AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025140119
RESEARCH ARTICLE

Multi-material bioprinting using a helical mixer for fabricating fibers with controlled composition

Reza Gharraei1 Donald J. Bergstrom2 Xiongbiao Chen1,2*
Show Less
1 Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
2 Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Received: 2 April 2025 | Accepted: 1 July 2025 | Published online: 2 July 2025
(This article belongs to the Special Issue Bioprinting for Tissue Engineering and Modeling)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Multi-material bioprinting is a promising technique for fabricating complex, heterogeneous constructs with tailored mechanical and biological properties for tissue engineering applications. Recently, the use of a helical static mixer in bioprinting has shown feasibility for producing fibers from multiple biomaterials. However, the underlying mechanisms of transient stream mixing and the control of composition gradients during the printing process remain insufficiently understood. This study investigates biomaterial mixing with the objective of improving the spatial resolution of composition gradients along the longitudinal axis of printed fibers. Computational fluid dynamics (CFD) simulations were utilized to investigate the flow and mixing behavior of precursor streams, and the insights obtained were used to redesign the bioprinting head for improved performance. Rheological studies were performed to characterize the flow behavior of the biomaterials. The results were used, in conjunction with CFD, to examine the mixing performance and to estimate the transition time—defined as the delay between flow rate changes at the inlets and the corresponding change in fiber composition. Our results demonstrate that the redesigned bioprinting head achieved complete mixing of biomaterials and that transition time can be effectively regulated or reduced by preemptively adjusting inlet flow rates. This advancement enhanced the spatial resolution of composition gradients by 17–30%, as confirmed through a case study presented in this article. Additionally, adjustments to the toolpath further improved gradient resolution. Overall, this study elucidates key principles underlying multi-material bioprinting and provides strategies for improving bioprinting head design to achieve finer spatial control of composition gradients.

Graphical abstract
Keywords
3D bioprinting
Computational fluid dynamics
Flow behavior
Multi-material bioprinting
Tissue engineering
Funding
This work was supported by the University of Saskatchewan Dean’s Scholarship and the Devolved Scholarship from the Department of Mechanical Engineering for the first author, and by the Natural Sciences and Engineering Research Council (NSERC) funds (Grant numbers: RGPIN 06396- 2019, RGPIN 04981-2022) for the co-authors.
Conflict of interest
Xiongbiao Chen serves as the Editorial Board Member of the journal, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Ozbolat IT, Moncal KK, Gudapati H. Evaluation of bioprinter technologies. Addit Manuf. 2017;13:179-200. doi: 10.1016/j.addma.2016.10.003
  2. Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From shape to function: the next step in bioprinting. Adv Mater. 2020;32(12):1906423. doi: 10.1002/adma.201906423
  3. Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable, cell‐compatible hydrogels. Adv Mater. 2015;27(9):1607-1614. doi: 10.1002/adma.201405076
  4. Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials/ bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006
  5. Sodupe-Ortega E, Sanz-Garcia A, Pernia-Espinoza A, Escobedo-Lucea C. Accurate calibration in multi-material 3D bioprinting for tissue engineering. Materials. 2018;11(8):1402. doi: 10.3390/ma11081402
  6. Betancourt N, Chen X. Review of extrusion-based multi-material bioprinting processes. Bioprinting. 2022;25:e00189. doi: 10.1016/j.bprint.2021.e00189
  7. Wei Q, Zhou J, An Y, Li M, Zhang J, Yang S. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: a review. Int J Biol Macromol. 2023;232:123450. doi: 10.1016/j.ijbiomac.2023.123450
  8. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312-319. doi: 10.1038/nbt.3413
  9. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
  10. Liu W, Zhang YS, Heinrich MA, et al. Rapid continuous multimaterial extrusion bioprinting. Adv Mater. 2017; 29(3):1604630. doi: 10.1002/adma.201604630
  11. Wei Q, An Y, Zhao X, Li M, Zhang J. Three-dimensional bioprinting of tissue-engineered skin: Biomaterials, fabrication techniques, challenging difficulties, and future directions: a review. Int J Biol Macromol. 2024;266(1):131281. doi: 10.1016/j.ijbiomac.2024.131281
  12. Tirella A, De Maria C, Criscenti G, Vozzi G, Ahluwalia A. The PAM 2 system: a multilevel approach for fabrication of complex three-dimensional microstructures. Rapid Prototyp J. 2012;18(4): 299-307. doi: 10.1108/13552541211231725
  13. Ning L, Sun H, Lelong T, et al. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Biofabrication. 2018;10(3): 035014. doi: 10.1088/1758-5090/aacd30
  14. Sarker Md, Izadifar M, Schreyer D, Chen X. Influence of ionic crosslinkers (Ca 2+ /Ba 2+ /Zn 2+ ) on the mechanical and biological properties of 3D bioplotted hydrogel scaffolds. J Biomater Sci Polym Ed. 2018;29(10):1126-1154. doi: 10.1080/09205063.2018.1433420
  15. Naghieh S, Karamooz-Ravari MR, Sarker M, Karki E, Chen X. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: experimental and numerical approaches. J Mech Behav Biomed Mater. 2018;80:111-118. doi: 10.1016/j.jmbbm.2018.01.034
  16. Izadifar Z, Chang T, Kulyk W, Chen X, Eames BF. Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering. Tissue Eng Part C Methods. 2016;22(3):173-188. doi: 10.1089/ten.tec.2015.0307
  17. Cameron T, Naseri E, MacCallum B, Ahmadi A. Development of a disposable single-nozzle printhead for 3D bioprinting of continuous multi-material constructs. Micromachines (Basel). 2020;11(5):459. doi: 10.3390/MI11050459
  18. Snyder J, Son AR, Hamid Q, Wu H, Sun W. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system. Biofabrication. 2016;8(1):015002. doi: 10.1088/1758-5090/8/1/015002
  19. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008
  20. Colosi C, Shin SR, Manoharan V, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater. 2016;28(4):677-684. doi: 10.1002/adma.201503310
  21. du Chatinier DN, Figler KP, Agrawal P, Liu W, Zhang YS. The potential of microfluidics-enhanced extrusion bioprinting. Biomicrofluidics. 2021;15(4):041304. doi: 10.1063/5.0033280
  22. Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016;5(3):326-333. doi: 10.1002/adhm.201500677
  23. Alloca PT. Mixing efficiency of static mixing units in laminar flow. Fiber Prod. 1982;10(1):12-19.
  24. Heywood NI, Viney LJ, Stewart IW. Mixing efficiencies and energy requirements of various motionless mixer designs for laminar mixing applications. In: Institution of Chemical Engineers Symposium Series. 1984;89:147-176. doi: 10.1016/b978-0-85295-171-2.50013-x
  25. Ober TJ, Foresti D, Lewis JA. Active mixing of complex fluids at the microscale. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(40):12293-12298. doi: 10.1073/pnas.1509224112
  26. Chávez-Madero C, de León-Derby MD, Samandari M, et al. Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing. Biofabrication. 2020;12(3):035023. doi: 10.1088/1758-5090/ab84cc
  27. Puertas-Bartolomé M, Włodarczyk-Biegun MK, del Campo A, Vázquez-Lasa B, San Román J. 3D printing of a reactive hydrogel bio-ink using a static mixing tool. Polymers (Basel). 2020;12(9):1986. doi: 10.3390/polym12091986
  28. Giachini PAGS, Gupta SS, Wang W, et al. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients. Sci Adv. 2020;6(8):eaay0929. doi: 10.1126/sciadv.aay0929
  29. Kuzucu M, Vera G, Beaumont M, et al. Extrusion-based 3D bioprinting of gradients of stiffness, cell density, and immobilized peptide using thermogelling hydrogels. ACS Biomater Sci Eng. 2021;7(6):2192-2197. doi: 10.1021/acsbiomaterials.1c00183
  30. Chand R, Muhire BS, Vijayavenkataraman S. Computational fluid dynamics assessment of the effect of bioprinting parameters in extrusion bioprinting. Int J Bioprint. 2022;8(2):545. doi: 10.18063/ijb.v8i2.545
  31. Lee S, Son M, Lee J, et al. Computational fluid dynamics analysis and empirical evaluation of carboxymethylcellulose/ alginate 3D bioprinting inks for screw-based microextrusion. Polymers (Basel). 2024;16(8):1137. doi: 10.3390/polym16081137
  32. Fareez UNM, Naqvi SAA, Mahmud M, Temirel M. Computational fluid dynamics (CFD) analysis of bioprinting. Adv Healthc Mater. 2024;13(20):2400643. doi: 10.1002/adhm.202400643
  33. Martanto W, Baisch SM, Costner EA, Prausnitz MR, Smith MK. Fluid dynamics in conically tapered microneedles. AIChE J. 2005;51(6):1599-1607. doi: 10.1002/aic.10424
  34. Liravi F, Darleux R, Toyserkani E. Additive manufacturing of 3D structures with non-Newtonian highly viscous fluids: finite element modeling and experimental validation. Addit Manuf. 2017;13:113-123. doi: 10.1016/j.addma.2016.10.008
  35. Li Y, Liu Y, Jiang C, Li S, Liang G, Hu Q. A reactor-like spinneret used in 3D printing alginate hollow fiber: a numerical study of morphological evolution. Soft Matter. 2016;12(8):2392-2399. doi: 10.1039/c5sm02733k
  36. Li S, Liu Y, Li Y, Zhang Y, Hu Q. Computational and experimental investigations of the mechanisms used by coaxial fluids to fabricate hollow hydrogel fibers. Chem Eng Process Process Intensif. 2015;95:98-104. doi: 10.1016/j.cep.2015.05.018
  37. Samandari M, Alipanah F, Majidzadeh-A K, Alvarez MM, Trujillo-de Santiago G, Tamayol A. Controlling cellular organization in bioprinting through designed 3D microcompartmentalization. Appl Phys Rev. 2021;8(2):021404. doi: 10.1063/5.0040732
  38. Ceballos‐González CF, Bolívar‐Monsalve EJ, Quevedo‐ Moreno DA, et al. Plug‐and‐play multimaterial chaotic printing/bioprinting to produce radial and axial micropatterns in hydrogel filaments. Adv Mater Technol. 2023;8(17):2202208. doi: 10.1002/admt.202202208
  39. Ates G, Bartolo P. Computational fluid dynamics for the optimization of internal bioprinting parameters and mixing conditions. Int J Bioprint. 2023;9(6):0219. doi: 10.36922/ijb.0219
  40. Wei Q, An Y, Zhao X, Li M, Zhang J, Cui N. Optimal design of multi-biomaterials mixed extrusion nozzle for 3D bioprinting considering cell activity. Virtual Phys Prototyp. 2025;20(1):e2438897. doi: 10.1080/17452759.2024.2438897
  41. Series 190 disposable plastic spiral bayonet mixer. v111424, Nordson-EFD, 2024:2.
  42. Chen DXB. Extrusion Bioprinting of Scaffolds for Tissue Engineering Applications. 1st ed. Springer Nature; 2019. doi: 10.1007/978-3-030-03460-3
  43. Paul EL, Atiemo‐Obeng VA, Kresta SM, eds. Handbook of Industrial Mixing. New Jersey, NJ: John Wiley & Sons; 2003. doi: 10.1002/0471451452
  44. Chahabra RP, Richardson JF. Non-Newtonian Flow and Applied Rheology, Engineering Applications. 2nd ed. Oxford, UK: Butterworth-Heinemann; 2008. doi: 10.1016/B978-0-7506-8532-0.X0001-7
  45. White FM. Viscous Fluid Flow. Boston, MA, Mcgraw Hill; 2006.
  46. Ribeiro ACF, Fabela I, Sobral AJFN, et al. Diffusion of sodium alginate in aqueous solutions at T=298.15K. J Chem Thermodyn. 2014;74:263-268. doi: 10.1016/j.jct.2014.02.014
  47. Paradies HH, Wagner D, Fischer WR. Multicomponent diffusion of sodium alginate solutions with added salt. II. Charged vs. uncharged system. Berichte der Bunsengesellschaft für physikalische Chemie. 1996;100(8):1299-1307. doi: 10.1002/bbpc.19961000806
  48. Shah NF, Kale DD. Pressure drop for laminar flow of non-Newtonian fluids in static mixers. Chem Eng Sci. 1991;46(8):2159-2161. doi: 10.1016/0009-2509(91)80175-X
  49. Cybulski, A. and Werner K. Static mixers—criteria for applications and selection. Int J Chem Eng. 1986;26:171-180.
  50. Grace HP. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun. 1982;14(3-6):225-277. doi: 10.1080/00986448208911047
  51. Wilkinson WL, Cliff MJ. An investigation into the performance of a static inline-mixer. In: Second European Conference on Mixing. 1977:A2.15-A2.29.
  52. Xu G, Feng L, Li Y, Wang K. Pressure drop of pseudo-plastic fluids in static mixers. Chin J Chem Eng. 1997;5:93-96.
  53. Nyande BW, Thomas MK, Lakerveld R. CFD analysis of a kenics static mixer with a low pressure drop under laminar flow conditions. Ind Eng Chem Res. 2021;60(14):5264-5277. doi: 10.1021/acs.iecr.1c00135
  54. White F. Fluid Mechanics. 9th ed. New York, NY: Mc GrawHill; 2021.
  55. Feng X, Ren Y, Hou L, et al. Tri-fluid mixing in a microchannel for nanoparticle synthesis. Lab Chip. 2019;19(17):2936-2946. doi: 10.1039/C9LC00425D
  56. Viktorov V, Mahmud MR, Visconte C. Numerical study of fluid mixing at different inlet flow-rate ratios in tear-drop and chain micromixers compared to a new H-C passive micromixer. Eng Appl Comput Fluid Mech. 2016;10(1):182-192. doi: 10.1080/19942060.2016.1140075
  57. 3D content central, Nordson-EFD. https://www.3dcontentcentral.com/parts/supplier/EFD,- Inc.aspx, access July 24,2025.
  58. Jiang X, Yang N, Wang R. Effect of aspect ratio on the mixing performance in the kenics static mixer. Processes. 2021;9(3):464. doi: 10.3390/pr9030464
  59. Fatima U, Shakaib M, Memon I. Analysis of mass transfer performance of micromixer device with varying confluence angle using CFD. Chem Pap. 2020;74(4):1267-1279. doi: 10.1007/s11696-019-00975-8
  60. Kim MS, Park SJ, Gu BK, Kim CH. Ionically crosslinked alginate–carboxymethyl cellulose beads for the delivery of protein therapeutics. Appl Surf Sci. 2012;262:28-33. doi: 10.1016/j.apsusc.2012.01.010
  61. Agarwal T, Narayana SNGH, Pal K, Pramanik K, Giri S, Banerjee I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int J Biol Macromol. 2015;75:409-417. doi: 10.1016/j.ijbiomac.2014.12.052
  62. Habib A, Sathish V, Mallik S, Khoda B. 3D printability of alginate-carboxymethyl cellulose hydrogel. Materials. 2018;11(3):454. doi: 10.3390/ma11030454
  63. Garrett Q, Simmons PA, Xu S, et al. Carboxymethylcellulose binds to human corneal epithelial cells and is a modulator of corneal epithelial wound healing. Invest Opthalmol Vis Sci. 2007;48(4):1559. doi: 10.1167/iovs.06-0848
  64. Benchabane A, Bekkour K. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym Sci. 2008;286(10):1173-1180. doi: 10.1007/s00396-008-1882-2
  65. Ma J, Lin Y, Chen X, Zhao B, Zhang J. Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocoll. 2014; 38:119-128. doi: 10.1016/j.foodhyd.2013.11.016
  66. Cross MM. Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci. 1965;20(5):417-437. doi: 10.1016/0095-8522(65)90022-X
  67. Messaâdi A, Dhouibi N, Hamda H, et al. A new equation relating the viscosity arrhenius temperature and the activation energy for some newtonian classical solvents. J Chem. 2015;2015:1-12. doi: 10.1155/2015/163262
  68. Toth G, Nagy D, Bata A, Belina K. Determination of polymer melts flow-activation energy a function of wide range shear rate. J Phys Conf Ser. 2018;1045:012040. doi: 10.1088/1742-6596/1045/1/012040
  69. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1(1):3-17. doi: 10.1016/0894-1777(88)90043-X
  70. Nair K, Gandhi M, Khalil S, et al. Characterization of cell viability during bioprinting processes. Biotechnol J. 2009;4(8):1168-1177. doi: 10.1002/biot.200900004
  71. Ning L, Betancourt N, Schreyer DJ, Chen X. Characterization of cell damage and proliferative ability during and after bioprinting. ACS Biomater Sci Eng. 2018;4(11): 3906-3918. doi: 10.1021/acsbiomaterials.8b00714
  72. Miri AK, Mirzaee I, Hassan S, et al. Effective bioprinting resolution in tissue model fabrication. Lab Chip. 2019;19(11):2019-2037. doi: 10.1039/C8LC01037D
  73. Jaffer SA, Wood PE. Quantification of laminar mixing in the kenics static mixer: An experimental study. Can J Chem Eng. 1998;76(3):516-521. doi: 10.1002/cjce.5450760323
  74. Regner M, Östergren K, Trägårdh C. Influence of viscosity ratio on the mixing process in a static mixer: numerical study. Ind Eng Chem Res. 2008;47(9):3030-3036. doi: 10.1021/ie0708071
  75. Cui R, Li S, Li T, et al. Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting. J Mater Chem B. 2023;11(17):3907-3918. doi: 10.1039/D2TB02786K
  76. Maillard M, Fournier S, García-Tuñón E, Courtial EJ. Advances and obstacles to unify the concept of “printability” in ceramics direct ink writing. Open Ceram. 2025;23:100808. doi: 10.1016/j.oceram.2025.100808

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing