AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025190183
REVIEW ARTICLE

Advances and challenges in three-dimensional bioprinting of bone organoids: Materials, techniques, and functionalization strategies

Longfei Wu1 Junjie Zhao1 Jiwei Huang1 Pengfei Huang1 Haiyan Zhao2*
Show Less
1 Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
2 Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
Received: 6 May 2025 | Accepted: 1 July 2025 | Published online: 2 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The use of three-dimensional (3D) bioprinting to construct bone organoids holds significant promise in bone tissue engineering due to its potential to replicate complex structures for research and regenerative medicine. This technology enables the creation of precise 3D structures through layer-by-layer deposition of bioinks guided by digital models. However, challenges remain in achieving functional bone organoids, especially in bioink design, vascularization, and cell viability preservation. To address these issues, various printing techniques such as extrusion, inkjet, light-curing, and microfluidic printing have been explored, but further advances are needed to improve the quality and functionality of printed bone organoids. This review assesses the current state of research on the application of 3D bioprinting techniques for the construction of bone organoids, focusing on the selection of bioinks, scaffold materials, and the role of cells and growth factors. Despite notable progress, significant challenges remain in optimizing the mechanical properties of bioinks, enhancing vascularization, and mimicking the dynamic physiological environment of bone tissue. The main objective of this study is to explore the technical challenges and opportunities in the construction of functional bone organoids through 3D bioprinting, aiming to provide insights into future directions for overcoming these obstacles and improving bone tissue regeneration applications.  

Graphical abstract
Keywords
Bone organoids
Bioink
Three-dimensional bioprinting
Tissue engineering
Vascularization
Funding
This publication is partially funded by the National Natural Science Foundation of China (Project Approval number: 82060394), Lanzhou University Undergraduate Education and Teaching Level Improvement Cultivation Project (Project number: lzuyxcx-2022-92), and Lanzhou Talent Innovation and Entrepreneurship Project (Project number: 2020-RC-45).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696-711. doi:10.1038/s41580-020-00279-w
  2. Wang J, Chen X, Li R, et al. Standardization and consensus in the development and application of bone organoids. Theranostics. 2025;15(2):682-706. doi:10.7150/thno.105840
  3. Chimene D, Miller L, Cross LM, Jaiswal MK, Singh I, Gaharwar AK. Nanoengineered osteoinductive bioink for 3D bioprinting bone tissue. ACS Appl Mater Interfaces. 2020;12(14):15976-15988. doi:10.1021/acsami.9b19037
  4. Liu B, Li J, Lei X, et al. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Mater Sci Eng C Mater Biol Appl. 2020;112:110905. doi:10.1016/j.msec.2020.110905
  5. Ashammakhi N, Hasan A, Kaarela O, et al. Advancing frontiers in bone bioprinting. Adv Healthc Mater. 2019;8(7):e1801048. doi:10.1002/adhm.201801048
  6. Byambaa B, Annabi N, Yue K, et al. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater. 2017;6(16):10.1002/adhm.201700015. doi:10.1002/adhm.201700015
  7. Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue engineering. Theranostics. 2021;11(16):7948-7969. doi:10.7150/thno.61621
  8. Di Buduo CA, Lunghi M, Kuzmenko V, et al. Bioprinting soft 3D models of hematopoiesis using natural silk fibroin-based bioink efficiently supports platelet differentiation. Adv Sci (Weinh). 2024;11(18):e2308276. doi:10.1002/advs.202308276
  9. Zhang Y, Wang B, Hu J, et al. 3D composite bioprinting for fabrication of artificial biological tissues. Int J Bioprint. 2021;7(1):299. doi:10.18063/ijb.v7i1.299
  10. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi:10.1039/c7bm00765e
  11. Ma W, Lu H, Xiao Y, Wu C. Advancing organoid development with 3D bioprinting. OR. 2025;1(1):025040004. doi:10.36922/or025040004
  12. Song MJ, Quinn R, Nguyen E, et al. Bioprinted 3D outer retina barrier uncovers RPE-dependent choroidal phenotype in advanced macular degeneration. Nat Methods. 2023;20(1):149-161. doi:10.1038/s41592-022-01701-1
  13. Göckler T, Haase S, Kempter X, et al. Tuning superfast curing thiol-norbornene-functionalized gelatin hydrogels for 3D bioprinting. Adv Healthc Mater. 2021;10(14):e2100206. doi:10.1002/adhm.202100206
  14. Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45-59. doi:10.1016/j.biomaterials.2016.09.003
  15. Li M, Gao L, Zhao L, Zou T, Xu H. Toward the next generation of vascularized human neural organoids. Med Res Rev. 2023;43(1):31-54. doi:10.1002/med.21922
  16. Ning L, Gil CJ, Hwang B, et al. Biomechanical factors in three-dimensional tissue bioprinting. Appl Phys Rev. 2020;7(4):041319. doi:10.1063/5.0023206
  17. Burdick JA, Chung C, Jia X, Randolph MA, Langer R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules. 2005;6(1):386-391. doi:10.1021/bm049508a
  18. Bendtsen ST, Quinnell SP, Wei M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A. 2017;105(5):1457-1468. doi:10.1002/jbm.a.36036
  19. Lian L, Zhou C, Tang G, et al. Uniaxial and coaxial vertical embedded extrusion bioprinting. Adv Healthc Mater. 2022;11(9):e2102411. doi:10.1002/adhm.202102411
  20. Zeng X, Meng Z, He J, et al. Embedded bioprinting for designer 3D tissue constructs with complex structural organization. Acta Biomater. 2022;140:1-22. doi:10.1016/j.actbio.2021.11.048
  21. Horváth L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen- Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep. 2015;5:7974. doi:10.1038/srep07974
  22. Duraj-Thatte AM, Manjula-Basavanna A, Rutledge J, et al. Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nat Commun. 2021;12(1):6600. doi:10.1038/s41467-021-26791-x
  23. Liu X, Yuk H, Lin S, et al. 3D printing of living responsive materials and devices. Adv Mater. 2018;30(4):e1704821. doi:10.1002/adma.201704821
  24. Naghieh S, Chen X. Printability-a key issue in extrusion-based bioprinting. J Pharm Anal. 2021;11(5):564-579. doi:10.1016/j.jpha.2021.02.001
  25. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793-10833. doi:10.1021/acs.chemrev.0c00008
  26. Zhao L, Lee VK, Yoo SS, Dai G, Intes X. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials. 2012;33(21):5325-5332. doi:10.1016/j.biomaterials.2012.04.004
  27. Kim W, Lee Y, Kang D, Kwak T, Lee HR, Jung S. 3D inkjet-bioprinted lung-on-a-chip. ACS Biomater Sci Eng. 2023;9(5):2806-2815. doi:10.1021/acsbiomaterials.3c00089
  28. Liu J, Shahriar M, Xu H, Xu C. Cell-laden bioink circulation-assisted inkjet-based bioprinting to mitigate cell sedimentation and aggregation. Biofabrication. 2022; 14(4):025007. doi:10.1088/1758-5090/ac8fb7
  29. Zhang P, Wang H, Wang P, et al. Lightweight 3D bioprinting with point by point photocuring. Bioact Mater. 2021;6(5):1402-1412. doi:10.1016/j.bioactmat.2020.10.023
  30. Zhu D, Zhu Y, Chen Y, et al. Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on tri- and tetratopic linkers. Nat Commun. 2023;14(1):2865. doi:10.1038/s41467-023-38538-x
  31. Lee GW, Chandrasekharan A, Roy S, et al. 3D bioprinting of stromal cells-laden artificial cornea based on visible light-crosslinkable bioinks forming multilength networks. Biofabrication. 2024;16(3):035002. doi:10.1088/1758-5090/ad35eb
  32. Garciamendez-Mijares CE, Aguilar FJ, Hernandez P, et al. Design considerations for digital light processing bioprinters. Appl Phys Rev. 2024;11(3):031314. doi:10.1063/5.0187558
  33. de Armentia SL, Fernández-Villamarín S, Ballesteros Y, Del Real JC, Dunne N, Paz E. 3D printing of a graphene-modified photopolymer using stereolithography for biomedical applications: a study of the polymerization reaction. Int J Bioprint. 2022;8(1):503. doi:10.18063/ijb.v8i1.503
  34. Shi H, Li Y, Xu K, Yin J. Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting. Mater Today Bio. 2023;23:100799. doi:10.1016/j.mtbio.2023.100799
  35. Tien J, Dance YW. Microfluidic biomaterials. Adv Healthc Mater. 2021;10(4):e2001028. doi:10.1002/adhm.202001028
  36. Achille C, Parra-Cabrera C, Dochy R, et al. 3D printing of monolithic capillarity-driven microfluidic devices for diagnostics. Adv Mater. 2021;33(25):e2008712. doi:10.1002/adma.202008712
  37. Xie R, Zheng W, Guan L, Ai Y, Liang Q. Engineering of hydrogel materials with perfusable microchannels for building vascularized tissues. Small. 2020;16(15):e1902838. doi:10.1002/smll.201902838
  38. Ding X, Yu Y, Shang L, Zhao Y. Histidine-triggered GO hybrid hydrogels for microfluidic 3D printing. ACS Nano. 2022;16(11):19533-19542. doi:10.1021/acsnano.2c09850
  39. Dai B, Zhang L, Zhao C, et al. Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing. Nat Commun. 2021;12(1):6458. doi:10.1038/s41467-021-26606-z
  40. Wang D, Maharjan S, Kuang X, et al. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. Sci Adv. 2022;8(43):eabq6900. doi:10.1126/sciadv.abq6900
  41. Jiang S, Zhao H, Zhang W, et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity. Cell Rep Med. 2020;1(9):100161. doi:10.1016/j.xcrm.2020.100161
  42. Tiwari AP, Thorat ND, Pricl S, Patil RM, Rohiwal S, Townley H. Bioink: a 3D-bioprinting tool for anticancer drug discovery and cancer management. Drug Discov Today. 2021;26(7):1574-1590. doi:10.1016/j.drudis.2021.03.010
  43. Zhang H, Wang Y, Zheng Z, et al. Strategies for improving the 3D printability of decellularized extracellular matrix bioink. Theranostics. 2023;13(8):2562-2587. doi:10.7150/thno.81785
  44. Liu Q, Yang J, Wang Y, et al. Direct 3D bioprinting of tough and antifatigue cell-laden constructs enabled by a self-healing hydrogel bioink. Biomacromolecules. 2023;24(6):2549-2562. doi:10.1021/acs.biomac.3c00057
  45. Cheng QP, Hsu SH. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Acta Biomater. 2023;164:124-138. doi:10.1016/j.actbio.2023.04.023
  46. Muthukrishnan L. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. Carbohydr Polym. 2021;260:117774. doi:10.1016/j.carbpol.2021.117774
  47. Antich C, de Vicente J, Jiménez G, et al. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater. 2020;106:114-123. doi:10.1016/j.actbio.2020.01.046
  48. Hafeez S, Aldana AA, Duimel H, et al. Molecular tuning of a benzene-1,3,5-tricarboxamide supramolecular fibrous hydrogel enables control over viscoelasticity and creates tunable ECM-mimetic hydrogels and bioinks. Adv Mater. 2023;35(24):e2207053. doi:10.1002/adma.202207053
  49. Zhou X, Yu X, You T, et al. 3D printing-based hydrogel dressings for wound healing. Adv Sci (Weinh). 2024;11(47):e2404580. doi:10.1002/advs.202404580
  50. Shah M, Maroof A, Gikas P, et al. Dual neutralisation of IL- 17F and IL-17A with bimekizumab blocks inflammation-driven osteogenic differentiation of human periosteal cells. RMD Open. 2020;6(2):e001306. doi:10.1136/rmdopen-2020-001306
  51. Wang J, Wu Y, Li G, et al. Engineering large-scale self-mineralizing bone organoids with bone matrix-inspired hydroxyapatite hybrid bioinks. Adv Mater. 2024;36(30):e2309875. doi:10.1002/adma.202309875
  52. Sanchez AA, Teixeira FC, Casademunt P, Beeren I, Moroni L, Mota C. Enhanced osteogenic differentiation in hyaluronic acid methacrylate (HAMA) matrix: a comparative study of hPDC and hBMSC spheroids for bone tissue engineering. Biofabrication. 2025;17(2):025013. doi:10.1088/1758-5090/adb2e6
  53. Hall GN, Fan Y, Viellerobe B, et al. Laser-assisted bioprinting of targeted cartilaginous spheroids for high density bottom-up tissue engineering. Biofabrication. 2024;16(4):045029. doi:10.1088/1758-5090/ad6e1a
  54. Saravanou SF, Ioannidis K, Dimopoulos A, et al. Dually crosslinked injectable alginate-based graft copolymer thermoresponsive hydrogels as 3D printing bioinks for cell spheroid growth and release. Carbohydr Polym. 2023;312:120790. doi:10.1016/j.carbpol.2023.120790
  55. Wang F, Qian H, Kong L, et al. Accelerated bone regeneration by astragaloside IV through stimulating the coupling of osteogenesis and angiogenesis. Int J Biol Sci. 2021;17(7):1821-1836. doi:10.7150/ijbs.57681
  56. Mao L, Xia L, Chang J, et al. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater. 2017;61:217-232. doi:10.1016/j.actbio.2017.08.015
  57. Bai CW, Tian B, Zhang MC, et al. Targeting NAMPT-OPA1 for treatment of senile osteoporosis. Aging Cell. 2025;24(3):e14400. doi:10.1111/acel.14400
  58. Guo Y, Chi X, Wang Y, et al. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther. 2020;11(1):245. doi:10.1186/s13287-020-01704-9
  59. Cui Y, Guo Y, Kong L, et al. A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis. Bioact Mater. 2022;10:207-221. doi:10.1016/j.bioactmat.2021.09.015
  60. Lamandé SR, Ng ES, Cameron TL, et al. Modeling human skeletal development using human pluripotent stem cells. Proc Natl Acad Sci U S A. 2023;120(19):e2211510120. doi:10.1073/pnas.2211510120
  61. Okano H, Morimoto S. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell. 2022;29(2):189-208. doi:10.1016/j.stem.2022.01.007
  62. Nguyen VT, Canciani B, Cirillo F, Anastasia L, Peretti GM, Mangiavini L. Effect of chemically induced hypoxia on osteogenic and angiogenic differentiation of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells in direct coculture. Cells. 2020; 9(3):757. doi:10.3390/cells9030757
  63. Quintard C, Tubbs E, Jonsson G, et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat Commun. 2024;15(1):1452. doi: 10.1038/s41467-024-45710-4
  64. Homan KA, Gupta N, Kroll KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods. 2019;16(3):255-262. doi: 10.1038/s41592-019-0325-y
  65. Yoon SJ, Kim SH, Choi JW, Chun HJ, Yang DH. Guided cortical and cancellous bone formation using a minimally invasive technique of BMSC- and BMP-2-laden visible light-cured carboxymethyl chitosan hydrogels. Int J Biol Macromol. 2023;227:641-653. doi:10.1016/j.ijbiomac.2022.12.137
  66. Wang J, Zhu Q, Cao D, et al. Bone marrow-derived IGF-1 orchestrates maintenance and regeneration of the adult skeleton. Proc Natl Acad Sci U S A. 2023;120(1):e2203779120. doi:10.1073/pnas.2203779120
  67. Koffi KA, Doublier S, Ricort JM, Babajko S, Nassif A, Isaac J. The role of GH/IGF axis in dento-alveolar complex from development to aging and therapeutics: a narrative review. Cells. 2021;10(5):1181. doi:10.3390/cells10051181
  68. Song IW, Nagamani SC, Nguyen D, et al. Targeting TGF-β for treatment of osteogenesis imperfecta. J Clin Invest. 2022;132(7):e152571. doi:10.1172/jci152571
  69. Fitzpatrick V, Martín-Moldes Z, Deck A, et al. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials. 2021;276:120995. doi:10.1016/j.biomaterials.2021.120995
  70. He Q, Yang J, Pan Z, et al. Biochanin A protects against iron overload associated knee osteoarthritis via regulating iron levels and NRF2/System xc-/GPX4 axis. Biomed Pharmacother. 2023;157:113915. doi:10.1016/j.biopha.2022.113915
  71. Mohanakrishnan V, Sivaraj KK, Jeong HW, et al. Specialized post-arterial capillaries facilitate adult bone remodelling. Nat Cell Biol. 2024;26(12):2020-2034. doi:10.1038/s41556-024-01545-1
  72. Park Y, Cheong E, Kwak JG, Carpenter R, Shim JH, Lee J. Trabecular bone organoid model for studying the regulation of localized bone remodeling. Sci Adv. 2021;7(4): eabd6495. doi:10.1126/sciadv.abd6495
  73. Bai L, Song P, Su J. Bioactive elements manipulate bone regeneration. Biomater Transl. 2023;4(4):248-269. doi:10.12336/biomatertransl.2023.04.005
  74. Yao Y, Wei G, Deng L, Cui W. Visualizable and lubricating hydrogel microspheres via NanoPOSS for cartilage regeneration. Adv Sci (Weinh). 2023;10(15):e2207438. doi:10.1002/advs.202207438
  75. Shen C, Wang J, Li G, et al. Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor. Bioact Mater. 2024;35:429-444. doi:10.1016/j.bioactmat.2024.02.016
  76. Dönges L, Damle A, Mainardi A, et al. Engineered human osteoarthritic cartilage organoids. Biomaterials. 2024;308:122549. doi:10.1016/j.biomaterials.2024.122549
  77. Wang XH, Liu N, Zhang H, Yin ZS, Zha ZG. From cells to organs: progress and potential in cartilaginous organoids research. J Transl Med. 2023;21(1):926. doi:10.1186/s12967-023-04591-9
  78. Zhang L, Tang H, Xiahou Z, et al. Solid multifunctional granular bioink for constructing chondroid basing on stem cell spheroids and chondrocytes. Biofabrication. 2022;14(3):035003. doi:10.1088/1758-5090/ac63ee
  79. Wang M, Li W, Mille LS, et al. Digital light processing based bioprinting with composable gradients. Adv Mater. 2022;34(1):e2107038. doi:10.1002/adma.202107038
  80. Comazzetto S, Shen B, Morrison SJ. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev Cell. 2021;56(13):1848-1860. doi:10.1016/j.devcel.2021.05.018
  81. Frenz-Wiessner S, Fairley SD, Buser M, et al. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat Methods. 2024;21(5):868-881. doi:10.1038/s41592-024-02172-2
  82. Xie C, Liang R, Ye J, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials. 2022;288:121741. doi:10.1016/j.biomaterials.2022.121741
  83. Chae S, Lee SS, Choi YJ, et al. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink. Biomaterials. 2021;267:120466. doi:10.1016/j.biomaterials.2020.120466
  84. Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: fundamental, environmental applications and challenges. Biotechnol Adv. 2023;69:108243. doi:10.1016/j.biotechadv.2023.108243
  85. He H, Li D, Lin Z, et al. Temperature-programmable and enzymatically solidifiable gelatin-based bioinks enable facile extrusion bioprinting. Biofabrication. 2020;12(4):045003. doi:10.1088/1758-5090/ab9906
  86. Yu GT, Zhu WX, Zhao YY, et al. 3D-printed bioink loading with stem cells and cellular vesicles for periodontitis-derived bone defect repair. Biofabrication. 2024;16(2):025007. doi:10.1088/1758-5090/ad2081
  87. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028-11055. doi:10.1021/acs.chemrev.0c00084
  88. Li J, Moeinzadeh S, Kim C, et al. Development and systematic characterization of GelMA/alginate/PEGDMA/xanthan gum hydrogel bioink system for extrusion bioprinting. Biomaterials. 2023;293:121969. doi:10.1016/j.biomaterials.2022.121969
  89. Hu T, Cui X, Zhu M, et al. 3D-printable supramolecular hydrogels with shear-thinning property: fabricating strength tunable bioink via dual crosslinking. Bioact Mater. 2020;5(4):808-818. doi:10.1016/j.bioactmat.2020.06.001
  90. Gillispie GJ, Copus J, Uzun-Per M, et al. The correlation between rheological properties and extrusion-based printability in bioink artifact quantification. Mater Des. 2023;233:112237. doi:10.1016/j.matdes.2023.112237
  91. Garcia-Cruz MR, Postma A, Frith JE, Meagher L. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Biofabrication. 2021;13(3):035023. doi:10.1088/1758-5090/abec2d
  92. De Moor L, Smet J, Plovyt M, et al. Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin. Biofabrication. 2021;13(4):045021. doi:10.1088/1758-5090/ac24de
  93. Kang SW, Mueller J. Multiscale 3D printing via active nozzle size and shape control. Sci Adv. 2024;10(23):eadn7772. doi:10.1126/sciadv.adn7772
  94. Kilian D, Holtzhausen S, Groh W, et al. 3D extrusion printing of density gradients by variation of sinusoidal printing paths for tissue engineering and beyond. Acta Biomater. 2023;158:308-323. doi:10.1016/j.actbio.2022.12.038
  95. Farsheed AC, Thomas AJ, Pogostin BH, Hartgerink JD. 3D printing of self-assembling nanofibrous multidomain peptide hydrogels. Adv Mater. 2023;35(11):e2210378. doi:10.1002/adma.202210378
  96. Niu R, Xin Q, Xu E, Yao S, Chen M, Liu D. Nanostarch-stimulated cell adhesion in 3D bioprinted hydrogel scaffolds for cell cultured meat. ACS Appl Mater Interfaces. 2024;16(18):23015-23026. doi:10.1021/acsami.4c03585
  97. Huang Y, Zhang Z, Bi F, et al. Personalized 3D-printed scaffolds with multiple bioactivities for bioroot regeneration. Adv Healthc Mater. 2023;12(28):e2300625. doi:10.1002/adhm.202300625
  98. Liang Q, Ma Y, Yao X, Wei W. Advanced 3D-printing bioinks for articular cartilage repair. Int J Bioprint. 2022; 8(3):511. doi:10.18063/ijb.v8i3.511
  99. Lian L, Xie M, Luo Z, et al. Rapid volumetric bioprinting of decellularized extracellular matrix bioinks. Adv Mater. 2024;36(34):e2304846. doi:10.1002/adma.202304846
  100. Mao J, Sun J, Wang L, Liu X, Bi J. Flexible and high-strength bioactive glass fiber membrane for bone regeneration with the aid of alkoxysilane sol spinnability. Mater Today Bio. 2024;28:101224. doi:10.1016/j.mtbio.2024.101224
  101. Zhao D, Saiding Q, Li Y, Tang Y, Cui W. Bone organoids: recent advances and future challenges. Adv Healthc Mater. 2024;13(5):e2302088. doi:10.1002/adhm.202302088
  102. Ding Z, Yan Z, Yuan X, et al. Apoptotic extracellular vesicles derived from hypoxia-preconditioned mesenchymal stem cells within a modified gelatine hydrogel promote osteochondral regeneration by enhancing stem cell activity and regulating immunity. J Nanobiotechnology. 2024;22(1):74. doi:10.1186/s12951-024-02333-7
  103. Wu X, Hu Y, Sheng S, et al. DNA-based hydrogels for bone regeneration: a promising tool for bone organoids. Mater Today Bio. 2025;31:101502. doi:10.1016/j.mtbio.2025.101502
  104. Liu X, Zhang Q, Cao Y, et al. An injectable hydrogel composing anti-inflammatory and osteogenic therapy toward bone erosions microenvironment remodeling in rheumatoid arthritis. Adv Healthc Mater. 2024;13(22):e2304668. doi:10.1002/adhm.202304668
  105. Kim JH, Kim K, Kim I, Seong S, Koh JT, Kim N. Stanniocalcin 1 and 1,25-dihydroxyvitamin D(3) cooperatively regulate bone mineralization by osteoblasts. Exp Mol Med. 2024;56(9):1991-2001. doi:10.1038/s12276-024-01302-2
  106. Osi AR, Zhang H, Chen J, et al. Three-dimensional-printable thermo/photo-cross-linked methacrylated chitosan-gelatin hydrogel composites for tissue engineering. ACS Appl Mater Interfaces. 2021;13(19):22902-22913. doi:10.1021/acsami.1c01321
  107. Batoon L, Koh AJ, Millard SM, et al. Induction of osteoblast apoptosis stimulates macrophage efferocytosis and paradoxical bone formation. Bone Res. 2024;12(1):43. doi:10.1038/s41413-024-00341-9
  108. Wang L, You X, Zhang L, Zhang C, Zou W. Mechanical regulation of bone remodeling. Bone Res. 2022; 10(1):16. doi:10.1038/s41413-022-00190-4
  109. Iordachescu A, Hughes EAB, Joseph S, Hill EJ, Grover LM, Metcalfe AD. Trabecular bone organoids: a micron-scale ‘humanised’ prototype designed to study the effects of microgravity and degeneration. NPJ Microgravity. 2021;7(1):17. doi:10.1038/s41526-021-00146-8
  110. Ju Y, Hu Y, Yang P, Xie X, Fang B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater Today Bio. 2023;18:100522. doi:10.1016/j.mtbio.2022.100522
  111. Laschke MW, Später T, Menger MD. Microvascular fragments: more than just natural vascularization units. Trends Biotechnol. 2021;39(1):24-33. doi:10.1016/j.tibtech.2020.06.001
  112. Li Z, Wang H, Li K, et al. Combining “waste utilization” and “tissue to tissue” strategies to accelerate vascularization for bone repair. J Orthop Translat. 2024;47:132-143. doi:10.1016/j.jot.2024.04.002
  113. Candiello J, Grandhi TSP, Goh SK, et al. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials. 2018;177:27-39. doi:10.1016/j.biomaterials.2018.05.031
  114. Gao Q, Wang J, Zhang H, Wang J, Jing Y, Su J. Organoid vascularization: strategies and applications. Adv Healthc Mater. 2025;14(20):e2500301. doi:10.1002/adhm.202500301
  115. Li C, An N, Song Q, et al. Enhancing organoid culture: harnessing the potential of decellularized extracellular matrix hydrogels for mimicking microenvironments. J Biomed Sci. 2024;31(1):96. doi:10.1186/s12929-024-01086-7
  116. Zhang J, Griesbach J, Ganeyev M, et al. Long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Biofabrication. 2022;14(3):035018. doi:10.1088/1758-5090/ac73b9
  117. Dong B, Hiasa M, Higa Y, et al. Osteoblast/osteocyte-derived interleukin-11 regulates osteogenesis and systemic adipogenesis. Nat Commun. 2022;13(1):7194. doi:10.1038/s41467-022-34869-3
  118. Yang B, Li Z, Yang Z, et al. Recapitulating hypoxic metabolism in cartilaginous organoids via adaptive cell-matrix interactions enhances histone lactylation and cartilage regeneration. Nat Commun. 2025;16(1):2711. doi:10.1038/s41467-025-57779-6
  119. Hossain Rakin R, Kumar H, Rajeev A, et al. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Biofabrication. 2021;13(4):044109. doi:10.1088/1758-5090/ac25cb
  120. Wang Z, Wang Y, Yan J, et al. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. 2021;174:504-534. doi:10.1016/j.addr.2021.05.007
  121. Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26(8):434-41. doi:10.1016/j.tibtech.2008.04.009
  122. Fang Y, Guo Y, Wu B, et al. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv Mater. 2023;35(22):e2205082. doi:10.1002/adma.202205082
  123. Zhao M, Wang S, Zuo A, et al. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury. Cell Mol Biol Lett. 2021;26(1):40. doi:10.1186/s11658-021-00283-8
  124. Zhai Y, Schilling K, Wang T, et al. Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials. 2021;276:121041. doi:10.1016/j.biomaterials.2021.121041
  125. Chandel S, Kumaragurubaran R, Giri H, Dixit M. Isolation and culture of human umbilical vein endothelial cells (HUVECs). Methods Mol Biol. 2024;2711:147-162. doi:10.1007/978-1-0716-3429-5_12
  126. Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting in skeletal muscle tissue engineering. Small. 2019;15(24):e1805530. doi:10.1002/smll.201805530
  127. Li Y, Cheng S, Wen H, et al. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury. Acta Biomater. 2023;168:400-415. doi:10.1016/j.actbio.2023.07.020

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing