Multi-material bioprinting using a helical mixer for fabricating fibers with controlled composition

Multi-material bioprinting is a promising technique for fabricating complex, heterogeneous constructs with tailored mechanical and biological properties for tissue engineering applications. Recently, the use of a helical static mixer in bioprinting has shown feasibility for producing fibers from multiple biomaterials. However, the underlying mechanisms of transient stream mixing and the control of composition gradients during the printing process remain insufficiently understood. This study investigates biomaterial mixing with the objective of improving the spatial resolution of composition gradients along the longitudinal axis of printed fibers. Computational fluid dynamics (CFD) simulations were utilized to investigate the flow and mixing behavior of precursor streams, and the insights obtained were used to redesign the bioprinting head for improved performance. Rheological studies were performed to characterize the flow behavior of the biomaterials. The results were used, in conjunction with CFD, to examine the mixing performance and to estimate the transition time—defined as the delay between flow rate changes at the inlets and the corresponding change in fiber composition. Our results demonstrate that the redesigned bioprinting head achieved complete mixing of biomaterials and that transition time can be effectively regulated or reduced by preemptively adjusting inlet flow rates. This advancement enhanced the spatial resolution of composition gradients by 17–30%, as confirmed through a case study presented in this article. Additionally, adjustments to the toolpath further improved gradient resolution. Overall, this study elucidates key principles underlying multi-material bioprinting and provides strategies for improving bioprinting head design to achieve finer spatial control of composition gradients.

- Ozbolat IT, Moncal KK, Gudapati H. Evaluation of bioprinter technologies. Addit Manuf. 2017;13:179-200. doi: 10.1016/j.addma.2016.10.003
- Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From shape to function: the next step in bioprinting. Adv Mater. 2020;32(12):1906423. doi: 10.1002/adma.201906423
- Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable, cell‐compatible hydrogels. Adv Mater. 2015;27(9):1607-1614. doi: 10.1002/adma.201405076
- Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials/ bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006
- Sodupe-Ortega E, Sanz-Garcia A, Pernia-Espinoza A, Escobedo-Lucea C. Accurate calibration in multi-material 3D bioprinting for tissue engineering. Materials. 2018;11(8):1402. doi: 10.3390/ma11081402
- Betancourt N, Chen X. Review of extrusion-based multi-material bioprinting processes. Bioprinting. 2022;25:e00189. doi: 10.1016/j.bprint.2021.e00189
- Wei Q, Zhou J, An Y, Li M, Zhang J, Yang S. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: a review. Int J Biol Macromol. 2023;232:123450. doi: 10.1016/j.ijbiomac.2023.123450
- Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312-319. doi: 10.1038/nbt.3413
- Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
- Liu W, Zhang YS, Heinrich MA, et al. Rapid continuous multimaterial extrusion bioprinting. Adv Mater. 2017; 29(3):1604630. doi: 10.1002/adma.201604630
- Wei Q, An Y, Zhao X, Li M, Zhang J. Three-dimensional bioprinting of tissue-engineered skin: Biomaterials, fabrication techniques, challenging difficulties, and future directions: a review. Int J Biol Macromol. 2024;266(1):131281. doi: 10.1016/j.ijbiomac.2024.131281
- Tirella A, De Maria C, Criscenti G, Vozzi G, Ahluwalia A. The PAM 2 system: a multilevel approach for fabrication of complex three-dimensional microstructures. Rapid Prototyp J. 2012;18(4): 299-307. doi: 10.1108/13552541211231725
- Ning L, Sun H, Lelong T, et al. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Biofabrication. 2018;10(3): 035014. doi: 10.1088/1758-5090/aacd30
- Sarker Md, Izadifar M, Schreyer D, Chen X. Influence of ionic crosslinkers (Ca 2+ /Ba 2+ /Zn 2+ ) on the mechanical and biological properties of 3D bioplotted hydrogel scaffolds. J Biomater Sci Polym Ed. 2018;29(10):1126-1154. doi: 10.1080/09205063.2018.1433420
- Naghieh S, Karamooz-Ravari MR, Sarker M, Karki E, Chen X. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: experimental and numerical approaches. J Mech Behav Biomed Mater. 2018;80:111-118. doi: 10.1016/j.jmbbm.2018.01.034
- Izadifar Z, Chang T, Kulyk W, Chen X, Eames BF. Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering. Tissue Eng Part C Methods. 2016;22(3):173-188. doi: 10.1089/ten.tec.2015.0307
- Cameron T, Naseri E, MacCallum B, Ahmadi A. Development of a disposable single-nozzle printhead for 3D bioprinting of continuous multi-material constructs. Micromachines (Basel). 2020;11(5):459. doi: 10.3390/MI11050459
- Snyder J, Son AR, Hamid Q, Wu H, Sun W. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system. Biofabrication. 2016;8(1):015002. doi: 10.1088/1758-5090/8/1/015002
- Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008
- Colosi C, Shin SR, Manoharan V, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater. 2016;28(4):677-684. doi: 10.1002/adma.201503310
- du Chatinier DN, Figler KP, Agrawal P, Liu W, Zhang YS. The potential of microfluidics-enhanced extrusion bioprinting. Biomicrofluidics. 2021;15(4):041304. doi: 10.1063/5.0033280
- Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016;5(3):326-333. doi: 10.1002/adhm.201500677
- Alloca PT. Mixing efficiency of static mixing units in laminar flow. Fiber Prod. 1982;10(1):12-19.
- Heywood NI, Viney LJ, Stewart IW. Mixing efficiencies and energy requirements of various motionless mixer designs for laminar mixing applications. In: Institution of Chemical Engineers Symposium Series. 1984;89:147-176. doi: 10.1016/b978-0-85295-171-2.50013-x
- Ober TJ, Foresti D, Lewis JA. Active mixing of complex fluids at the microscale. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(40):12293-12298. doi: 10.1073/pnas.1509224112
- Chávez-Madero C, de León-Derby MD, Samandari M, et al. Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing. Biofabrication. 2020;12(3):035023. doi: 10.1088/1758-5090/ab84cc
- Puertas-Bartolomé M, Włodarczyk-Biegun MK, del Campo A, Vázquez-Lasa B, San Román J. 3D printing of a reactive hydrogel bio-ink using a static mixing tool. Polymers (Basel). 2020;12(9):1986. doi: 10.3390/polym12091986
- Giachini PAGS, Gupta SS, Wang W, et al. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients. Sci Adv. 2020;6(8):eaay0929. doi: 10.1126/sciadv.aay0929
- Kuzucu M, Vera G, Beaumont M, et al. Extrusion-based 3D bioprinting of gradients of stiffness, cell density, and immobilized peptide using thermogelling hydrogels. ACS Biomater Sci Eng. 2021;7(6):2192-2197. doi: 10.1021/acsbiomaterials.1c00183
- Chand R, Muhire BS, Vijayavenkataraman S. Computational fluid dynamics assessment of the effect of bioprinting parameters in extrusion bioprinting. Int J Bioprint. 2022;8(2):545. doi: 10.18063/ijb.v8i2.545
- Lee S, Son M, Lee J, et al. Computational fluid dynamics analysis and empirical evaluation of carboxymethylcellulose/ alginate 3D bioprinting inks for screw-based microextrusion. Polymers (Basel). 2024;16(8):1137. doi: 10.3390/polym16081137
- Fareez UNM, Naqvi SAA, Mahmud M, Temirel M. Computational fluid dynamics (CFD) analysis of bioprinting. Adv Healthc Mater. 2024;13(20):2400643. doi: 10.1002/adhm.202400643
- Martanto W, Baisch SM, Costner EA, Prausnitz MR, Smith MK. Fluid dynamics in conically tapered microneedles. AIChE J. 2005;51(6):1599-1607. doi: 10.1002/aic.10424
- Liravi F, Darleux R, Toyserkani E. Additive manufacturing of 3D structures with non-Newtonian highly viscous fluids: finite element modeling and experimental validation. Addit Manuf. 2017;13:113-123. doi: 10.1016/j.addma.2016.10.008
- Li Y, Liu Y, Jiang C, Li S, Liang G, Hu Q. A reactor-like spinneret used in 3D printing alginate hollow fiber: a numerical study of morphological evolution. Soft Matter. 2016;12(8):2392-2399. doi: 10.1039/c5sm02733k
- Li S, Liu Y, Li Y, Zhang Y, Hu Q. Computational and experimental investigations of the mechanisms used by coaxial fluids to fabricate hollow hydrogel fibers. Chem Eng Process Process Intensif. 2015;95:98-104. doi: 10.1016/j.cep.2015.05.018
- Samandari M, Alipanah F, Majidzadeh-A K, Alvarez MM, Trujillo-de Santiago G, Tamayol A. Controlling cellular organization in bioprinting through designed 3D microcompartmentalization. Appl Phys Rev. 2021;8(2):021404. doi: 10.1063/5.0040732
- Ceballos‐González CF, Bolívar‐Monsalve EJ, Quevedo‐ Moreno DA, et al. Plug‐and‐play multimaterial chaotic printing/bioprinting to produce radial and axial micropatterns in hydrogel filaments. Adv Mater Technol. 2023;8(17):2202208. doi: 10.1002/admt.202202208
- Ates G, Bartolo P. Computational fluid dynamics for the optimization of internal bioprinting parameters and mixing conditions. Int J Bioprint. 2023;9(6):0219. doi: 10.36922/ijb.0219
- Wei Q, An Y, Zhao X, Li M, Zhang J, Cui N. Optimal design of multi-biomaterials mixed extrusion nozzle for 3D bioprinting considering cell activity. Virtual Phys Prototyp. 2025;20(1):e2438897. doi: 10.1080/17452759.2024.2438897
- Series 190 disposable plastic spiral bayonet mixer. v111424, Nordson-EFD, 2024:2.
- Chen DXB. Extrusion Bioprinting of Scaffolds for Tissue Engineering Applications. 1st ed. Springer Nature; 2019. doi: 10.1007/978-3-030-03460-3
- Paul EL, Atiemo‐Obeng VA, Kresta SM, eds. Handbook of Industrial Mixing. New Jersey, NJ: John Wiley & Sons; 2003. doi: 10.1002/0471451452
- Chahabra RP, Richardson JF. Non-Newtonian Flow and Applied Rheology, Engineering Applications. 2nd ed. Oxford, UK: Butterworth-Heinemann; 2008. doi: 10.1016/B978-0-7506-8532-0.X0001-7
- White FM. Viscous Fluid Flow. Boston, MA, Mcgraw Hill; 2006.
- Ribeiro ACF, Fabela I, Sobral AJFN, et al. Diffusion of sodium alginate in aqueous solutions at T=298.15K. J Chem Thermodyn. 2014;74:263-268. doi: 10.1016/j.jct.2014.02.014
- Paradies HH, Wagner D, Fischer WR. Multicomponent diffusion of sodium alginate solutions with added salt. II. Charged vs. uncharged system. Berichte der Bunsengesellschaft für physikalische Chemie. 1996;100(8):1299-1307. doi: 10.1002/bbpc.19961000806
- Shah NF, Kale DD. Pressure drop for laminar flow of non-Newtonian fluids in static mixers. Chem Eng Sci. 1991;46(8):2159-2161. doi: 10.1016/0009-2509(91)80175-X
- Cybulski, A. and Werner K. Static mixers—criteria for applications and selection. Int J Chem Eng. 1986;26:171-180.
- Grace HP. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun. 1982;14(3-6):225-277. doi: 10.1080/00986448208911047
- Wilkinson WL, Cliff MJ. An investigation into the performance of a static inline-mixer. In: Second European Conference on Mixing. 1977:A2.15-A2.29.
- Xu G, Feng L, Li Y, Wang K. Pressure drop of pseudo-plastic fluids in static mixers. Chin J Chem Eng. 1997;5:93-96.
- Nyande BW, Thomas MK, Lakerveld R. CFD analysis of a kenics static mixer with a low pressure drop under laminar flow conditions. Ind Eng Chem Res. 2021;60(14):5264-5277. doi: 10.1021/acs.iecr.1c00135
- White F. Fluid Mechanics. 9th ed. New York, NY: Mc GrawHill; 2021.
- Feng X, Ren Y, Hou L, et al. Tri-fluid mixing in a microchannel for nanoparticle synthesis. Lab Chip. 2019;19(17):2936-2946. doi: 10.1039/C9LC00425D
- Viktorov V, Mahmud MR, Visconte C. Numerical study of fluid mixing at different inlet flow-rate ratios in tear-drop and chain micromixers compared to a new H-C passive micromixer. Eng Appl Comput Fluid Mech. 2016;10(1):182-192. doi: 10.1080/19942060.2016.1140075
- 3D content central, Nordson-EFD. https://www.3dcontentcentral.com/parts/supplier/EFD,- Inc.aspx, access July 24,2025.
- Jiang X, Yang N, Wang R. Effect of aspect ratio on the mixing performance in the kenics static mixer. Processes. 2021;9(3):464. doi: 10.3390/pr9030464
- Fatima U, Shakaib M, Memon I. Analysis of mass transfer performance of micromixer device with varying confluence angle using CFD. Chem Pap. 2020;74(4):1267-1279. doi: 10.1007/s11696-019-00975-8
- Kim MS, Park SJ, Gu BK, Kim CH. Ionically crosslinked alginate–carboxymethyl cellulose beads for the delivery of protein therapeutics. Appl Surf Sci. 2012;262:28-33. doi: 10.1016/j.apsusc.2012.01.010
- Agarwal T, Narayana SNGH, Pal K, Pramanik K, Giri S, Banerjee I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int J Biol Macromol. 2015;75:409-417. doi: 10.1016/j.ijbiomac.2014.12.052
- Habib A, Sathish V, Mallik S, Khoda B. 3D printability of alginate-carboxymethyl cellulose hydrogel. Materials. 2018;11(3):454. doi: 10.3390/ma11030454
- Garrett Q, Simmons PA, Xu S, et al. Carboxymethylcellulose binds to human corneal epithelial cells and is a modulator of corneal epithelial wound healing. Invest Opthalmol Vis Sci. 2007;48(4):1559. doi: 10.1167/iovs.06-0848
- Benchabane A, Bekkour K. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym Sci. 2008;286(10):1173-1180. doi: 10.1007/s00396-008-1882-2
- Ma J, Lin Y, Chen X, Zhao B, Zhang J. Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocoll. 2014; 38:119-128. doi: 10.1016/j.foodhyd.2013.11.016
- Cross MM. Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci. 1965;20(5):417-437. doi: 10.1016/0095-8522(65)90022-X
- Messaâdi A, Dhouibi N, Hamda H, et al. A new equation relating the viscosity arrhenius temperature and the activation energy for some newtonian classical solvents. J Chem. 2015;2015:1-12. doi: 10.1155/2015/163262
- Toth G, Nagy D, Bata A, Belina K. Determination of polymer melts flow-activation energy a function of wide range shear rate. J Phys Conf Ser. 2018;1045:012040. doi: 10.1088/1742-6596/1045/1/012040
- Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1(1):3-17. doi: 10.1016/0894-1777(88)90043-X
- Nair K, Gandhi M, Khalil S, et al. Characterization of cell viability during bioprinting processes. Biotechnol J. 2009;4(8):1168-1177. doi: 10.1002/biot.200900004
- Ning L, Betancourt N, Schreyer DJ, Chen X. Characterization of cell damage and proliferative ability during and after bioprinting. ACS Biomater Sci Eng. 2018;4(11): 3906-3918. doi: 10.1021/acsbiomaterials.8b00714
- Miri AK, Mirzaee I, Hassan S, et al. Effective bioprinting resolution in tissue model fabrication. Lab Chip. 2019;19(11):2019-2037. doi: 10.1039/C8LC01037D
- Jaffer SA, Wood PE. Quantification of laminar mixing in the kenics static mixer: An experimental study. Can J Chem Eng. 1998;76(3):516-521. doi: 10.1002/cjce.5450760323
- Regner M, Östergren K, Trägårdh C. Influence of viscosity ratio on the mixing process in a static mixer: numerical study. Ind Eng Chem Res. 2008;47(9):3030-3036. doi: 10.1021/ie0708071
- Cui R, Li S, Li T, et al. Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting. J Mater Chem B. 2023;11(17):3907-3918. doi: 10.1039/D2TB02786K
- Maillard M, Fournier S, García-Tuñón E, Courtial EJ. Advances and obstacles to unify the concept of “printability” in ceramics direct ink writing. Open Ceram. 2025;23:100808. doi: 10.1016/j.oceram.2025.100808