AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025210212
RESEARCH ARTICLE

3D-printed PETG/BC scaffolds for bone tissue repair

Evangelos Daskalakis1,2†* Mohamed H. Hassan2†* Abdalla M. Omar2† Maria Kapousidou3 Dino Freitas1 Mehmet Cagirici1 Cian Vyas1 Hussein Mishbak4 Alexandra Lanot5 Niel C. Bruce5 Prasad Potluri3,6 Wajira Mirihanage3 Paulo J.D.S. Bartolo1*
Show Less
1 Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
2 Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester, United Kingdom
3 Department of Materials, The University of Manchester, Manchester, United Kingdom
4 Department of Biomedical Engineering, School of Engineering, University of Thi Qar, Nasiriyah, Iraq
5 Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
6 Northwest Composites Centre and Aerospace Research Institute, Department of Materials, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
†These authors contributed equally to this work.
Received: 21 May 2025 | Accepted: 15 July 2025 | Published online: 16 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bone tissue supports the body, enables movement, protects organs, produces blood cells, and stores minerals. In regenerative medicine, bone’s natural healing ability drives the need for engineered solutions to treat fractures, defects, and support implants. This study explores the development of polyethylene terephthalate glycol (PETG) and PETG/bacterial cellulose (BC) composite scaffolds with varying BC contents (10, 15, and 20 wt%) for bone tissue engineering (TE). Scanning electron microscopy and atomic force microscopy revealed porous structures with increasing surface roughness as BC content increased. Water contact angle analysis revealed enhanced hydrophilicity in PETG/BC composites, particularly at higher BC levels. Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry confirmed successful BC integration and interactions with PETG, along with increased crystallinity. Mechanical testing indicated that compressive strength improved with higher BC content, with 20 wt% BC achieving optimal performance. Biological tests using human adipose-derived stem cells displayed enhanced proliferation, differentiation, and mineralization on PETG/BC scaffolds. Among the tested BC scaffolds, the 20 wt% BC scaffold demonstrated the most favorable physical, mechanical, and biological properties. Overall, PETG/BC scaffolds, especially those with 20 wt% BC, display strong potential for future bone TE applications.

Graphical abstract
Keywords
Additive manufacturing
Bacterial cellulose
Biomaterial
Polyethylene terephthalate glycol
Stem cells
Tissue engineering
Funding
This project was partially supported by the University of Manchester and UKRI through EPSRC (grant number: EP/ V011766/1). Additionally, this work was also supported by the Henry Royce Institute for Advanced Materials (grant number: EP/S019367/1).
Conflict of interest
Paulo J.D.S. Bartolo is an Editorial Board Member of the journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Wang Y, Pereira FR, Peach C, Huang B, Vyas C, Bartolo P. Robotic in situ bioprinting for cartilage tissue engineering. Int J Extreme Manuf. 2023;5(3):032004. doi: 10.1088/2631-7990/acda67
  2. Dwivedi R, Mehrotra D. 3D bioprinting and craniofacial regeneration. J Oral Biol Craniofac Res. 2020;10(4): 650-659. doi: 10.1016/j.jobcr.2020.08.011
  3. Baptista R, Guedes M. Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement. Mater Sci Eng C. 2021;118:111528. doi: 10.1016/j.msec.2020.111528
  4. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485-502. doi: 10.1089/ten.teb.2012.0437
  5. Rahmati M, Silva EA, Reseland JE, Heyward CA, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev. 2020;49(15): 5178–5224. doi: 10.1039/D0CS00103A
  6. Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020;5(1): 82-91. doi: 10.1016/j.bioactmat.2020.01.004
  7. Ribas RG, Schatkoski VM, Montanheiro TLA, et al. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: a review. Ceram Int. 2019;45(17):21051-21061. doi: 10.1016/j.ceramint.2019.07.096
  8. Vyas C, Ates G, Aslan E, Hart J, Huang B, Bartolo B. Three-dimensional printing and electrospinning dual-scale polycaprolactone scaffolds with low-density and oriented fibers to promote cell alignment. 3D Print Addit Manuf. 2020;7(3):105-113. doi: 10.1089/3dp.2019.0091
  9. Huang B, Aslan E, Jiang Z, et al. Engineered dual-scale poly(ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration. Addit Manuf. 2020;36:101452. doi: 10.1016/j.addma.2020.101452
  10. Caetano G, Violante R, Sant’Ana AB, et al. Cellularized versus decellularized scaffolds for bone regeneration. Mater Lett. 2016;182:318-322. doi: 10.1016/j.matlet.2016.05.152
  11. Hassan MH, Omar AM, Daskalakis E, et al. The potential of polyethylene terephthalate glycol as biomaterial for bone tissue engineering. Polymers. 2020;12(12):3045. doi: 10.3390/polym12123045
  12. Martins RF, Branco R, Martins M, et al. Mechanical properties of additively manufactured polymeric materials— PLA and PETG—for biomechanical applications. Polymers. 2024;16(13):1868. doi: 10.3390/polym16131868
  13. Moreno Nieto D, Alonso-García M, Pardo-Vicente MA, Rodríguez-Parada L. Product design by additive manufacturing for water environments: study of degradation and absorption behavior of PLA and PETG. Polymers. 2021;13(7):1036. doi: 10.3390/polym13071036
  14. Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110(6):3479-3500. doi: 10.1021/cr900339w
  15. Saxena IM, Brown RM. Cellulose biosynthesis: current views and evolving concepts. Ann Bot. 2005;96(1):9–21. doi: 10.1093/aob/mci155
  16. Bhatnagar A, Sain M. Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos. 2005;24(12):1259-1268. doi: 10.1177/0731684405049864
  17. Wu Q, Henriksson M, Liu X, Berglund LA. A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules. 2007;8(12):3687-3692. doi: 10.1021/bm701061t
  18. Utoiu E, Manoiu VS, Oprita EI, Craciunescu O. Bacterial cellulose: a sustainable source for hydrogels and 3D-printed scaffolds for tissue engineering. Gels. 2024;10(6):387. doi: 10.3390/gels10060387
  19. Shrivastav P, Pramanik S, Vaidya G, et al. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B. 2022;10(17): 3199-3241. doi: 10.1039/d1tb02709c
  20. Torgbo S, Sukyai P. Biodegradation and thermal stability of bacterial cellulose as biomaterial: the relevance in biomedical applications. Polym Degrad Stabil. 2020;179:109232. doi: 10.1016/j.polymdegradstab.2020.109232
  21. Wu Y, Wang Y, Wang F, Huang Y, He J. Preparation of 3D printed polylactic acid/bacterial cellulose composite scaffolds for tissue engineering applications. Polymers. 2022;14(21):4756. doi: 10.3390/polym14214756
  22. Panaitescu MD, Frone NA, Chiulan I, Gabor RA, Spataru IC, Căşărică A. Biocomposites from polylactic acid and bacterial cellulose nanofibers obtained by mechanical treatment. Bioresources. 2017;12(1):662-672. doi: 10.15376/biores.12.1.662-672
  23. Yodsanga S, Poeaim S, Chantarangsu S, Swasdison S. Investigation of biodegradation and biocompatibility of chitosan–bacterial cellulose composite scaffold for bone tissue engineering applications. Cells. 2025;14(10):723. doi: 10.3390/cells14100723
  24. Saska S, Barud SH, Gaspar MMA, Marchetto R, Ribeiro SJL, Messaddeq Y. Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater. 2011;2011:1-8. doi: 10.1155/2011/175362
  25. Boyetey BM, Torgbo S, Sukyai P. Bio-scaffold for bone tissue engineering with focus on bacterial cellulose, biological materials for hydroxyapatite synthesis and growth factors. Eur Polym J. 2023;194:112168. doi: 10.1016/j.eurpolymj.2023.112168
  26. Wang X, Zhang Y, Luo J, et al. Printability of hybridized composite from maleic acid-treated bacterial cellulose with gelatin for bone tissue regeneration. Adv Compos Hybrid Mater. 2023;6:134. doi: 10.1007/s42114-023-00711-7
  27. Lee CM, Gu J, Kafle K, Catchmark J, Kim SH. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: pellicle formation, post-synthesis aggregation and fiber density. Carbohydr Polym. 2015;133:270-276. doi: 10.1016/j.carbpol.2015.06.091
  28. Yan C, Kleiner C, Tabigue A, et al. PETG: applications in modern medicine. Eng Regen. 2024;5(1):45-55. doi: 10.1016/j.engreg.2023.11.001
  29. Daicho K, Kobayashi K, Fujisawa S, Saito T. Crystallinity-independent yet modification-dependent true density of nanocellulose. Biomacromolecules. 2019;21(2):939-945. doi: 10.1021/acs.biomac.9b01584
  30. Saxena P, Shukla P, Gaur M. Thermal analysis of polymer blends and double layer by DSC. Polym Polym Compos. 2020;29(9):S11-S18. doi: 10.1177/0967391120984606
  31. Martínez Cortizas A, López-Costas O. Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach. Sci. Rep. 2020;10(1): 17888. doi: 10.1038/s41598-020-74993-y
  32. Figueiredo M, Fernando A, Martins G, Freitas J, Judas F, Figueiredo H. Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram Int. 2010;36(8):2383–2393. doi: 10.1016/j.ceramint.2010.07.016
  33. Zhu X, Chen T, Feng B, et al. Biomimetic bacterial cellulose-enhanced double-network hydrogel with excellent mechanical properties applied for the osteochondral defect repair. ACS Biomater Sci Eng. 2018;4(10):3534-3544. doi: 10.1021/acsbiomaterials.8b00682
  34. Loskot J, Jezbera D, Loskot R, et al. Influence of print speed on the microstructure, morphology, and mechanical properties of 3D-printed PETG products. Polym Test. 2023;123:108055. doi: 10.1016/j.polymertesting.2023.108055
  35. Aguayo MG, Fernández Pérez A, Reyes G, et al. Isolation and characterization of cellulose nanocrystals from rejected fibers originated in the Kraft pulping process. Polymers. 2018;10(10):1145. doi: 10.3390/polym10101145
  36. Techawinyutham L, Tengsuthiwat J, Srisuk R, Techawinyutham W, Rangappa SM, Siengchin S. Recycled LDPE/PETG blends and HDPE/PETG blends: mechanical, thermal, and rheological properties. J Mater Res Technol. 2021;15:2445-2458. doi: 10.1016/j.jmrt.2021.09.052
  37. Bhandari S, Lopez-Anido RA, Gardner DJ. Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Addit Manuf. 2019;30:100922. doi: 10.1016/j.addma.2019.100922
  38. Rand B, Robinson R. Surface characteristics of carbon fibres from PAN. Carbon. 1977;15(4):257-263. doi: 10.1016/0008-6223(77)90011-2
  39. Calore AR, Srinivas V, Groenendijk L, et al. Manufacturing of scaffolds with interconnected internal open porosity and surface roughness. Acta Biomater. 2023;156:158-176. doi: 10.1016/j.actbio.2022.07.017
  40. Ahn J-H, Kim J, Han G, et al. 3D-printed biodegradable composite scaffolds with significantly enhanced mechanical properties via the combination of binder jetting and capillary rise infiltration process. Addit Manuf. 2021;41:101988. doi: 10.1016/j.addma.2021.101988
  41. McAdam B, Fournet MB, McDonald P, Mojicevic M. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers. 2020;12(12):2908. doi: 10.3390/polym12122908
  42. Oh JE, Park N-M. Hydrophilic, transparent, and stretchable film using unmodified cellulose fibers. Mater Lett. 2022;309:131385. doi: 10.1016/j.matlet.2021.131385
  43. Huang K, Zhu T, Nie J, et al. Microporous spongy scaffolds based on biodegradable elastic polyurethanes for the migration and growth of host cells. ACS Appl Polym Mater. 2022;4(5):3942-3951. doi: 10.1021/acsapm.2c00398
  44. Zou M, Zhao X, Zhang X, Zhao Y, Zhang C, Shi K. Bio-inspired multiple composite film with anisotropic surface wettability and adhesion for tissue repair. Chem Eng J. 2020;398:125563. doi: 10.1016/j.cej.2020.125563
  45. Conrad TL, Jaekel DJ, Kurtz SM, Roeder RK. Effects of the mold temperature on the mechanical properties and crystallinity of hydroxyapatite whisker-reinforced polyetheretherketone scaffolds. J Biomed Mater Res B. 2013;101(4):576-583. doi: 10.1002/jbm.b.32859
  46. Bhattarai N, Li Z, Edmondson D, Zhang M. Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Adv Mater. 2006;18(11):1463-1467. doi: 10.1002/adma.200502537
  47. Hassan MH, Omar AM, Daskalakis E, Liu F, Bartolo P. Preliminary studies on the suitability of PETG for 4D printing applications. MATEC Web Conf. 2020;318:01010. doi: 10.1051/matecconf/202031801010
  48. Lanyi FJ, Wenzke N, Kaschta J, Schubert DW. On the determination of the enthalpy of fusion of α‐crystalline isotactic polypropylene using differential scanning calorimetry, X‐ray diffraction, and Fourier‐transform infrared spectroscopy: an old story revisited. Adv Eng Mater. 2019;22(9):1900796. doi: 10.1002/adem.201900796
  49. Paszkiewicz S, Szymczyk A, Pawlikowska D, et al. Synthesis and characterization of poly(ethylene terephthalate-co-1,4-cyclohexanedimethylene terephthalate)-block-poly(tetramethylene oxide) copolymers. RSC Adv. 2017;7(66):41745-41754. doi: 10.1039/c7ra07172h
  50. Atykyan N, Revin V, Shutova V. Raman and FT-IR spectroscopy investigation of the cellulose structural differences from bacteria gluconacetobacter sucrofermentans during different regimes of cultivation on a molasses media. AMB Express. 2020;10(1):84. doi: 10.1186/s13568-020-01020-8
  51. Bagwan JK, Ahuja BB, Mulay AV, Jawale KJ. Geometrical analysis of extrusion-based (additively manufactured) 3D designed scaffold for bone tissue engineering: a finite element approach, Mater Today Proc. 2022;50(5):1465-1471. doi: 10.1016/j.matpr.2021.09.049
  52. Yao Y, Chen S. The effects of fiber’s surface roughness on the mechanical properties of fiber-reinforced polymer composites. J. Compos. Mater. 2012;47(23):2909-2923. doi: 10.1177/0021998312459871
  53. Shuai C, Wang C, Qi F, et al. Enhanced crystallinity and antibacterial of PHBV scaffolds incorporated with zinc oxide. J Nanomater. 2020:1-12. doi: 10.1155/2020/6014816
  54. Wang G, Qi F, Yang W, et al. Crystallinity and reinforcement in poly-L-lactic acid scaffold induced by carbon nanotubes. Adv Polym Technol. 2019:1-10. doi: 10.1155/2019/8625325
  55. Huang B, Wang Y, Vyas C, Bartolo B. Crystal growth of 3D poly(ε-caprolactone) based bone scaffolds and its effects on the physical properties and cellular interactions. Adv Sci. 2020;10(1):2203183. doi: 10.1002/advs.202203183
  56. Ustunel S, Prévôt ME, Webb G, et al. Mechanically tunable elastomer and cellulose nanocrystal composites as scaffolds for in vitro cell studies. Mater Adv. 2021;2(1):464-476. doi: 10.1039/d0ma00676a
  57. Lužanin O, Gudurić V, Bernhardt A, et al. Impact of in-process crystallinity of biodegradable scaffolds fabricated by material extrusion on the micro- and nanosurface topography, viability, proliferation, and differentiation of human mesenchymal stromal cells. Polymers. 2023;15(6):1468. doi: 10.3390/polym15061468
  58. Wen JH, Vincent LG, Fuhrmann A, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater. 2014;13(10):979-987. doi: 10.1038/nmat4051
  59. Morgan EF, Unnikrisnan GU, Hussein AI. Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng. 2018;20:119-143. doi: 10.1146/annurev-bioeng-062117-121139
  60. Öhman‐Mägi C, Holub O, Wu D, Hall RM, Persson C. Density and mechanical properties of vertebral trabecular bone—a review. JOR Spine. 2021;4(4):e1176. doi: 10.1002/jsp2.1176

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing