AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025290296
RESEARCH ARTICLE

3D-printed aerogel scaffolds with sodium para-aminosalicylate-encapsulated liposomes for intelligent drug delivery

Kefeng Wang1† Yutong Chen1,2† Yan Xu1* Subramanian Sundarrajan2 Zhitao Yin1 Jingtao Hu1 Jian Chao1 Shun Zhang1 Miaomiao Zheng1 Seeram Ramakrishna2*
Show Less
1 School of Mechanical Engineering, Xinjiang University, Urumqi, Xinjiang, China
2 Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore
†These authors contributed equally to this work.
Received: 18 July 2025 | Accepted: 3 September 2025 | Published online: 9 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Uncontrollable local drug release from drug-loaded scaffolds is a critical challenge in treating bone tuberculosis (BTB), often leading to bacterial resistance and treatment failure. This study proposes an intelligent composite aerogel scaffold that integrates external stimulus response, sustained-release, and structural design. Using direct ink writing and freeze-drying, we integrated sodium para-aminosalicylate-encapsulated liposomes and silk fibroin-modified superparamagnetic iron oxide nanoparticles into a hydroxyapatite scaffold, thereby constructing an aerogel scaffold with an extracellular matrix-like structure and controlled-release capacity. The incorporation of liposomes significantly suppressed drug burst release and extended the effective drug release period to 336 h. Furthermore, under remote, non-invasive triggering by an external alternating magnetic field, the scaffold maintained a stable local temperature at 42°C. This enabled an accelerated, on-demand release of the drug, overcoming the limitations of uncontrolled delivery. By combining precise three-dimensional printing, liposome-based sustained release, and dynamic magnetic regulation, the intelligent scaffold offers a promising new strategy for personalized treatment of BTB.  

Graphical abstract
Keywords
Aerogel
Bone tuberculosis
Drug release
Liposome
Magnetic thermal response
Three-dimensional printing
Funding
This work was supported by the National Natural Science Foundation of China (52365053), the Excellent Doctoral Graduate Innovation Project of Xinjiang University, China (XJU2024BS101), and the China Scholarship Council (202407010013).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Qin X, Qin B, Zhou C, et al. A multicenter, epidemiological study of bone tuberculosis in Southwest China from 2011 to 2023. J Epidemiol Glob Health. 2024;14(4):1678-1692. doi: 10.1007/s44197-024-00325-2
  2. Ding Y, Li B, Yi Y, et al. Progress in the role of nanoparticles in the diagnosis and treatment of bone and joint tuberculosis. Front Med (Lausanne). 2025;12:1536547. doi: 10.3389/fmed.2025.1536547
  3. Yang L, Liu Z. Analysis and therapeutic schedule of the postoperative recurrence of bone tuberculosis. J Orthop Surg Res. 2013;8:47. doi: 10.1186/1749-799X-8-47
  4. Huang J, Li H, Mei Y, et al. An injectable hydrogel bioimplant loaded with engineered exosomes and triple anti-tuberculosis drugs with potential for treating bone and joint tuberculosis. Int J Nanomedicine. 2025;20:1285-1302. doi: 10.2147/IJN.S480288
  5. Fernández-Paz C, Fernández-Paz E, Salcedo-Abraira P, et al. Microencapsulated isoniazid-loaded metal-organic frameworks for pulmonary administration of antituberculosis drugs. Molecules. 2021;26(21):6408. doi: 10.3390/molecules26216408
  6. Hua L, Qian H, Lei T, et al. Anti-tuberculosis drug delivery for tuberculous bone defects. Expert Opin Drug Deliv. 2021;18(12):1815-1827. doi: 10.1080/17425247.2021.1878328
  7. Olmos-Juste R, Guaresti O, Calvo-Correas T, Gabilondo N, Eceiza A. Design of drug-loaded 3D printing biomaterial inks and tailor-made pharmaceutical forms for controlled release. Int J Pharm. 2021;609:121124. doi: 10.1016/j.ijpharm.2021.121124
  8. Sun H, Hu C, Zhou C, et al. 3D printing of calcium phosphate scaffolds with controlled release of antibacterial functions for jaw bone repair. Mater Design. 2020;189:108536. doi: 10.1016/j.matdes.2020.108536
  9. Iglesias-Mejuto A, García-González CA. 3D-printed, dual crosslinked and sterile aerogel scaffolds for bone tissue engineering. Polymers (Basel). 2022;14(6):1145.doi: 10.3390/polym14061145
  10. Menshutina N, Abramov A, Tsygankov P, Lovskaya D. Extrusion-based 3D printing for highly porous alginate materials production. Gels. 2021;7(3):128. doi: 10.3390/gels7030128
  11. Son W-S, Park HJ, Lee C-J, et al. Supercritical drying of vascular endothelial growth factor in mesenchymal stem cells culture fluids. J Supercrit Fluids. 2020;157:104723. doi: 10.1016/j.supflu.2020.104723
  12. Yuan J, Zhen P, Zhao H, et al. The preliminary performance study of the 3D printing of a tricalcium phosphate scaffold for the loading of sustained release anti-tuberculosis drugs. J Mater Sci. 2015;50(5):2138-2147. doi: 10.1007/s10853-014-8776-0
  13. Cao X, Dai L, Sun S, Ma R, Liu X. Preparation and performance of porous hydroxyapatite/poly(lactic-co-glycolic acid) drug-loaded microsphere scaffolds for gentamicin sulfate delivery. J Mater Sci. 2021;56(27):15278-15298. doi: 10.1007/s10853-021-06183-8
  14. Dang Z, Huang W, Cai X, Ye J, Xu W. Dual cytokine release from microsphere-containing decellularized extracellular matrix immune regulation promotes bone repair and regeneration. Appl Mater Today. 2024;40:102433. doi: 10.1016/j.apmt.2024.102433
  15. Luo X, Zhang L, Luo Y, et al. Charge-driven self-assembled microspheres hydrogel scaffolds for combined drug delivery and photothermal therapy of diabetic wounds. Adv Funct Mater. 2023;33(26):2214036. doi: 10.1002/adfm.202214036
  16. Mufamadi MS, Kumar P, du Toit LC, et al. Liposome-embedded, polymeric scaffold for extended delivery of galantamine. J Drug Deliv Sci Technol. 2019;50:255-265. doi: 10.1016/j.jddst.2019.101208
  17. Sarkar N, Bose S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl Mater Interfaces. 2019;11(19):17184-17192. doi: 10.1021/acsami.9b20223
  18. Mohammadian F, Eatemadi A. Drug loading and delivery using nanofibers scaffolds. Artif Cells Nanomed Biotechnol. 2017;45(5):881-888. doi: 10.1080/21691401.2016.1177901
  19. Cheng R, Yan Y, Liu H, et al. Mechanically enhanced lipo-hydrogel with controlled release of multi-type drugs for bone regeneration. Appl Mater Today. 2018;12:294-308. doi: 10.1016/j.apmt.2018.04.003
  20. Amin M, Lammers TLM ten Hagen. Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: towards bypassing EPR. Adv Drug Deliv Rev. 2022;189:114503. doi: 10.1016/j.addr.2022.114503
  21. Bejarano J, Rojas A, Ramirez-Sagredo A, et al. Light-induced release of the cardioprotective peptide angiotensin-(1-9) from thermosensitive liposomes with gold nanoclusters. J Control Release. 2020;328:859-872. doi: 10.1016/j.jconrel.2020.08.029
  22. Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9(9-10):1533-1545. doi: 10.1002/smll.201201531
  23. Al-Jawuschi N, Chen S, Abie N, Fischer T, Fare S, Maleki HH. Self-assembly-driven Bi₂S₃ nanobelts integrated a silk-fibroin-based 3D-printed aerogel-based scaffold with a dual-network structure for photothermal bone cancer therapy. Langmuir. 2023;39(12):4326-4337. doi: 10.1021/acs.langmuir.2c03334
  24. Zhao Y, Chen H, Fu J, Wang A, Liu X, Jiang X. Drug-loaded microspheres on NIR-responsive PLA/MXene scaffolds: controlled release and bone tissue regeneration. ACS Appl Bio Mater. 2025;8(1):285-298. doi: 10.1021/acsabm.4c01175
  25. Gu C, Chen H, Zhao Y, et al. Ti₃C₂Tx@PLGA/Icaritin microspheres-modified PLGA/β-TCP scaffolds modulate Icaritin release to enhance bone regeneration through near-infrared response. Biomed Mater. 2024; 19(5):055014. doi: 10.1088/1748-605X/ad6dc9
  26. Deng C, Li Z, Lu L, et al. Sophisticated magneto-mechanical actuation promotes in situ stem cell assembly and chondrogenesis for treating osteoarthritis. ACS Nano. 2023;17(21):21690-21707. doi: 10.1021/acsnano.3c08367
  27. Saranya M, da Silva AM, Karjalainen H, et al. Magnetic-responsive carbon nanotubes composite scaffolds for chondrogenic tissue engineering. Adv Healthc Mater. 2023;12(30):e2301040. doi: 10.1002/adhm.202300104
  28. Beola L, Iturrioz-Rodriguez N, Pucci C, Bertorelli R, Ciofani G. Drug-loaded lipid magnetic nanoparticles for combined local hyperthermia and chemotherapy against glioblastoma multiforme. ACS Nano. 2023;17(18):18441-18455. doi: 10.1021/acsnano.3c10627
  29. Kang T, Cha GD, Park OK, et al. Penetrative and sustained drug delivery using injectable hydrogel nanocomposites for postsurgical brain tumor treatment. ACS Nano. 2023;17(6):5435-5447. doi: 10.1021/acsnano.2c11409
  30. Usov NA. Iron oxide nanoparticles for magnetic hyperthermia. Spin. 2019;9(2):1950006. doi: 10.3390/spin9020006
  31. Zhang Z-Q, Song S-C. Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. Biomaterials. 2016; 106:13-23. doi: 10.1016/j.biomaterials.2016.07.029
  32. Bardestani A, Ebrahimpour S, Esmaeili A, Esmaeili A. Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. J Nanobiotechnol. 2021;19(1):68. doi: 10.1186/s12951-021-00817-y
  33. Zhang H, Ma X, Cao C, Wang M, Zhu Y. Multifunctional iron oxide/silk-fibroin (Fe₃O₄-SF) composite microspheres for the delivery of cancer therapeutics. RSC Adv. 2014;4(78):41572-41577. doi: 10.1039/C4RA07974E
  34. Lee H, Han G, Na Y, et al. 3D-printed tissue-specific nanospike-based adhesive materials for time-regulated synergistic tumor therapy and tissue regeneration in vivo. Adv Funct Mater. 2024;34(48):2408622. doi: 10.1002/adfm.2024008622
  35. Huang H, Qiang L, Fan MJ, et al. 3D-printed tri-element-doped hydroxyapatite/polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioact Mater. 2024;31:18-37. doi: 10.1016/j.bioactmat.2024.02.013
  36. Chen S, Hassan N, Kopp A, et al. Theragenerative injectable bone-adhesive hydrogels for combined photothermal osteosarcoma therapy and bone repair. Biomater Sci. 2025;13(13):751-766. doi: 10.1039/d4bm01489f
  37. Cheung Y-MM, Van K, Lan L, et al. Hypothyroidism associated with therapy for multi-drug-resistant tuberculosis in Australia. Intern Med J. 2019;49(3):364-372. doi: 10.1111/imj.14238
  38. Qiao J, Yang L, Feng J, Dai X, Xu F, Xia P. Analysis of efficacy and safety of linezolid-based chemotherapeutic regimens for patients with postoperative multidrug-resistant spinal tuberculosis. Int J Infect Dis. 2022;118:264-269. doi: 10.1016/j.ijid.2022.05.073
  39. Mahmutoglu G, Topsakal A, Altan E, et al. Effects of temperature and pH on the synthesis of nanohydroxyapatite powders by chemical precipitation. J Aust Ceram Soc. 2023;59(5):1433-1441. doi: 10.1007/s41779-023-00893-0
  40. Saroglu O, Karakas CY, Yildirim RM, et al. Liposomal propolis loaded xanthan gum-salep hydrogels: Preparation, characterization, and in vitro bioaccessibility of phenolics. Int J Biol Macromol. 2025;300:125859. doi: 10.1016/j.ijbiomac.2024.12.245
  41. Deng M, Huang Z, Zou Y, Yin G, Liu J, Gu J. Fabrication and neuron cytocompatibility of iron oxide nanoparticles coated with silk-fibroin peptides. Colloids Surf B Biointerfaces. 2014;116:465-471. doi: 10.1016/j.colsurfb.2014.01.021
  42. Akbar M, Cagli E, Erel-Goktepe I. Layer-by-layer modified superparamagnetic iron oxide nanoparticles with stimuli-responsive drug release properties. Macromol Chem Phys. 2019;220(4):1800316. doi: 10.1002/macp.201800316
  43. Mallick N, Anwar M, Asfer M, et al. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride. Carbohydr Polym. 2016;151:546-556. doi: 10.1016/j.carbpol.2016.06.040
  44. Carissimi G, Baronio CM, Montalban MG, Villora G, Barth A. On the secondary structure of silk fibroin nanoparticles obtained using ionic liquids: an infrared spectroscopy study. Polymers. 2020;12(6):1494. doi: 10.3390/polymers12061494
  45. Del Bianco L, Spizzo F, Yang YJ, et al. Silk fibroin films with embedded magnetic nanoparticles: evaluation of the magneto-mechanical stimulation effect on osteogenic differentiation of stem cells. Nanoscale. 2022;14(39):14558-14574. doi: 10.1039/d2nr04350a
  46. Zheng Y, Yang R, Yu X, Zhang W, Shao Y. Effect of manganese ion doping on magnetic properties and magnetic induction heating of Zn-Al ferrite nanoparticles. J Alloys Compd. 2023;966:171827. doi: 10.1016/j.jallcom.2023.171827
  47. Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. In: Dsouza GGM, Zhang H, eds. Liposomes, 3rd ed. Vol 2622. New York, NY: Springer; 2023:57-63. doi: 10.1007/978-1-0716-3939-3_5
  48. Zhang H, Fu C, Yong LC, Sun N, Liu FG. Flexible and transparent PVA/CNF hydrogel with ultrahigh dielectric constant. ACS Appl Polymer Mater. 2024;6(10):5706-5713. doi: 10.1021/acsapm.4c00649
  49. Babaei M, Ghaee A, Nourmohammadi J. Poly (sodium 4-styrene sulfonate)-modified hydroxyapatite nanoparticles in zein-based scaffold as a drug carrier for vancomycin. Mater Sci Eng C Mater Biol Appl. 2019;100:874-885. doi: 10.1016/j.msec.2019.03.023
  50. Aki D, Ulag S, Unal S, et al. 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Mater Design. 2020;196:109123. doi: 10.1016/j.matdes.2020.109123
  51. Zou S, Xi L. CNF/PVA aerogel-based eutectic composite phase change materials with high strength and form stability for energy efficient building applications. J Energy Storage. 2025;127:106234. doi: 10.1016/j.est.2024.107870
  52. Abe K, Tomobe Y, Yano H. The reinforcement effect of cellulose nanofiber on Young’s modulus of polyvinyl alcohol gel produced through the freeze/thaw method. J Polymer Res. 2020;27(8):238. doi: 10.1007/s10965-020-02200-8
  53. Fan XD, Hsieh YL, Krochta JM. Thermal and mechanical behaviors of poly(vinyl alcohol)-lactose blends. J Appl Polymer Sci. 2002;83(4):929-935. doi: 10.1002/app.10520

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing