magnetic regulation, the intelligent scaffold offers a promising new strategy for personalized treatment of BTB.

- Qin X, Qin B, Zhou C, et al. A multicenter, epidemiological study of bone tuberculosis in Southwest China from 2011 to 2023. J Epidemiol Glob Health. 2024;14(4):1678-1692. doi: 10.1007/s44197-024-00325-2
- Ding Y, Li B, Yi Y, et al. Progress in the role of nanoparticles in the diagnosis and treatment of bone and joint tuberculosis. Front Med (Lausanne). 2025;12:1536547. doi: 10.3389/fmed.2025.1536547
- Yang L, Liu Z. Analysis and therapeutic schedule of the postoperative recurrence of bone tuberculosis. J Orthop Surg Res. 2013;8:47. doi: 10.1186/1749-799X-8-47
- Huang J, Li H, Mei Y, et al. An injectable hydrogel bioimplant loaded with engineered exosomes and triple anti-tuberculosis drugs with potential for treating bone and joint tuberculosis. Int J Nanomedicine. 2025;20:1285-1302. doi: 10.2147/IJN.S480288
- Fernández-Paz C, Fernández-Paz E, Salcedo-Abraira P, et al. Microencapsulated isoniazid-loaded metal-organic frameworks for pulmonary administration of antituberculosis drugs. Molecules. 2021;26(21):6408. doi: 10.3390/molecules26216408
- Hua L, Qian H, Lei T, et al. Anti-tuberculosis drug delivery for tuberculous bone defects. Expert Opin Drug Deliv. 2021;18(12):1815-1827. doi: 10.1080/17425247.2021.1878328
- Olmos-Juste R, Guaresti O, Calvo-Correas T, Gabilondo N, Eceiza A. Design of drug-loaded 3D printing biomaterial inks and tailor-made pharmaceutical forms for controlled release. Int J Pharm. 2021;609:121124. doi: 10.1016/j.ijpharm.2021.121124
- Sun H, Hu C, Zhou C, et al. 3D printing of calcium phosphate scaffolds with controlled release of antibacterial functions for jaw bone repair. Mater Design. 2020;189:108536. doi: 10.1016/j.matdes.2020.108536
- Iglesias-Mejuto A, García-González CA. 3D-printed, dual crosslinked and sterile aerogel scaffolds for bone tissue engineering. Polymers (Basel). 2022;14(6):1145.doi: 10.3390/polym14061145
- Menshutina N, Abramov A, Tsygankov P, Lovskaya D. Extrusion-based 3D printing for highly porous alginate materials production. Gels. 2021;7(3):128. doi: 10.3390/gels7030128
- Son W-S, Park HJ, Lee C-J, et al. Supercritical drying of vascular endothelial growth factor in mesenchymal stem cells culture fluids. J Supercrit Fluids. 2020;157:104723. doi: 10.1016/j.supflu.2020.104723
- Yuan J, Zhen P, Zhao H, et al. The preliminary performance study of the 3D printing of a tricalcium phosphate scaffold for the loading of sustained release anti-tuberculosis drugs. J Mater Sci. 2015;50(5):2138-2147. doi: 10.1007/s10853-014-8776-0
- Cao X, Dai L, Sun S, Ma R, Liu X. Preparation and performance of porous hydroxyapatite/poly(lactic-co-glycolic acid) drug-loaded microsphere scaffolds for gentamicin sulfate delivery. J Mater Sci. 2021;56(27):15278-15298. doi: 10.1007/s10853-021-06183-8
- Dang Z, Huang W, Cai X, Ye J, Xu W. Dual cytokine release from microsphere-containing decellularized extracellular matrix immune regulation promotes bone repair and regeneration. Appl Mater Today. 2024;40:102433. doi: 10.1016/j.apmt.2024.102433
- Luo X, Zhang L, Luo Y, et al. Charge-driven self-assembled microspheres hydrogel scaffolds for combined drug delivery and photothermal therapy of diabetic wounds. Adv Funct Mater. 2023;33(26):2214036. doi: 10.1002/adfm.202214036
- Mufamadi MS, Kumar P, du Toit LC, et al. Liposome-embedded, polymeric scaffold for extended delivery of galantamine. J Drug Deliv Sci Technol. 2019;50:255-265. doi: 10.1016/j.jddst.2019.101208
- Sarkar N, Bose S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl Mater Interfaces. 2019;11(19):17184-17192. doi: 10.1021/acsami.9b20223
- Mohammadian F, Eatemadi A. Drug loading and delivery using nanofibers scaffolds. Artif Cells Nanomed Biotechnol. 2017;45(5):881-888. doi: 10.1080/21691401.2016.1177901
- Cheng R, Yan Y, Liu H, et al. Mechanically enhanced lipo-hydrogel with controlled release of multi-type drugs for bone regeneration. Appl Mater Today. 2018;12:294-308. doi: 10.1016/j.apmt.2018.04.003
- Amin M, Lammers TLM ten Hagen. Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: towards bypassing EPR. Adv Drug Deliv Rev. 2022;189:114503. doi: 10.1016/j.addr.2022.114503
- Bejarano J, Rojas A, Ramirez-Sagredo A, et al. Light-induced release of the cardioprotective peptide angiotensin-(1-9) from thermosensitive liposomes with gold nanoclusters. J Control Release. 2020;328:859-872. doi: 10.1016/j.jconrel.2020.08.029
- Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9(9-10):1533-1545. doi: 10.1002/smll.201201531
- Al-Jawuschi N, Chen S, Abie N, Fischer T, Fare S, Maleki HH. Self-assembly-driven Bi₂S₃ nanobelts integrated a silk-fibroin-based 3D-printed aerogel-based scaffold with a dual-network structure for photothermal bone cancer therapy. Langmuir. 2023;39(12):4326-4337. doi: 10.1021/acs.langmuir.2c03334
- Zhao Y, Chen H, Fu J, Wang A, Liu X, Jiang X. Drug-loaded microspheres on NIR-responsive PLA/MXene scaffolds: controlled release and bone tissue regeneration. ACS Appl Bio Mater. 2025;8(1):285-298. doi: 10.1021/acsabm.4c01175
- Gu C, Chen H, Zhao Y, et al. Ti₃C₂Tx@PLGA/Icaritin microspheres-modified PLGA/β-TCP scaffolds modulate Icaritin release to enhance bone regeneration through near-infrared response. Biomed Mater. 2024; 19(5):055014. doi: 10.1088/1748-605X/ad6dc9
- Deng C, Li Z, Lu L, et al. Sophisticated magneto-mechanical actuation promotes in situ stem cell assembly and chondrogenesis for treating osteoarthritis. ACS Nano. 2023;17(21):21690-21707. doi: 10.1021/acsnano.3c08367
- Saranya M, da Silva AM, Karjalainen H, et al. Magnetic-responsive carbon nanotubes composite scaffolds for chondrogenic tissue engineering. Adv Healthc Mater. 2023;12(30):e2301040. doi: 10.1002/adhm.202300104
- Beola L, Iturrioz-Rodriguez N, Pucci C, Bertorelli R, Ciofani G. Drug-loaded lipid magnetic nanoparticles for combined local hyperthermia and chemotherapy against glioblastoma multiforme. ACS Nano. 2023;17(18):18441-18455. doi: 10.1021/acsnano.3c10627
- Kang T, Cha GD, Park OK, et al. Penetrative and sustained drug delivery using injectable hydrogel nanocomposites for postsurgical brain tumor treatment. ACS Nano. 2023;17(6):5435-5447. doi: 10.1021/acsnano.2c11409
- Usov NA. Iron oxide nanoparticles for magnetic hyperthermia. Spin. 2019;9(2):1950006. doi: 10.3390/spin9020006
- Zhang Z-Q, Song S-C. Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. Biomaterials. 2016; 106:13-23. doi: 10.1016/j.biomaterials.2016.07.029
- Bardestani A, Ebrahimpour S, Esmaeili A, Esmaeili A. Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. J Nanobiotechnol. 2021;19(1):68. doi: 10.1186/s12951-021-00817-y
- Zhang H, Ma X, Cao C, Wang M, Zhu Y. Multifunctional iron oxide/silk-fibroin (Fe₃O₄-SF) composite microspheres for the delivery of cancer therapeutics. RSC Adv. 2014;4(78):41572-41577. doi: 10.1039/C4RA07974E
- Lee H, Han G, Na Y, et al. 3D-printed tissue-specific nanospike-based adhesive materials for time-regulated synergistic tumor therapy and tissue regeneration in vivo. Adv Funct Mater. 2024;34(48):2408622. doi: 10.1002/adfm.2024008622
- Huang H, Qiang L, Fan MJ, et al. 3D-printed tri-element-doped hydroxyapatite/polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioact Mater. 2024;31:18-37. doi: 10.1016/j.bioactmat.2024.02.013
- Chen S, Hassan N, Kopp A, et al. Theragenerative injectable bone-adhesive hydrogels for combined photothermal osteosarcoma therapy and bone repair. Biomater Sci. 2025;13(13):751-766. doi: 10.1039/d4bm01489f
- Cheung Y-MM, Van K, Lan L, et al. Hypothyroidism associated with therapy for multi-drug-resistant tuberculosis in Australia. Intern Med J. 2019;49(3):364-372. doi: 10.1111/imj.14238
- Qiao J, Yang L, Feng J, Dai X, Xu F, Xia P. Analysis of efficacy and safety of linezolid-based chemotherapeutic regimens for patients with postoperative multidrug-resistant spinal tuberculosis. Int J Infect Dis. 2022;118:264-269. doi: 10.1016/j.ijid.2022.05.073
- Mahmutoglu G, Topsakal A, Altan E, et al. Effects of temperature and pH on the synthesis of nanohydroxyapatite powders by chemical precipitation. J Aust Ceram Soc. 2023;59(5):1433-1441. doi: 10.1007/s41779-023-00893-0
- Saroglu O, Karakas CY, Yildirim RM, et al. Liposomal propolis loaded xanthan gum-salep hydrogels: Preparation, characterization, and in vitro bioaccessibility of phenolics. Int J Biol Macromol. 2025;300:125859. doi: 10.1016/j.ijbiomac.2024.12.245
- Deng M, Huang Z, Zou Y, Yin G, Liu J, Gu J. Fabrication and neuron cytocompatibility of iron oxide nanoparticles coated with silk-fibroin peptides. Colloids Surf B Biointerfaces. 2014;116:465-471. doi: 10.1016/j.colsurfb.2014.01.021
- Akbar M, Cagli E, Erel-Goktepe I. Layer-by-layer modified superparamagnetic iron oxide nanoparticles with stimuli-responsive drug release properties. Macromol Chem Phys. 2019;220(4):1800316. doi: 10.1002/macp.201800316
- Mallick N, Anwar M, Asfer M, et al. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride. Carbohydr Polym. 2016;151:546-556. doi: 10.1016/j.carbpol.2016.06.040
- Carissimi G, Baronio CM, Montalban MG, Villora G, Barth A. On the secondary structure of silk fibroin nanoparticles obtained using ionic liquids: an infrared spectroscopy study. Polymers. 2020;12(6):1494. doi: 10.3390/polymers12061494
- Del Bianco L, Spizzo F, Yang YJ, et al. Silk fibroin films with embedded magnetic nanoparticles: evaluation of the magneto-mechanical stimulation effect on osteogenic differentiation of stem cells. Nanoscale. 2022;14(39):14558-14574. doi: 10.1039/d2nr04350a
- Zheng Y, Yang R, Yu X, Zhang W, Shao Y. Effect of manganese ion doping on magnetic properties and magnetic induction heating of Zn-Al ferrite nanoparticles. J Alloys Compd. 2023;966:171827. doi: 10.1016/j.jallcom.2023.171827
- Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. In: Dsouza GGM, Zhang H, eds. Liposomes, 3rd ed. Vol 2622. New York, NY: Springer; 2023:57-63. doi: 10.1007/978-1-0716-3939-3_5
- Zhang H, Fu C, Yong LC, Sun N, Liu FG. Flexible and transparent PVA/CNF hydrogel with ultrahigh dielectric constant. ACS Appl Polymer Mater. 2024;6(10):5706-5713. doi: 10.1021/acsapm.4c00649
- Babaei M, Ghaee A, Nourmohammadi J. Poly (sodium 4-styrene sulfonate)-modified hydroxyapatite nanoparticles in zein-based scaffold as a drug carrier for vancomycin. Mater Sci Eng C Mater Biol Appl. 2019;100:874-885. doi: 10.1016/j.msec.2019.03.023
- Aki D, Ulag S, Unal S, et al. 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Mater Design. 2020;196:109123. doi: 10.1016/j.matdes.2020.109123
- Zou S, Xi L. CNF/PVA aerogel-based eutectic composite phase change materials with high strength and form stability for energy efficient building applications. J Energy Storage. 2025;127:106234. doi: 10.1016/j.est.2024.107870
- Abe K, Tomobe Y, Yano H. The reinforcement effect of cellulose nanofiber on Young’s modulus of polyvinyl alcohol gel produced through the freeze/thaw method. J Polymer Res. 2020;27(8):238. doi: 10.1007/s10965-020-02200-8
- Fan XD, Hsieh YL, Krochta JM. Thermal and mechanical behaviors of poly(vinyl alcohol)-lactose blends. J Appl Polymer Sci. 2002;83(4):929-935. doi: 10.1002/app.10520