Investigation of humidity-driven swelling– shrinking behavior of filaments in material extrusion of medical-grade biodegradable hydrogel

Material extrusion using medical-grade biodegradable hydrogel demonstrates significant potential for manufacturing biocompatible scaffolds in regenerative medicine. However, unpredictable geometric variations in the fabricated models, such as swelling or shrinking, impede the development of complex three-dimensional (3D) hydrogel architectures for in vitro-functionalized tissues and organs. A primary cause of structural deformation, such as wrinkling or even collapse, is improper humidity control during the 3D printing process. Therefore, there is a need to investigate the swelling–shrinking behavior of hydrogels under varying ambient humidity and to determine optimal humidity levels for the printing process. This study established a thermal–humidity–multiphase flow coupling field simulation model to numerically investigate the humidity-driven swelling–shrinking behavior of hydrogel filaments. The optimal 3D printing humidity levels were determined for hydrogel filaments with diameters of 0.2, 0.3, and 0.4 mm, which were found to be 90, 80, and 60%, respectively. Using these humidity settings, several structures were fabricated, demonstrating moderated moisture loss of 3D architecture. Notably, a human ear model was successfully printed, achieving an effective size of 20 mm (length) × 10 mm (width) × 10 mm (height). Our research can benefit the future development in tissue engineering and regenerative medicine.

- Kühl J, Gorb S, Kern M, et al. Extrusion-based 3D printing of osteoinductive scaffolds with a spongiosa-inspired structure. Front Bioeng Biotechnol. 2023;11:1268049. doi: 10.3389/fbioe.2023.1268049.
- Dutta SD, An JM, Hexiu J, et al. 3D bioprinting of engineered exosomes secreted from M2-polarized macrophages through immunomodulatory biomaterial promotes in vivo wound healing and angiogenesis. Bioact Mater. 2025;45:345-362. doi: 10.1016/j.bioactmat.2024.11.026.
- Daly AC, Prendergast ME, Hughes AJ, Burdick JA. Bioprinting for the biologist. Cell. 2021;184(1):18-32. doi: 10.1016/j.cell.2020.12.002.
- Wang H, Guo K, Zhang L, et al. Valve-based consecutive bioprinting method for multimaterial tissue-like constructs with controllable interfaces. Biofabrication. 2021;13:035001. doi: 10.1088/1758-5090/abdb86.
- Zhao Z, Xiang Y, Koellhoffer EC, et al. 3D bioprinting cowpea mosaic virus as an immunotherapy depot for ovarian cancer prevention in a preclinical mouse model. Mater Adv. 2024;5(4):1480-1486. doi: 10.1039/D3MA00899A.
- Weng T, Zhang W, Xia Y, et al. 3D bioprinting for skin tissue engineering: current status and perspectives. J Tissue Eng. 2021;12:1758518878. doi: 10.1177/20417314211028574.
- Ng WL, An J, Chua CK. Process, material, and regulatory considerations for 3D printed medical devices and tissue constructs. Engineering. 2024;36:146-166. doi: 10.1016/j.eng.2024.01.028.
- Namazi AM, Aghajanzadeh MS, Imani R. Optimizing a self-healing gelatin/aldehyde-modified xanthan gum hydrogel for extrusion-based 3D printing in biomedical applications. Mater Today Chem. 2024;40:102208. doi: 10.1016/j.mtchem.2024.102208.
- Ijeoma P, Ridel AF, Parkar H. Digital protocol for the bioprinting of a three-dimensional acellular dermal scaffold. Biomedical visualization. In: How to use 3D Printing Innovations and Digital Storage to Democratize Anatomy Education. Biomedical Visualization, Springer, Cham. 2024:99-113. doi: 10.1007/978-3-031-68501-9_5.
- Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang YS. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience. 2023;26(2):106039. doi: 10.1016/j.isci.2023.106039.
- Liu J, Xu C. Improving uniformity of cell distribution in post-inkjet-based bioprinting. J Manuf Sci Eng. 2024;146(1):014501. doi: 10.1115/1.4063134.
- Bozek J, Kurchakova O, Michel J, et al. Pneumatic conveying inkjet bioprinting for the processing of living cells. Biofabrication. 2025;17:025003. doi: 10.1088/1758-5090/ada8e2.
- Zhang P, Gao Q, Yu K, Yao Y, Lu L. Investigation on the temperature control accuracy of a print head for extrusion 3D printing and its improved design. Biomedicines. 2022;10(6):1233. doi: 10.3390/biomedicines10061233.
- Gao Q, Yu K, Chen F, Lu L, Zhang P. Investigation on the temperature distribution uniformity of an extrusion-based 3D print head and its temperature control strategy. Pharmaceutics. 2022;14(10):2108. doi: 10.3390/pharmaceutics14102108.
- Ji S, Guvendiren M. Complex 3D bioprinting methods. APL Bioeng. 2021;5(1):11508. doi: 10.1063/5.0034901.
- Wang X, Jiang J, Yuan C, et al. 3D bioprinting of GelMA with enhanced extrusion printability through coupling sacrificial carrageenan. Biomater Sci. 2024;12(3):738-747. doi: 10.1039/D3BM01489D.
- Burns N, Rajesh A, Manjula-Basavanna A, Duraj-Thatte A. 3D extrusion bioprinting of microbial inks for biomedical applications. Adv Drug Deliv Rev. 2025;217:115505. doi: 10.1016/j.addr.2024.115505.
- Iyer KS, Bao L, Zhai J, et al. Microgel-based bioink for extrusion-based 3D bioprinting and its applications in tissue engineering. Bioact Mater. 2025;48:273-293. doi: 10.1016/j.bioactmat.2025.02.003.
- Yuce-Erarslan E, Tutar R, Izbudak B, et al. Photo-crosslinkable chitosan and gelatin-based nanohybrid bioinks for extrusion-based 3D-bioprinting. Int J Polym Mater. 2021;72(1):1-12. doi: 10.1080/00914037.2021.1981322.
- Lima TDPL, Canelas CADA, Concha VOC, Costa FAMD, Passos MF. 3D bioprinting technology and hydrogels used in the process. J Funct Biomater. 2022;13(4):214. doi: 10.3390/jfb13040214.
- Shie M, Shen Y, Astuti SD, et al. Review of polymeric materials in 4D printing biomedical applications. Polymers. 2019;11(11):1864. doi: 10.3390/polym11111864.
- Chang CC, Boland ED, Williams SK, Hoying JB. Direct‐write bioprinting three‐dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater. 2011;98B(1):160-170. doi: 10.1002/jbm.b.31831.
- Lv C, Sun X, Xia H, et al. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing. Sens Actuators B Chem. 2018;259:736-744. doi: 10.1016/j.snb.2017.12.053.
- Dai C, Li Z, Li Z, et al. Direct‐printing hydrogel‐based platform for humidity‐driven dynamic full‐color printing and holography. Adv Funct Mater. 2023;33(9):2212053. doi: 10.1002/adfm.202212053.
- Sun S, Xu Y, Maimaitiyiming X. 3D printed carbon nanotube/polyaniline/gelatin flexible NH3, stress, strain, temperature multifunctional sensor. React Funct Polym. 2023;190:105625. doi: 10.1016/j.reactfunctpolym.2023.105625.
- Yu K, Gao Q, Lu L, Zhang P. A process parameter design method for improving the filament diameter accuracy of extrusion 3D printing. Materials. 2022;15(7):2454. doi: 10.3390/ma15072454.
- Zhao L, Wang P, Tian J, et al. A novel composite hydrogel for solar evaporation enhancement at air-water interface. Sci Total Environ. 2019;668:153-160. doi: 10.1016/j.scitotenv.2019.02.407.
- Park JH, Jang J, Lee J, Cho D. Current advances in three-dimensional tissue/organ printing. Tissue Eng Regen Med. 2016;13:612-621. doi: 10.1007/s13770-016-8111-8.
- Search J, Mahjoubnia A, Chen AC, et al. 3D-printing of selectively porous, freestanding structures via humidity-induced rapid phase change. Addit Manuf. 2023;68:103514. doi: 10.1016/j.addma.2023.103514.
- Matamoros M, Gómez-Blanco JC, Sánchez ÁJ, et al. Temperature and humidity PID controller for a bioprinter atmospheric enclosure system. Micromachines. 2020;11(11):999. doi: 10.3390/mi11110999.
- Yu K, Gao Q, Yao Y, Lin Z, Zhang P, Lu L. Investigation of the humidity control in the printing space for the material extrusion of medical biodegradable hydrogel. Addit Manuf. 2024;93:104452. doi: 10.1016/j.addma.2024.104452.
- Yu K, Gao Q, Xu J, et al. Computational investigation of a 3D-printed skin substitute with orthotropy in mechanical property. Comput Biol Med. 2023;166:107536. doi: 10.1016/j.compbiomed.2023.107536.
- Scotti C, Wirz D, Wolf F, et al. Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds. Biomaterials. 2010;31(8):2252-2259. doi: 10.1016/j.biomaterials.2009.11.110.
- Cubo N, Garcia M, Del CJ, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2016;9:15006. doi: 10.1088/1758-5090/9/1/015006.
- Cahn JW, Hilliard JE. Free energy of a nonuniform system. I. Interfacial free energy and free energy of a nonuniform system. III. Nucleation in a two‐component incompressible fluid. J Chem Phys. 1959;31:688-699. doi: 10.1002/9781118788295.ch3.
- Gao Q, Lu L, Zhang R, Song L, Huo D, Wang G. Investigation on the thermal behavior of an aerostatic spindle system considering multi-physics coupling effect. Int J Adv Manuf Technol. 2019;102:3813-3823. doi: 10.1007/s00170-019-03509-4.
- Fick A. On liquid diffusion. J Membr Sci. 1995;100(1):33-38. doi: 10.1016/0376-7388(94)00230-V.
- Shu S, Zhan Z, Xu J, Huang Y, Huang W, Lin Y. Three-dimensional numerical simulation and experiment of moisture condensation mechanism inside high voltage switchgear. Int J Electr Power Energy Syst. 2023;151:109129. doi: 10.1016/j.ijepes.2023.109129.
- Naghieh S, Chen X. Printability–a key issue in extrusion-based bioprinting. J Pharm Anal. 2021;11(5):564-579. doi: 10.1016/j.jpha.2021.02.001.
- Schwab A, Levato R, D Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084.
- Lee J, Kim G. Three-dimensional hierarchical nanofibrous collagen scaffold fabricated using fibrillated collagen and pluronic F-127 for regenerating bone tissue. ACS Appl Mater Interfaces. 2018;10(42):35801-35811. doi: 10.1021/acsami.8b14088.
- Boonlai W, Hirun N, Suknuntha K, Tantishaiyakul V. Development and characterization of pluronic F127 and methylcellulose based hydrogels for 3D bioprinting. Polym Bull. 2023;80:4555-4572. doi: 10.1007/s00289-022-04271-6.
- Fu Z, Angeline V, Sun W. Evaluation of printing parameters on 3D extrusion printing of pluronic hydrogels and machine learning guided parameter recommendation. Int J Bioprint. 2021;7(4):434. doi: 10.18063/ijb.v7i4.434.