AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025260250
RESEARCH ARTICLE

3D-printed patient-specific titanium implant for mandibular reconstruction with local drug release: Optimization, in vivo evaluation, and functional assessment

Chiao-Min Chang1,2 Shao-Fu Huang1,2 Hsuan-Wen Wang1,2 Lu-Yi Yu1,2 Tzu-Huan Huang1,3 Chun-Liang Lo1,2 Chun-Li Lin1,2*
Show Less
1 Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
2 Department of Biomedical Engineering, Medical Device Innovation and Translation Center, National Yang Ming Chaio Tung University, Taipei, Taiwan
3 Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei, Taiwan
Received: 27 June 2025 | Accepted: 21 July 2025 | Published online: 21 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Reconstruction of severe mandibular defects remains a significant clinical challenge due to high recurrence rates, inadequate anatomical restoration, and the limited efficacy of systemic chemotherapy. To address these limitations, a patient-specific, 3D-printed titanium mandibular implant was developed with an integrated refillable drug storage tank for localized cisplatin release. The tank surface geometry and the hydrogel formulation were optimized using the Taguchi method and incorporated into anatomically matched implants. In vivo evaluation in six porcine mandibular defect models demonstrated systemic safety over 12 weeks, with plasma platinum levels reduced by more than 60% compared to systemic administration. Hematological and biochemical indicators—including white blood cell count, liver enzymes, and renal function markers—remained within normal ranges throughout the observation period, confirming physiological stability and biocompatibility. No significant complications or implant loosening were observed. Functional validation was further performed on three representative human mandibular large-defect models. Finite element analysis revealed implant stresses well below the yield strength of Ti6Al4V (<40%), and four-point bending fatigue tests confirmed structural endurance beyond one million loading cycles. This study presents the first functional and biocompatible patient-specific mandibular implant with integrated, refillable drug delivery, offering a clinically translatable strategy for simultaneous reconstruction and localized chemotherapy in head and neck oncology.  

Graphical abstract
Keywords
3D printing
Drug release
Functional test
Patient-specific implant
Taguchi
Funding
This study was supported in part by the National Science and Technology Council project (project no.: 113-2327-B-A49-001), Taiwan.
Conflict of interest
No potential conflict of interest was reported by the authors.
References
  1. Li CH, Wu CH, Lin CL. Design of a patient-specific mandible reconstruction implant with dental prosthesis for metal 3D printing using integrated weighted topology optimization and finite element analysis. J Mech Behav Biomed Mater. 2020;105:103700. doi: 10.1016/j.jmbbm.2020.103700
  2. Lee SW, Kim HG, Ham MJ, et al. Custom implant for reconstruction of mandibular continuity defect. J Oral Maxillofac Surg. 2018;76(6):1370-1376. doi: 10.1016/j.joms.2017.12.003
  3. Patel A, Harrison P, Cheng A, et al. Fibular reconstruction of the maxilla and mandible with immediate implant-supported prosthetic rehabilitation: jaw in a day. Oral Maxillofac Surg Clin North Am. 2019;31(3):369-386. doi: 10.1016/j.coms.2019.03.002
  4. Toure G, Gouet E. Use of a 3-dimensional custom-made porous titanium prosthesis for mandibular body reconstruction with prosthetic dental rehabilitation and lipofilling. J Oral Maxillofac Surg. 2019;77(6):1305-1313. doi: 10.1016/j.coms.2018.12.026
  5. Lin CL, Wang YT, Chang CM, et al. Design criteria for patient-specific mandibular continuity defect reconstructed implant with lightweight structure using weighted topology optimization and validated with biomechanical fatigue testing. Int J Bioprint. 2022;8(1):437. doi: 10.18063/ijb.v8i1.437
  6. Kumar BP, Venkatesh V, Kumar KA, et al. Mandibular reconstruction: overview. J Maxillofac Oral Surg. 2016;15(4):425-441. doi: 10.1007/s12663-015-0766-5
  7. Wang B, Zhang S, Yue K, et al. The recurrence and survival of oral squamous cell carcinoma: a report of 275 cases. Chin J Cancer. 2013;32(11):614-618. doi: 10.5732/cjc.012.10219
  8. Pinheiro M, Alves JL. The feasibility of a custom-made endoprosthesis in mandibular reconstruction: implant design and finite element analysis. J Craniomaxillofac Surg. 2015;43(10):2116-2128. doi: 10.1016/j.jcms.2015.10.004
  9. Stoor P, Suomalainen A, Mesimaki K, et al. Rapid prototyped patient specific guiding implants in critical mandibular reconstruction. J Craniomaxillofac Surg. 2017;45(1):63-70. doi: 10.1016/j.jcms.2016.10.021
  10. Yusa K, Yamanouchi H, Yoshida Y, et al. Evaluation of quality of life and masticatory function in patients treated with mandibular reconstruction followed by occlusal rehabilitation with dental implants: a preliminary report. J Oral Maxillofac Surg Med Pathol. 2017;29(6):499-503. doi: 10.1016/j.ajoms.2017.06.004
  11. Cheng K, Liu Y, Yao C, et al. A personalized mandibular implant with supporting and porous structures designed with topology optimization – a case study of canine. Rapid Prototyping J. 2019;25(2):417-426. doi: 10.1108/rpj-11-2017-0231
  12. Chen CF, Chen CM, Chen HS, et al. The use of customized three-dimensionally printed mandible prostheses with a pressure-reducing device: a finite element analysis in different chewing positions, biomechanical testing, and in vivo animal study using lanyu pigs. Biomed Res Int. 2022;2022:9880454. doi: 10.1155/2022/9880454
  13. Chen CF, Chen CM, Huang WC, et al. The use of customized 3D-printed mandibular prostheses with pressure-reducing device: a clinical trial. Head Neck. 2024;46(7):1614-1624. doi: 10.1002/hed.27660
  14. Domsta V, Seidlitz A. 3D-printing of drug-eluting implants: an overview of the current developments described in the literature. Molecules. 2021;26(13):4066. doi: 10.3390/molecules26134066
  15. Chen C, Chen J, Luo T, et al. Late toxicities, failure patterns, local tumor control, and survival of esophageal squamous cell carcinoma patients after chemoradiotherapy with a simultaneous integrated boost: a 5-year phase II study. Front Oncol. 2021;11:738936. doi: 10.3389/fonc.2021.738936
  16. Lang K, Held T, Meixner E, et al. Frequency of osteoradionecrosis of the lower jaw after radiotherapy of oral cancer patients correlated with dosimetric parameters and other risk factors. Head Face Med. 2022;18(1):7. doi: 10.1186/s13005-022-00311-8
  17. Muzumder S, Srikantia N, Udayashankar AH, et al. Late toxicities in locally advanced head and neck squamous cell carcinoma treated with intensity modulated radiation therapy. Radiat Oncol J. 2021;39(3):184-192. doi: 10.3857/roj.2020.00913
  18. Ma X, Gao Y, Zhao D, et al. Titanium implants and local drug delivery systems become mutual promoters in orthopedic clinics. Nanomaterials (Basel). 2021;12(1):47. doi: 10.3390/nano12010047
  19. Kong X, Feng M, Wu L, et al. Biodegradable gemcitabine-loaded microdevice with sustained local drug delivery and improved tumor recurrence inhibition abilities for postoperative pancreatic tumor treatment. Drug Deliv. 2022;29(1):1595-1607. doi: 10.1080/10717544.2022.2075984
  20. Yang N, Chen H, Han H, et al. 3D printing and coating to fabricate a hollow bullet-shaped implant with porous surface for controlled cytoxan release. Int J Pharm. 2018;552(1-2):91-98. doi: 10.1016/ijpharm.2018.09.042
  21. Yang G, Liu H, Li A, et al. Antibacterial structure design of porous Ti6Al4V by 3D printing and anodic oxidation. Materials (Basel). 2023;16(15):5206. doi: 10.3390/ma16155206
  22. Park YS, Cho JY, Lee SJ, et al. Modified titanium implant as a gateway to the human body: the implant mediated drug delivery system. Biomed Res Int. 2014;2014:801358. doi: 10.1155/2014/801358
  23. Fayazfar H, Salarian M, Rogalsky A, et al. A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties. Mater Design. 2018;144:98-128. doi: 10.1016/j.matdes.2018.02.018
  24. Fan D, Zhang C, Wang H, et al. Fabrication of a composite 3D-printed titanium alloy combined with controlled in situ drug release to prevent osteosarcoma recurrence. Mater Today Bio. 2023;20:100683. doi: 10.1016/j.mtbio.2023.100683
  25. Li R, Ting YH, Youssef SH, et al. Three-dimensional printing for cancer applications: research landscape and technologies. Pharmaceuticals (Basel). 2021;14(8):787. doi: 10.3390/ph14080787
  26. Belz JE, Kumar R, Baldwin P, et al. Sustained release talazoparib implants for localized treatment of BRCA1- deficient breast cancer. Theranostics. 2017;7(17):4340-4349. doi: 10.7150/thno.18563
  27. Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26(19):302. doi: 10.3390/pharmaceutics11070302
  28. Lee WC, Zhang M. Design of monolimb using finite element modelling and statistics-based Taguchi method. Clin Biomech (Bristol). 2005;20(7):759-766. doi: 10.1016/j.clinbiomech.2005.03.015
  29. Huang S-F, Lo L-J, Lin C-L. Factorial analysis of variables influencing mechanical characteristics in Le Fort I osteotomy using FEA and statistics-based Taguchi method. J Med Biol Eng. 2016;36(4):495-505. doi: 10.1007/s40846-016-0157-5
  30. Maazinejad B, Mohammadnia O, Ali GAM, et al. Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. J Mol Liq. 2020;298:112001. doi: 10.1016/j.molliq.2019.112001
  31. Lin CL, Chang SH, Chang WJ, et al. Factorial analysis of variables influencing mechanical characteristics of a single tooth implant placed in the maxilla using finite element analysis and the statistics-based Taguchi method. Eur J Oral Sci. 2007;115(5):408-416. doi: 10.1111/j.1600-0722.2007.00473.x
  32. Zhuang B, Chen T, Xiao Z, et al. Drug-loaded implantable surgical cavity-adaptive hydrogels for prevention of local tumor recurrence. Int J Pharm. 2020;577:119048. doi: 10.1016/j.ijpharm.2020.119048
  33. Jing Z, Ni R, Wang J, et al. Practical strategy to construct anti-osteosarcoma bone substitutes by loading cisplatin into 3D-printed titanium alloy implants using a thermosensitive hydrogel. Bioact Mater. 2021;6(12): 4542-4557. doi: 10.1016/j.bioactmat.2021.05.007
  34. Madhulaxmi M, Iyer K, Periasamy R, et al. Role of cisplatin in oral squamous cell carcinoma—a review. J Adv Pharm Educ Res. 2017;7:39–42.
  35. U.S. Food and Drug Administration. Orthopedic Non-Spinal Bone Plates, Screws, and Washers – Premarket Notification (510(k)) Submissions: Guidance for Industry and FDA Staff. Silver Spring (MD): FDA; 2024. Available from: https://www.fda.gov/media/177663/download
  36. Qin M, Liu Y, Wang L, et al. Design and optimization of the fixing plate for customized mandible implants. J Craniomaxillofac Surg. 2015;43(7):1296-1302. doi: 10.1016/j.jcms.2015.06.003
  37. Ono K, Sato K, Nakamura T, et al. Reproduction of the antitumor effect of cisplatin and cetuximab using a three-dimensional spheroid model in oral cancer. Int J Med Sci. 2022;19(8):1320-1333. doi: 10.7150/ijms.74109
  38. Meng F, Yin Z, Ren X. et al. Construction of local drug delivery system on titanium-based implants to improve osseointegration. Pharmaceutics. 2022;14(5):1069. doi: 10.3390/pharmaceutics14051069
  39. Mittal L, Kalra M, Mahajan A. Study of feasibility and acceptability of subcutaneous implantable ports (SIPs) in cancer patients. Indian J Pediatr. 2012;79(12):1601-1604. doi: 10.1007/s12098-012-0711-2
  40. Vogl TJ, Engelmann K, Mack MG, et al. CT-guided intratumoural administration of cisplatin/epinephrine gel for treatment of malignant liver tumours. Br J Cancer. 2002;86(4):524-529. doi: 10.1038/sj.bjc.6600116

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing