AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025160142
RESEARCH ARTICLE

Fabrication of an in vitro three-dimensional tumor model using liver-derived decellularized extracellular matrix/gelatin methacrylate bioink for investigating cancer characteristics and drug resistance

Chunyang Zhang1,2† Yunze Xu1,2† Hongwei Yu1,2 Xiaochang Lu1,3 Ying Fang1,2 Changyong Li1,3 Weihong Ji1,3 Shibin Wang1,2 Aizheng Chen1,3 Chaoping Fu1,2*
Show Less
1 Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
2 College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China
3 College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
†These authors contributed equally to this work.
Received: 14 April 2025 | Accepted: 9 June 2025 | Published online: 11 June 2025
(This article belongs to the Special Issue Advanced Strategies in 3D Bioprinting for Disease Modelling)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Three-dimensional (3D) printing has emerged as a promising technique for creating in vitro tumor models that replicate the tumor microenvironment, with the potential to reduce or replace the use of experimental animals. The incorporation of 3D decellularized extracellular matrix (dECM) hydrogels significantly enhances cellular responsiveness and functionality in drug screening. However, the limited printability of dECM restricts its application in ex vivo 3D disease models. To address this limitation, researchers have developed a blended bioink composed of dECM, gelatin methacrylate (GelMA), and gelatin, specifically tailored for direct ink writing-based 3D bioprinting. This formulation exhibits favorable shear-thinning behavior, enhanced viscosity, and thermal-sensitive properties, making it suitable for 3D bioprinting. The combination of dECM with GelMA and gelatin not only improves the printability of the bioink but also enhances the resolution of the printed scaffolds. Furthermore, dECM demonstrated positive effects on human hepatocellular carcinoma (HepG2) cells, promoting proliferation, migration, and cell spheroid formation. A 3D liver cancer model was successfully created in vitro by printing HepG2 cells encapsulated in the bioink containing dECM. This model exhibited characteristics akin to in vivo solid tumors, including notable cell proliferation, protein secretion, and substantial cell spheroid formation (up to 78.83 ± 9.41 μm on day 8). Additionally, it showed drug resistance, with 46.23% and 31.34% cell viability observed at 100 μg/mL concentrations of doxorubicin and paclitaxel, respectively. These findings underscore the potential of bioprinted 3D tumor models composed of GelMA, gelatin, and dECM as valuable platforms for the evaluation of anticancer drugs.  

 

Graphical abstract
Keywords
3D tumor model
Decellularized extracellular matrix
Drug evaluation
Gelatin methacrylate
Printability
Funding
This work was supported by the National Natural Science Foundation of China (NSFC, 32271410 and 32071323, and 32301117), the Natural Science Foundation of Fujian Province (No. 2022J01297), the Fundamental Research Funds for the Central Universities (ZQN-1107), and the Science and Technology Projects in Fujian Province (2022FX1 and 2023Y4008).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. De Santibañes M, Pekolj J, Sanchez Claria R, De Santibañes E, Mazza OM. Technical implications for surgical resection in locally advanced pancreatic cancer. Cancers. 2023;15(5):1509. doi: 10.3390/cancers15051509
  2. Zaher A, Foromera J, Capanu M, Chou J, Faleck DM. Sa1848 extent of surgical resection for ibd-associated neoplasia and colorectal cancer outcomes. Gastroenterology. 2024;166(5):S-549-S-550. doi: 10.1016/S0016-5085(24)01733-5
  3. Yu X, Wang X, Sun L, Yamazaki A, Li X. Tumor microenvironment regulation - enhanced radio - immunotherapy. Biomater Adv. 2022;138:212867. doi: 10.1016/j.bioadv.2022.212867
  4. Pan S, Sun Z, Zhao B, et al. Therapeutic application of manganese-based nanosystems in cancer radiotherapy. Biomaterials. 2023;302:122321. doi: 10.1016/j.biomaterials.2023.122321
  5. Moy B, Rumble RB, Carey LA, for the Chemotherapy and Targeted Therapy for Endocrine-Pretreated or Hormone Receptor–Negative Metastatic Breast Cancer Expert Panel. Chemotherapy and targeted therapy for endocrine-pretreated or hormone receptor–negative metastatic breast cancer: ASCO guideline rapid recommendation update. JCO. 2023;41(6):1318-1320. doi: 10.1200/JCO.22.02807
  6. Garg V, Kumar L. Metronomic chemotherapy in ovarian cancer. Cancer Lett. 2023;579:216469. doi: 10.1016/j.canlet.2023.216469
  7. Michalczyk K, Pawlik J, Czekawy I, Kozłowski M, Cymbaluk- Płoska A. Complementary methods in cancer treatment— cure or curse? IJERPH. 2021;18(1):356. doi: 10.3390/ijerph18010356
  8. Li Y, Xu X. Nanomedicine solutions to intricate physiological-pathological barriers and molecular mechanisms of tumor multidrug resistance. J Control Release. 2020;323:483-501. doi: 10.1016/j.jconrel.2020.05.007
  9. Mao S, He J, Zhao Y, et al. Bioprinting of patient-derived in vitro intrahepatic cholangiocarcinoma tumor model: establishment, evaluation and anti-cancer drug testing. Biofabrication. 2020;12(4):045014. doi: 10.1088/1758-5090/aba0c3
  10. Xu X, Liu Y, Liu Y, et al. Functional hydrogels for hepatocellular carcinoma: Therapy, imaging, and in vitro model. J Nanobiotechnol. 2024;22(1):381. doi: 10.1186/s12951-024-02547-9
  11. Li W, Hu X, Yang S, et al. A novel tissue-engineered 3D tumor model for anti-cancer drug discovery. Biofabrication. 2018;11(1):015004. doi: 10.1088/1758-5090/aae270
  12. Vitale S, Calapà F, Colonna F, et al. Advancements in 3D in vitro models for colorectal cancer. Adv Sci. 2024;11(32):2405084. doi: 10.1002/advs.202405084
  13. Lv J, Du X, Wang M, Su J, Wei Y, Xu C. Construction of tumor organoids and their application to cancer research and therapy. Theranostics. 2024;14(3):1101-1125. doi: 10.7150/thno.91362
  14. Van Tienderen GS, Conboy J, Muntz I, et al. Tumor decellularization reveals proteomic and mechanical characteristics of the extracellular matrix of primary liver cancer. Biomater Adv. 2023;146:213289. doi: 10.1016/j.bioadv.2023.213289
  15. Krujatz F, Dani S, Windisch J, et al. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnol Adv. 2022;58:107930. doi: 10.1016/j.biotechadv.2022.107930
  16. Levato R, Dudaryeva O, Garciamendez-Mijares CE, et al. Light-based vat-polymerization bioprinting. Nat Rev Methods Primers. 2023;3(1):47. doi: 10.1038/s43586-023-00231-0
  17. Kumar S, Tharayil A, Thomas S. 3D bioprinting of nature-inspired hydrogel inks based on synthetic polymers. ACS Appl Polym Mater. 2021;3(8):3685-3701. doi: 10.1021/acsapm.1c00567
  18. Yang K, Wang L, Vijayavenkataraman S, Yuan Y, Tan ECK, Kang L. Recent applications of three-dimensional bioprinting in drug discovery and development. Adv Drug Deliv Rev. 2024;214:115456. doi: 10.1016/j.addr.2024.115456
  19. Bian S, Hu X, Zhu H, et al. 3D bioprinting of artificial skin substitute with improved mechanical property and regulated cell behavior through integrating patterned nanofibrous films. ACS Nano. 2024;18(28):18503-18521. doi: 10.1021/acsnano.4c04088
  20. Kronemberger GS, Spagnuolo FD, Karam AS, Chattahy K, Storey KJ, Kelly DJ. Rapidly degrading hydrogels to support biofabrication and 3D bioprinting using cartilage microtissues. ACS Biomater Sci Eng. 2024;10(10):6441-6450. doi: 10.1021/acsbiomaterials.4c00819
  21. Pérez Del Río E, Rey-Vinolas S, Santos F, et al. 3D printing as a strategy to scale-up biohybrid hydrogels for T cell manufacture. ACS Appl Mater Interfaces. 2024;16(38):50139-50146. doi: 10.1021/acsami.4c06183
  22. Pramanick A, Hayes T, Sergis V, McEvoy E, Pandit A, Daly AC. 4D bioprinting shape‐morphing tissues in granular support hydrogels: Sculpting structure and guiding maturation. Adv Funct Mater. 2025;35(5):2414559. doi: 10.1002/adfm.202414559
  23. Patel ZH, Charania AA, Punjani Z, et al. Evaluating anticancer agents on 3D bioprinted organoid tumors (BOT) to reduce cost and accelerate therapeutic discovery. JCO. 2022;40(16_suppl):e13500. doi: 10.1200/JCO.2022.40.16_suppl.e13500
  24. Kankala RK, Zhang YS, Kang L, Ambrosio L. Editorial: Polymeric microarchitectures for tissue regeneration and drug screening. Front Bioeng Biotechnol. 2023;11:1144991. doi: 10.3389/fbioe.2023.1144991
  25. Wang Y, Jeon H. 3D cell cultures toward quantitative high-throughput drug screening. Trends Pharmacol Sci. 2022;43(7):569-581. doi: 10.1016/j.tips.2022.03.014
  26. González-Callejo P, García-Astrain C, Herrero-Ruiz A, et al. 3D bioprinted tumor-stroma models of triple-negative breast cancer stem cells for preclinical targeted therapy evaluation. ACS Appl Mater Interfaces. 2024;16(21): 27151-27163. doi: 10.1021/acsami.4c04135
  27. Ferreira LP, Gaspar VM, Mano JF. Decellularized extracellular matrix for bioengineering physiomimetic 3D in vitro tumor models. Trends Biotechnol. 2020;38(12): 1397-1414. doi: 10.1016/j.tibtech.2020.04.006
  28. García-Astrain C, Henriksen-Lacey M, Lenzi E, et al. A scaffold-assisted 3D cancer cell model for surface-enhanced Raman scattering-based real-time sensing and imaging. ACS Nano. 2024;18(17):11257-11269. doi: 10.1021/acsnano.4c00543
  29. Ebrahimighaei R, Tarassova N, Bond SC, et al. Extracellular matrix stiffness controls cardiac fibroblast proliferation via the nuclear factor-Y (NF-Y) transcription factor. Biochim Biophys Acta Mol Cell Res. 2024;1871(2):119640. doi: 10.1016/j.bbamcr.2023.119640
  30. Fu Y, Zhou Y, Wang K, Li Z, Kong W. Extracellular matrix interactome in modulating vascular homeostasis and remodeling. Circ Res. 2024;134(7):931-949. doi: 10.1161/CIRCRESAHA.123.324055
  31. Guo WY, Wang WH, Xu PY, Kankala RK. Decellularised extracellular matrix-based injectable hydrogels for tissue engineering applications. Biomater Transl. 2024;5(2):114-128. doi: 10.12336/biomatertransl.2024.02.003
  32. Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol. 2024;25(11): 865-885. doi: 10.1038/s41580-024-00767-3
  33. Zhou Z, Zhang Y, Zeng Y, et al. Effects of nanomaterials on synthesis and degradation of the extracellular matrix. ACS Nano. 2024;18(11):7688-7710. doi: 10.1021/acsnano.3c09954
  34. Bhar B, Ranta P, Samudrala PK, Mandal BB. Omentum extracellular matrix-silk fibroin hydroscaffold promotes wound healing through vascularization and tissue remodeling in the diabetic rat model. ACS Biomater Sci Eng. 2024;10(2):1090-1105. doi: 10.1021/acsbiomaterials.3c01877
  35. Tam NW, Becker A, Mangiarotti A, Cipitria A, Dimova R. Extracellular vesicle mobility in collagen I hydrogels is influenced by matrix-binding integrins. ACS Nano. 2024;18(43):29585-29601. doi: 10.1021/acsnano.4c07186
  36. Puistola P, Kethiri A, Nurminen A, et al. Cornea-specific human adipose stem cell-derived extracellular matrix for corneal stroma tissue engineering. ACS Appl Mater Interfaces. 2024;16(13):15761-15772. doi: 10.1021/acsami.3c17803
  37. Na J, Yang Z, Shi Q, et al. Extracellular matrix stiffness as an energy metabolism regulator drives osteogenic differentiation in mesenchymal stem cells. Bioact Mater. 2024;35:549-563. doi: 10.1016/j.bioactmat.2024.02.003
  38. Tao M, Ao T, Mao X, et al. Sterilization and disinfection methods for decellularized matrix materials: review, consideration and proposal. Bioact Mater. 2021;6(9):2927-2945. doi: 10.1016/j.bioactmat.2021.02.010
  39. Snyder Y, Jana S. Strategies for development of decellularized heart valve scaffolds for tissue engineering. Biomaterials. 2022;288:121675. doi: 10.1016/j.biomaterials.2022.121675
  40. Lian L, Xie M, Luo Z, et al. Rapid volumetric bioprinting of decellularized extracellular matrix bioinks. Adv Mater. 2024;36(34):2304846. doi: 10.1002/adma.202304846
  41. Niu R, Xin Q, Xu E, Yao S, Chen M, Liu D. Nanostarch-stimulated cell adhesion in 3D bioprinted hydrogel scaffolds for cell cultured meat. ACS Appl Mater Interfaces. 2024;16(18):23015-23026. doi: 10.1021/acsami.4c03585
  42. Bae M, Kim JJ, Kim J, Cho DW. Decellularized extracellular matrix for three- dimensional bioprinted in vitro disease modeling. Int J Bioprint. 2024;10(2):1970. doi: 10.36922/ijb.1970
  43. Shin M, Galarraga JH, Kwon MY, Lee H, Burdick JA. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior. Acta Biomater. 2019;95:165-175. doi: 10.1016/j.actbio.2018.10.028
  44. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020. doi: 10.1088/1758-5090/8/3/035020
  45. Brumberg VA, Bikmulina PY, Pozdnyakov AA, et al. Scaling liver bioprinting: a guide for usage of the hepatic extracellular matrix as a bioink. Int J Bioprint. 2025;11(1):57-83. doi: 10.36922/ijb.4343
  46. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020. doi: 10.1088/1758-5090/8/3/035020
  47. Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol. 2018;36(8):787-805. doi: 10.1016/j.tibtech.2018.03.003
  48. Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater. 2023;11:rbad107. doi: 10.1093/rb/rbad107
  49. Khati V, Ramachandraiah H, Pati F, Svahn HA, Gaudenzi G, Russom A. 3D bioprinting of multi-material decellularized liver matrix hydrogel at physiological temperatures. Biosensors. 2022;12(7):521. doi: 10.3390/bios12070521
  50. Myojin Y, Hikita H, Sugiyama M, et al. Hepatic stellate cells in hepatocellular carcinoma promote tumor growth via growth differentiation factor 15 production. Gastroenterology. 2021;160(5):1741-1754.e16. doi: 10.1053/j.gastro.2020.12.015
  51. Wang Y, Kankala RK, Zhang J, et al. Modeling endothelialized hepatic tumor microtissues for drug screening. Adv Sci. 2020;7(21):2002002. doi: 10.1002/advs.202002002
  52. Baharvand H, Hashemi SM, Kazemi Ashtiani S, Farrokhi A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol. 2006;50(7):645-652. doi: 10.1387/ijdb.052072hb
  53. Krueger WH, Tanasijevic B, Barber V, et al. Cholesterol-secreting and statin-responsive hepatocytes from human ES and iPS cells to model hepatic involvement in cardiovascular health. PLoS ONE. 2013;8(7):e67296. doi: 10.1371/journal.pone.0067296
  54. Gevaert E, Billiet T, Declercq H, Dubruel P, Cornelissen R. Galactose‐functionalized gelatin hydrogels improve the functionality of encapsulated Hepg2 cells. Macromol Biosci. 2014;14(3):419-427. doi: 10.1002/mabi.2013003

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing