AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025190184
REVIEW ARTICLE

Advances in biomanufacturing and medical applications of three-dimensional-printed organoids: A review

Lingzi Liao1,2,3† Qiushi Feng1,2,3† Xiaofeng Shan1,2,3 Zhigang Cai1,2,3* Shang Xie1,2,3*
Show Less
1 Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
2 National Center for Stomatology, Beijing, China
3 National Clinical Research Center for Oral Diseases, Beijing, China
†These authors contributed equally to this work.
Received: 7 May 2025 | Accepted: 28 May 2025 | Published online: 10 June 2025
© 2025 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The emergence of organoid technology has bridged critical gaps between conventional two-dimensional cell cultures and in vivo systems by offering self-organized three-dimensional (3D) microtissues that recapitulate organ-specific architecture, cellular heterogeneity, and functional dynamics. However, traditional organoid models face inherent limitations in structural precision, scalability, and physiological relevance, particularly in replicating vascular networks, mechanical microenvironments, and multicellular interactions. Recent advancements in 3D bioprinting have enabled unprecedented spatial control over cellular and extracellular matrix organization, unlocking new frontiers in engineering organoids with enhanced biomimicry and functionality. This review systematically examines the integration of bioprinting technologies with organoid science, spanning biomaterial innovations, vascularization strategies, and dynamic microenvironmental cues that drive functional maturation. By synthesizing interdisciplinary advances in stem cell biology, materials science, and computational modeling, the work highlights applications across regenerative medicine, disease pathophysiology, and personalized drug screening. Key challenges, including immunogenicity, long-term stability, and clinical scalability, are critically evaluated alongside emerging solutions such as four-dimensional bioprinting, organ-on-chip integration, and artificial intelligence-driven bioink optimization. Through a comprehensive analysis of bioprinted organoids for physiology and 3D disease modeling, this review aims to establish a translational roadmap for leveraging spatially programmed organoids to address unmet clinical needs, revolutionize therapeutic development, and advance precision medicine.  

Graphical abstract
Keywords
High-throughput screening
Patient-derived organoids
Regenerative medicine
Spatiotemporal control
Three-dimensional-bioprinting
Vascularization
Funding
This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFC2504200) and the National Natural Science Foundation of China (Grant Nos. 82373434 and 82002878).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Zhao Z, Chen X, Dowbaj AM, et al. Organoids. Nat Rev Methods Primers. 2022;2(1):94. doi: 10.1038/s43586-022-00174-y
  2. Geng Y, Chen Z, Luo T, et al. Innovative construction and application of bile duct organoids: unraveling the complexity of bile duct diseases and potential therapeutic strategies. Cancer Lett. 2025;618:217619. doi: 10.1016/j.canlet.2025.217619
  3. Hermans F, Hasevoets S, Vankelecom H, Bronckaers A, Lambrichts I. From pluripotent stem cells to organoids and bioprinting: recent advances in dental epithelium and ameloblast models to study tooth biology and regeneration. Stem Cell Rev Rep. 2024;20(5):1184-1199. doi: 10.1007/s12015-024-10702-w
  4. Mallya D, Gadre MA, Varadharajan S, Vasanthan KS. 3D bioprinting for the construction of drug testing models-development strategies and regulatory concerns. Front Bioeng Biotechnol. 2025;13:1457872. doi: 10.3389/fbioe.2025.1457872
  5. Nejati B, Shahhosseini R, Hajiabbasi M, et al. Cancer-on-chip: a breakthrough organ-on-a-chip technology in cancer cell modeling. Med Biol Eng Comput. 2025;63(2):321-337. doi: 10.1007/s11517-024-03199-5
  6. Hu Y, Zhu T, Cui H, Cui H. Integrating 3D bioprinting and organoids to better recapitulate the complexity of cellular microenvironments for tissue engineering. Adv Healthc Mater. 2025;14(3):e2403762. doi: 10.1002/adhm.202403762
  7. Huang MS, Christakopoulos F, Roth JG, Heilshorn SC. Organoid bioprinting: from cells to functional tissues. Review. Nat Rev Bioeng. 2025;3(2):126-142. doi: 10.1038/s44222-024-00268-0
  8. Ju M, Jin Z, Yu X, et al. Gastric cancer models developed via GelMA 3D bioprinting accurately mimic cancer hallmarks, tumor microenvironment features, and drug responses. Small. 2025;21(8):e2409321. doi: 10.1002/smll.202409321
  9. Ding Z, Huang J, Ren Y, et al. 3D bioprinted advanced cartilage organoids with engineered magnetic nanoparticles polarized-BMSCs/alginate/gelatin for cartilage tissue regeneration. Article. Nano Res. 2025;18(2)94907084. doi: 10.26599/nr.2025.94907084
  10. Shyu J-F, Chu T-H, Lo Y-C, et al. Fabrication of 3D bioprinting vascularized bone organoid under compressive stimulation for study of osteogenesis and angiogenesis. Meeting Abstract. J Bone Miner Res. 2023;38:304-304.
  11. Abaci A, Camci-Unal G, Guvendiren M. Three-dimensional bioprinting for medical applications. Article. MRS Bulletin. 2023;48(6):624-631. doi: 10.1557/s43577-023-00546-z
  12. Shen N, Li Z, Yang P, et al. Designing methacrylic anhydride-based hydrogels for 3D bioprinting. IJB. 2024;11(1):84-138. doi: 10.36922/ijb.4650
  13. Chen Z, Zhang H, Huang J, et al. DNA-encoded dynamic hydrogels for 3D bioprinted cartilage organoids. Mater Today Bio. 2025;31:101509. doi: 10.1016/j.mtbio.2025.101509
  14. Shen C, Wang J, Li G, et al. Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor. Article. Bioact Mater. 2024;35:429-444. doi: 10.1016/j.bioactmat.2024.02.016
  15. Ali EAM, Smaida R, Meyer M, et al. iPSCs chondrogenic differentiation for personalized regenerative medicine: a literature review. Stem Cell Res Ther. 2024;15(1):185. doi: 10.1186/s13287-024-03794-1
  16. Lawlor KT, Vanslambrouck JM, Higgins JW, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2021;20(2):260-271. doi: 10.1038/s41563-020-00853-9
  17. Long B, Mengmeng L, Jiacan S. A perspective on light-based bioprinting of DNA hydrogels for advanced bone regeneration: implication for bone organoids. Int J Bioprint. 2023;9(2):688. doi: 10.18063/ijb.688
  18. Wang Z, Wang X, Huang Y, et al. Cav3.3-mediated endochondral ossification in a three-dimensional bioprinted GelMA hydrogel. Article. Bio-Des Manuf. 2024;7(6):983-999. doi: 10.1007/s42242-024-00287-1
  19. Wang J. Engineering large-scale self‐mineralizing bone organoids with bone matrix‐inspired hydroxyapatite hybrid bioinks. Adv Mater (Weinheim). 2024;36(30):e2309875. doi: 10.1002/adma.202309875
  20. Ren X, Wang J, Wu Y, et al. One-pot synthesis of hydroxyapatite hybrid bioinks for digital light processing 3D printing in bone regeneration. J Mater Sci Technol. 2024;188:84-97. doi: 10.1016/j.jmst.2024.01.001
  21. Wang J, Zhou D, Li R, et al. Protocol for engineering bone organoids from mesenchymal stem cells. Bioact Mater. 2025;45:388-400. doi: 10.1016/j.bioactmat.2024.11.017
  22. Li H, Chen H, Du C, et al. Effect of hydroxyapatite nanowires on formation and bioactivity of osteoblastic cell spheroid. ACS Biomater Sci Eng. 2024;10(12):7413-7428. doi: 10.1021/acsbiomaterials.4c01159
  23. Fang Y, Ji M, Wu B, et al. Engineering highly vascularized bone tissues by 3d bioprinting of granular prevascularized spheroids. ACS Appl Mater Interfaces. 2023;15(37):43492-43502. doi: 10.1021/acsami.3c08550
  24. Loukelis K, Koutsomarkos N, Mikos AG, Chatzinikolaidou M. Advances in 3D bioprinting for regenerative medicine applications. Regen Biomater. 2024;11:rbae033. doi: 10.1093/rb/rbae033
  25. Bernal PN, Bouwmeester M, Madrid-Wolff J, et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv Mater (Deerfield Beach, Fla). 2022;34(15):e2110054. doi: 10.1002/adma.202110054
  26. Luo Y, Xu R, Hu Z, et al. Gel-based suspension medium used in 3D bioprinting for constructing tissue/organ analogs. Gels. 2024;10(10):644. doi: 10.3390/gels10100644
  27. De Leeuw A, Graf R, Zhang J, et al. Increased cell density increases mineral formation rates and stiffness in 3D bioprinted patient-derived bone organoids using dynamic loading. Meeting Abstract. Tissue Eng Part A. 2023;29(11-12):582-583.
  28. Wang J, Chen X, Li R, et al. Standardization and consensus in the development and application of bone organoids. Theranostics. 2025;15(2):682-706. doi: 10.7150/thno.105840
  29. Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev. 2024;208:115238. doi: 10.1016/j.addr.2024.115238
  30. Frenz-Wiessner S, Fairley SD, Buser M, et al. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Article. Nat Methods. 2024;21(5). doi: 10.1038/s41592-024-02172-2
  31. De Leeuw A, Schadli GN, Steffi C, et al. A novel 3D-bioprinted patient-specific biomimetic bone organoid to model osteogenesis imperfecta. Meeting Abstract. Tissue Eng Part A. 2023;29(13-14):582-583.
  32. Abbott A. Cell culture: biology’s new dimension. Nature. 2003;424(6951):870-872. doi: 10.1038/424870a
  33. Li J, Han S, Yu F, Li T, Liao B, Liu F. Mapping the landscape of PSC-CM research through bibliometric analysis. Front Cardiovasc Med. 2024;11:1435874. doi: 10.3389/fcvm.2024.1435874
  34. Wang Y, Hou Y, Hao T, et al. Model construction and clinical therapeutic potential of engineered cardiac organoids for cardiovascular diseases. Biomater Transl. 2024;5(4):337-354. doi: 10.12336/biomatertransl.2024.04.002
  35. Nwokoye PN, Abilez OJ. Blood vessels in a dish: the evolution, challenges, and potential of vascularized tissues and organoids. Front Cardiovasc Med. 2024;11:1336910. doi: 10.3389/fcvm.2024.1336910
  36. Khoury RE, Nagiah N, Mudloff JA, Thakur V, Chattopadhyay M, Joddar B. 3D bioprinted spheroidal droplets for engineering the heterocellular coupling between cardiomyocytes and cardiac fibroblasts. Cyborg Bionic Syst. 2021;2021:9864212. doi: 10.34133/2021/9864212
  37. Mohr E, Thum T, Bär C. Accelerating cardiovascular research: recent advances in translational 2D and 3D heart models. Eur J Heart Fail. Oct 2022;24(10):1778-1791. doi: 10.1002/ejhf.2631
  38. Zhang W, Chen Y, Li M, et al. A PDA-functionalized 3d lung scaffold bioplatform to construct complicated breast tumor microenvironment for anticancer drug screening and immunotherapy. Adv Sci (Weinh). 2023;10(26):e2302855. doi: 10.1002/advs.202302855
  39. Li S, Li J, Xu J, et al. Removal-free and multicellular suspension bath-based 3D bioprinting. Adv Mater (Deerfield Beach, Fla). 2024;36(48):e2406891. doi: 10.1002/adma.202406891
  40. Hoang P, Sun S, Tarris BA, Ma Z. Controlling morphology and functions of cardiac organoids by two-dimensional geometrical templates. Cells Tissues Organs. 2023;212(1):64-73. doi: 10.1159/000521787
  41. Noël ES. Cardiac construction—recent advances in morphological and transcriptional modeling of early heart development. Curr Top Dev Biol. 2024;156:121-156. doi: 10.1016/bs.ctdb.2024.02.005
  42. Fang Y, Guo Y, Wu B, et al. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv Mater (Deerfield Beach, Fla). 2023;35(22):e2205082. doi: 10.1002/adma.202205082
  43. Cui H, Liu C, Esworthy T, et al. 4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. Sci Adv. 2020;6(26):eabb5067. doi: 10.1126/sciadv.abb5067
  44. Zhang Z, Wu C, Dai C, et al. A multi-axis robot-based bioprinting system supporting natural cell function preservation and cardiac tissue fabrication. Bioact Mater. 2022;18:138-150. doi: 10.1016/j.bioactmat.2022.02.009
  45. Fareez UNM, Naqvi SAA, Mahmud M, Temirel M. Computational fluid dynamics (CFD) analysis of bioprinting. Adv Healthc Mater. 2024;13(20):e2400643. doi: 10.1002/adhm.202400643
  46. Abolhassani S, Fattahi R, Safshekan F, Saremi J, Hasanzadeh E. Advances in 4D bioprinting: the next frontier in regenerative medicine and tissue engineering applications. Adv Healthc Mater. 2025;14(4):e2403065. doi: 10.1002/adhm.202403065
  47. Wu J, Fu J. Toward developing human organs via embryo models and chimeras. Cell. 2024;187(13):3194-3219. doi: 10.1016/j.cell.2024.05.027
  48. Wu Y, Qin M, Yang X. Organ bioprinting: progress, challenges and outlook. J Mater Chem B. 2023;11(43):10263-10287. doi: 10.1039/d3tb01630g
  49. Roza Vaez G, Ileana LC, Matthew CM, Vikramaditya GY. Brain organoids: a new, transformative investigational tool for neuroscience research. Adv Biosyst. 2018;3(1):174. doi: 10.1002/adbi.201800174
  50. Renjitha G, Rakhi P. Bioengineering of brain organoids: advancements and challenges. Tissue Eng. 2022:399-414. doi: 10.1016/b978-0-12-824064-9.00002-2
  51. Madeline AL, Magdalena R, Carol-Anne M, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373-379. doi: 10.1038/nature12517
  52. Jeong E, Choi S, Cho SW. Recent advances in brain organoid technology for human brain research. ACS Appl Mater Interfaces. 2023;15(1):200-219. doi: 10.1021/acsami.2c17467
  53. Cadena MA, Sing A, Taylor K, et al. A 3D bioprinted cortical organoid platform for modeling human brain development. Adv Healthc Mater. 2024;13(27):e2401603. doi: 10.1002/adhm.202401603
  54. Jihoon K, Sujin H, Sunghun C, Yoojin C, Noo Li J. Revealing the clinical potential of high-resolution organoids. Adv Drug Deliv Rev. 2024;207:115202. doi: 10.1016/j.addr.2024.115202
  55. Natan Roberto de B, Canran W, Surjendu M, et al. Engineered organoids for biomedical applications. Adv Drug Deliv Rev. 2023;203:115142. doi: 10.1016/j.addr.2023.115142
  56. Zhe L, Weizi G, Fukang L, et al. Vat photopolymerization based digital light processing 3D printing hydrogels in biomedical fields: key parameters and perspective. Addit Manuf. 2024;94:104443. doi: 10.1016/j.addma.2024.104443
  57. Jennifer Sally S, Anuradha R, Venkatachalam Deepa P. Development of midbrain dopaminergic neurons and the advantage of using hiPSCs as a model system to study Parkinson’s disease. Neuroscience. 2024;546:1-19. doi: 10.1016/j.neuroscience.2024.03.025
  58. Yan Y, Li X, Gao Y, et al. 3D bioprinting of human neural tissues with functional connectivity. Cell Stem Cell. 2024;31(2):260-274.e7. doi: 10.1016/j.stem.2023.12.009
  59. Layrolle P, Payoux P, Chavanas S. Message in a scaffold: natural biomaterials for three-dimensional (3D) bioprinting of human brain organoids. Biomolecules. 2022;13(1):25. doi: 10.3390/biom13010025
  60. Gabriel E, Albanna W, Pasquini G, et al. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell. 2021;28(10):1740-1757.e8. doi: 10.1016/j.stem.2021.07.010
  61. Jing G, Jiahui K, Minghui L, Xiao L, Jun Y, Haiwei X. Applications of neural organoids in neurodevelopment and regenerative medicine. Biomed Eng. 2022. doi: 10.5772/intechopen.104044
  62. Tariku Sinshaw T, Frehiwot Bayelign T, Xijin H, et al. A review of advances in 3D and 4D bioprinting: toward mass individualization paradigm. J Intell Manuf. 2024. doi: 10.1007/s10845-024-02529-6
  63. Wang X, Yang X, Liu Z, et al. 3D bioprinting of an in vitro hepatoma microenvironment model: establishment, evaluation, and anticancer drug testing. Acta Biomater. 2024;185:173-189. doi: 10.1016/j.actbio.2024.07.019
  64. Zhuang X, Deng G, Wu X, et al. Recent advances of three-dimensional bioprinting technology in hepato-pancreato-biliary cancer models. Front Oncol. 2023;13:1143600. doi: 10.3389/fonc.2023.1143600
  65. Kim MH, Singh YP, Celik N, et al. High-throughput bioprinting of spheroids for scalable tissue fabrication. Nat Commun. 2024;15(1):10083. doi: 10.1038/s41467-024-54504-7
  66. Lekkala VKR, Shrestha S, Al Qaryoute A, et al. Enhanced maturity and functionality of vascular human liver organoids through 3D bioprinting and pillar plate culture. ACS Biomater Sci Eng. 2025;11(1):506-517. doi: 10.1021/acsbiomaterials.4c01658
  67. Kang SY, Kimura M, Shrestha S, et al. A pillar and perfusion plate platform for robust human organoid culture and analysis. Adv Healthc Mater. 2024;13(21):e2302502. doi: 10.1002/adhm.202302502
  68. Shrestha S, Lekkala VKR, Acharya P, Kang SY, Vanga MG, Lee MY. Reproducible generation of human liver organoids (HLOs) on a pillar plate platform via microarray 3D bioprinting. Lab Chip. 2024;24(10):2747-2761. doi: 10.1039/d4lc00149d
  69. Gao Z, Liu X, Zhao H, et al. Synthesis of easily-processable collagen bio-inks using ionic liquid for 3D bioprinted liver tissue models with branched vascular networks. Sci China Chem. 2023;66(5):1489-1499. doi: 10.1007/s11426-022-1472-6
  70. Yan J, Ye Z, Lu Y, et al. 3D bioprinting lobule-like hepatorganoids with induced vascularization for orthotopic implantation. Mater Today Bio. 2025;31:101515. doi: 10.1016/j.mtbio.2025.101515
  71. Brumberg VA, Bikmulina PY, Pozdnyakov AA, et al. Scaling liver bioprinting: a guide for usage of the hepatic extracellular matrix as a bioink. Review. Int J Bioprint. 2025;11(1):57-83. doi: 10.36922/ijb.4343
  72. Zhang Y, Li L, Dong L, et al. Hydrogel-based strategies for liver tissue engineering. Chem Bio Eng. 2024;1(11):887-915. doi: 10.1021/cbe.4c00079
  73. Cross-Najafi AA, Farag K, Chen AM, et al. The long road to develop custom-built livers: current status of 3D liver bioprinting. Transplantation. 2024;108(2):357-368. doi: 10.1097/tp.0000000000004668
  74. Li W, Liu Z, Tang F, et al. Application of 3D bioprinting in liver diseases. Micromachines (Basel). 2023;14(8):1648. doi: 10.3390/mi14081648
  75. Willemse J, van der Laan LJW, de Jonge J, Verstegen MMA. Design by nature: emerging applications of native liver extracellular matrix for cholangiocyte organoid-based regenerative medicine. Bioengineering (Basel). 2022;9(3):110. doi: 10.3390/bioengineering9030110
  76. Shi W, Zhang Z, Wang X. The prospect of hepatic decellularized extracellular matrix as a bioink for liver 3D bioprinting. Biomolecules. 2024;14(8):1019. doi: 10.3390/biom14081019
  77. Kim Y, Kang M, Mamo MG, Adisasmita M, Huch M, Choi D. Liver organoids: current advances and future applications for hepatology. Clin Mol Hepatol. 2025;31(Suppl):S327-S348. doi: 10.3350/cmh.2024.1040
  78. Li G, He J, Shi J, et al. Bioprinting functional hepatocyte organoids derived from human chemically induced pluripotent stem cells to treat liver failure. Gut. 2025; 74(7):1150-1164. doi: 10.1136/gutjnl-2024-333885
  79. Sun H, Sun L, Ke X, et al. Prediction of clinical precision chemotherapy by patient-derived 3D bioprinting models of colorectal cancer and its liver metastases. Adv Sci (Weinh). 2024;11(2):e2304460. doi: 10.1002/advs.202304460
  80. Chen F, Wei X, Chen K, Wang L, Xu M. Massive fabrication of functional hepatic cancer spheroids by micropatterned GelMA hydrogel chip for drug screening. Colloids Surf B Biointerfaces. 2024;244:114171. doi: 10.1016/j.colsurfb.2024.114171
  81. Yeo M, Sarkar A, Singh YP, Derman ID, Datta P, Ozbolat IT. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication. 2023;16(1):e2302506. doi: 10.1088/1758-5090/ad0b3f
  82. Reza HA, Santangelo C, Iwasawa K, et al. Multi-zonal liver organoids from human pluripotent stem cells. Nature. 2025; 641(8065):1258-1267. doi: 10.1038/s41586-025-08850-1
  83. Falandt M, Bernal PN, Longoni A, et al. Hybrid supramolecular-covalent bioresin promotes cell migration and self-assembly in light-based volumetric bioprinted constructs. preprint. bioRxiv. 2025. doi: 10.1101/2025.01.06.631505
  84. Skylar-Scott MA, Huang JY, Lu A, et al. Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nature Biomed Eng. 2022;6(4):449-462. doi: 10.1038/s41551-022-00856-8
  85. Urkasemsin G, Rungarunlert S, Ferreira JN. Bioprinting strategies for secretory epithelial organoids. Methods Mol Biol. 2020;2140:243-249. doi: 10.1007/978-1-0716-0520-2_16
  86. Klangprapan J, Souza GR, Ferreira JN. Bioprinting salivary gland models and their regenerative applications. BDJ Open. 2024;10(1):39. doi: 10.1038/s41405-024-00219-2
  87. Liu N, Huang S, Yao B, Xie J, Wu X, Fu X. 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland. Sci Rep. 2016;6:34410. doi: 10.1038/srep34410
  88. Dai R, Chen W, Chen Y, et al. 3D bioprinting platform development for high-throughput cancer organoid models construction and drug evaluation. Biofabrication. 2024;16(3):34410. doi: 10.1088/1758-5090/ad51a6
  89. Shiwarski DJ, Hudson AR, Tashman JW, et al. 3D bioprinting of collagen-based microfluidics for engineering fully-biologic tissue systems. bioRxiv. 2024. doi: 10.1101/2024.01.26.577422
  90. Maciel BR, Grimm A, Oelschlaeger C, Schepers U, Willenbacher N. Targeted micro-heterogeneity in bioinks allows for 3D printing of complex constructs with improved resolution and cell viability. Biofabrication. 2023;15(4):042004. doi: 10.1088/1758-5090/acee22
  91. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16(5):1489-96. doi: 10.1021/acs.biomac.5b00188
  92. Maharjan S, Ma C, Singh B, et al. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev. 2024;208:115237. doi: 10.1016/j.addr.2024.115237
  93. Gugulothu SB, Chatterjee K. Visible light-based 4D-bioprinted tissue scaffold. ACS Macro Lett. 2023;12(4):494-502. doi: 10.1021/acsmacrolett.3c00036
  94. Wang D, Guo Y, Zhu J, et al. Hyaluronic acid methacrylate/ pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater. 2023;165:86-101. doi: 10.1016/j.actbio.2022.06.036
  95. Kim M, Cho S, Hwang DG, et al. Bioprinting of bespoke islet-specific niches to promote maturation of stem cell-derived islets. Nat Commun. 2025;16(1):1430. doi: 10.1038/s41467-025-56665-5
  96. Reid JA, Mollica PA, Bruno RD, Sachs PC. Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform. Breast Cancer Res. 2018;20(1):122. doi: 10.1186/s13058-018-1045-4
  97. Shi W, Mirza S, Kuss M, et al. Embedded bioprinting of breast tumor cells and organoids using low-concentration collagen-based bioinks. Adv Healthc Mater. 2023;12(26):e2300905. doi: 10.1002/adhm.202300905
  98. Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small joint organoids 3D bioprinting: construction strategy and application. Small. 2024;20(8):e2302506. doi: 10.1002/smll.202302506
  99. Bertassoni LE. Bioprinting of complex multicellular organs with advanced functionality-recent progress and challenges ahead. Adv Mater (Deerfield Beach, Fla). 2022;34(3):e2101321. doi: 10.1002/adma.202101321
  100. Freedman BS, Brooks CR, Lam AQ, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715. doi: 10.1038/ncomms9715
  101. Votanopoulos KI, Forsythe S, Sivakumar H, et al. Model of patient-specific immune-enhanced organoids for immunotherapy screening: feasibility study. Ann Surg Oncol. 2020;27(6):1956-1967. doi: 10.1245/s10434-019-08143-8
  102. Childs CJ, Poling HM, Chen K, et al. Coordinated differentiation of human intestinal organoids with functional enteric neurons and vasculature. Cell Stem Cell. 2025;32(4):640-651.e9. doi: 10.1016/j.stem.2025.02.007
  103. Park HS, Park JH, Oh M-K, Yu K-R. Advancements in 3D bioprinting for precision medicine: enhancing patient-derived organoids and extracellular vesicle applications in inflammatory diseases. Article. Int J Bioprint. 2024;10(5)4054. doi: 10.36922/ijb.4054
  104. Datta P, Dey M, Ataie Z, Unutmaz D, Ozbolat IT. 3D bioprinting for reconstituting the cancer microenvironment. NPJ Precis Oncol. 2020;4:18. doi: 10.1038/s41698-020-0121-2
  105. Augustine R, Kalva SN, Ahmad R, et al. 3D bioprinted cancer models: revolutionizing personalized cancer therapy. Transl Oncol. 2021;14(4):101015. doi: 10.1016/j.tranon.2021.101015
  106. Qazi TH, Blatchley MR, Davidson MD, et al. Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell. 2022;29(5):678-691. doi: 10.1016/j.stem.2022.03.013
  107. Gopalakrishnan S, Bakke I, Hansen MD, et al. Comprehensive protocols for culturing and molecular biological analysis of IBD patient-derived colon epithelial organoids. Front Immunol. 2023;14:1097383. doi: 10.3389/fimmu.2023.1097383
  108. Caire R, Audoux E, Courbon G, et al. YAP/TAZ: key players for rheumatoid arthritis severity by driving fibroblast like synoviocytes phenotype and fibro-inflammatory response. Front Immunol. 2021;12:791907. doi: 10.3389/fimmu.2021.791907
  109. Günther C, Winner B, Neurath MF, Stappenbeck TS. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut. 2022;71(9): 1892-1908. doi: 10.1136/gutjnl-2021-326560
  110. Sachs N, Tsukamoto Y, Kujala P, Peters PJ, Clevers H. Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels. Development. 2017;144(6):1107-1112. doi: 10.1242/dev.143933
  111. Niklinska-Schirtz BJ, Venkateswaran S, Anbazhagan M, et al. Ileal derived organoids from Crohn’s disease patients show unique transcriptomic and secretomic signatures. Cell Mol Gastroenterol Hepatol. 2021;12(4):1267-1280. doi: 10.1016/j.jcmgh.2021.06.018
  112. Taebnia N, Zhang R, Kromann EB, Dolatshahi-Pirouz A, Andresen TL, Larsen NB. Dual-material 3D-printed intestinal model devices with integrated villi-like scaffolds. ACS Appl Mater Interfaces. 2021;13(49): 8434-58446. doi: 10.1021/acsami.1c22185
  113. Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat Mater. 2021;20(1):22-29. doi: 10.1038/s41563-020-00803-5
  114. Carvalho MR, Yan L-P, Li B, et al. Gastrointestinal organs and organoids-on-a-chip: advances and translation into the clinics. Review. Biofabrication. 2023;15(4):042004. doi: 10.1088/1758-5090/acf8fb
  115. Xiaoshuai L, Qiushi W, Rui W. Advantages of CRISPR-Cas9 combined organoid model in the study of congenital nervous system malformations. Front Bioeng Biotechnol. 2022;10:932936. doi: 10.3389/fbioe.2022.932936
  116. Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR Cas9 in three-dimensional stem cell cultures to model disease. Front Bioeng Biotechnol. 2020;8:692. doi: 10.3389/fbioe.2020.00692
  117. Schene IF, Joore IP, Oka R, et al. Prime editing for functional repair in patient-derived disease models. Nat Commun. 2020;11(1):5352. doi: 10.1038/s41467-020-19136-7
  118. Inak G, Rybak-Wolf A, Lisowski P, et al. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun. 2021;12(1):1929. doi: 10.1038/s41467-021-22117-z
  119. Zhang W, Ma L, Yang M, et al. Cerebral organoid and mouse models reveal a RAB39b-PI3K-mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes. Genes Dev. 2020;34(7-8):580-597. doi: 10.1101/gad.332494.119
  120. An HL, Kuo HC, Tang TK. Modeling human primary microcephaly with hiPSC-derived brain organoids carrying CPAP-E1235V disease-associated mutant protein. Front Cell Dev Biol. 2022;10:830432. doi: 10.3389/fcell.2022.830432
  121. Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomater. 2019;209:10-24. https://doi.org/10.1016/j.biomaterials.2019.04.009
  122. Ahn CB, Lee J-H, Kim JH, et al. Development of a 3D subcutaneous construct containing insulin-producing beta cells using bioprinting. Bio-Des Manuf. 2022;5(2): 265-276. doi: 10.1007/s42242-021-00178-9
  123. Enrico A, Voulgaris D, Ostmans R, et al. 3D microvascularized tissue models by laser-based cavitation molding of collagen. Adv Mater (Deerfield Beach, Fla). 2022;34(11):e2109823. doi: 10.1002/adma.202109823
  124. Bai L, Zhou D, Li G, Liu J, Chen X, Su J. Engineering bone/ cartilage organoids: strategy, progress, and application. Bone Res. 2024;12(1):66. doi: 10.1038/s41413-024-00376-y
  125. O’Connor C, Brady E, Zheng Y, Moore E, Stevens KR. Engineering the multiscale complexity of vascular networks. Nat Rev Mater. 2022;7(9):702-716. doi: 10.1038/s41578-022-00447-8
  126. Michael S, Sorg H, Peck CT, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741. doi: 10.1371/journal.pone.0057741
  127. Rioux G, Simard M, Morin S, Lorthois I, Guérin SL, Pouliot R. Development of a 3D psoriatic skin model optimized for infiltration of IL-17A producing T cells: focus on the crosstalk between T cells and psoriatic keratinocytes. Acta Biomater. 2021;136:210-222. doi: 10.1016/j.actbio.2021.09.018
  128. Shin JU, Abaci HE, Herron L, et al. Recapitulating T cell infiltration in 3D psoriatic skin models for patient-specific drug testing. Sci Rep. 2020;10(1):4123. doi: 10.1038/s41598-020-60275-0
  129. Lorthois I, Simard M, Morin S, Pouliot R. Infiltration of T cells into a three-dimensional psoriatic skin model mimics pathological key features. Int J Mol Sci. 2019;20(7):1670. doi: 10.3390/ijms20071670
  130. Gong L, Li J, Zhang J, et al. An interleukin-4-loaded bi-layer 3D printed scaffold promotes osteochondral regeneration. Acta Biomater. 2020;117:246-260. doi: 10.1016/j.actbio.2020.09.039
  131. Derman ID, Rivera T, Garriga Cerda L, et al. Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Int J Extrem Manuf. 2025;7(1):012009. doi: 10.1088/2631-7990/ad878c
  132. Zhou Z, Pang Y, Ji J, et al. Harnessing 3D in vitro systems to model immune responses to solid tumours: a step towards improving and creating personalized immunotherapies. Nat Rev Immunol. 2024;24(1):18-32. doi: 10.1038/s41577-023-00896-4
  133. Zhao K-y, Du Y-x, Cao H-m, Su L-y, Su X-l, Li X. The biological macromolecules constructed Matrigel for cultured organoids in biomedical and tissue engineering. Article. Colloids Surf B Biointerfaces. 2025;247:114435. doi: 10.1016/j.colsurfb.2024.114435
  134. Di Piazza E, Pandolfi E, Cacciotti I, et al. Bioprinting technology in skin, heart, pancreas and cartilage tissues: progress and challenges in clinical practice. Int J Environ Res Public Health. 2021;18(20):10806. doi: 10.3390/ijerph182010806
  135. Wang Y, Li H, Zhang J, Chen M, Pan Y, Lou X. 3D bioprinting inner ear organ of corti organoids induce hair cell regeneration. J Biomed Mater Res A. 2025;113(3): e37892. doi: 10.1002/jbm.a.37892
  136. Shukla P, Yeleswarapu S, Heinrich MA, Prakash J, Pati F. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling. Biofabrication. 2022;14(3):6d11. doi: 10.1088/1758-5090/ac6d11
  137. Lee Y, Min J, Kim S, Park W, Ko J, Jeon NL. Recapitulating the cancer-immunity cycle on a chip. Adv Healthc Mater. 2025;14(1):e2401927. doi: 10.1002/adhm.202401927
  138. Fan H, Demirci U, Chen P. Emerging organoid models: leaping forward in cancer research. J Hematol Oncol. 2019;12(1):142. doi: 10.1186/s13045-019-0832-4
  139. Mohamed E-T, Syed Arman R, Rasha B, et al. Unraveling the tumor microenvironment: insights into cancer metastasis and therapeutic strategies. Cancer Lett. 2024;591:216894. doi: 10.1016/j.canlet.2024.216894
  140. Wu X, Jin Z, Li B, et al. Deciphering of intra-tumoural heterogeneity and the interplay between metastasis-associated meta-program and myofibroblasts in gastric cancer. Clin Transl Med. 2025;15(5):e70319. doi: 10.1002/ctm2.70319
  141. Julia AL, Lance LM, Rakesh KJ. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer. 2024;24(11):768-791. doi: 10.1038/s41568-024-00745-z
  142. Francisco B, Joana C, Maria M, João JS, Carla V. 3D bioprinting models for glioblastoma: from scaffold design to therapeutic application. Adv Mater. 2025;37(18):e2501994. doi: 10.1002/adma.202501994
  143. Yan L, Haijun C, Haitao C. Precision spatial control of tumor‐stroma interactions in cancer models via 3D bioprinting for advanced research and therapy. Adv Funct Mater. 2025; 2503391. doi: 10.1002/adfm.202503391
  144. Rong J, Xia L, Qian Z, et al. Anti-tumor immune potentiation targets-engineered nanobiotechnologies: design principles and applications. Prog Mater Sci. 2024;142:101230. doi: 10.1016/j.pmatsci.2023.101230
  145. Pengcheng Z, Xuanlong D, Weilu J, Kun F, Yewei Z. Engineered extracellular vesicles for targeted reprogramming of cancer-associated fibroblasts to potentiate therapy of pancreatic cancer. Signal Transduct Target Ther. 2024;9(1):1. doi: 10.1038/s41392-024-01872-7
  146. Hermida MA, Kumar JD, Schwarz D, et al. Three dimensional in vitro models of cancer: bioprinting multilineage glioblastoma models. Adv Biol Regul. 2020;75:100658. doi: 10.1016/j.jbior.2019.100658
  147. Sun Q, Tan SH, Chen Q, et al. Microfluidic formation of coculture tumor spheroids with stromal cells as a novel 3D tumor model for drug testing. ACS Biomater Sci Eng. 2018;4(12):4425-4433. doi: 10.1021/acsbiomaterials.8b00904
  148. Godier C, Baka Z, Lamy L, et al. A 3D bio-printed-based model for pancreatic ductal adenocarcinoma. Diseases. 2024;12(9):206. doi: 10.3390/diseases12090206
  149. Meng F, Meyer CM, Joung D, Vallera DA, McAlpine MC, Panoskaltsis-Mortari A. 3D bioprinted in vitro metastatic models via reconstruction of tumor microenvironments. Adv Mater (Deerfield Beach, Fla). 2019;31(10):e1806899. doi: 10.1002/adma.201806899
  150. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18(7):407-418. doi: 10.1038/s41568-018-0007-6
  151. Li Y, Liu J, Xu S, Wang J. 3D bioprinting: an important tool for tumor microenvironment research. Int J Nanomed. 2023;18:8039-8057. doi: 10.2147/ijn.S435845
  152. Heinrich MA, Bansal R, Lammers T, Zhang YS, Michel Schiffelers R, Prakash J. 3D-bioprinted mini-brain: a glioblastoma model to study cellular interactions and therapeutics. Adv Mater (Deerfield Beach, Fla). 2019;31(14):e1806590. doi: 10.1002/adma.201806590
  153. Zhou X, Zhu W, Nowicki M, et al. 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces. 2016;8(44):30017-30026. doi: 10.1021/acsami.6b10673
  154. Hughes AM, Kolb AD, Shupp AB, Shine KM, Bussard KM. Printing the pathway forward in bone metastatic cancer research: applications of 3D engineered models and bioprinted scaffolds to recapitulate the bone-tumor niche. Cancers (Basel). 2021;13(3):507. doi: 10.3390/cancers13030507
  155. Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-throughput screening: drug screening, disease modeling, and precision medicine applications. Appl Phys Rev. 2019;6(1):011302. doi: 10.1063/1.5056188
  156. Kim J, Jang J, Cho D-W. Recapitulating the cancer microenvironment using bioprinting technology for precision medicine. Micromachines. 2021;12(9):1122. doi: 10.3390/mi12091122
  157. Langer EM, Allen-Petersen BL, King SM, et al. Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep. 2019;26(3):608-623.e6. doi: 10.1016/j.celrep.2018.12.090
  158. Calandrini C, Drost J. Normal and tumor-derived organoids as a drug screening platform for tumor-specific drug vulnerabilities. STAR Protoc. 2022;3(1):101079. doi: 10.1016/j.xpro.2021.101079
  159. Wu P, Asada H, Hakamada M, Mabuchi M. Bioengineering of high cell density tissues with hierarchical vascular networks for ex vivo whole organs. Adv Mater (Deerfield Beach, Fla). 2023;35(9):e2209149. doi: 10.1002/adma.202209149
  160. Bjerring JS, Khodour Y, Peterson EA, Sachs PC, Bruno RD. Intercellular mitochondrial transfer contributes to microenvironmental redirection of cancer cell fate. FEBS J. 2025;292(9):2306-2322. doi: 10.1111/febs.70002
  161. Khan AO, Rodriguez-Romera A, Reyat JS, et al. Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Article. Cancer Discov. 2023;13(2):364-385. doi: 10.1158/2159-8290.Cd-22-0199
  162. Chen H, Wu Z, Gong Z, et al. Acoustic bioprinting of patient-derived organoids for predicting cancer therapy responses. Adv Healthc Mater. 2022;11(13):2102784. doi: 10.1002/adhm.202102784
  163. Choi Y-m, Lee H, Ann M, Song M, Rheey J, Jang J. 3D bioprinted vascularized lung cancer organoid models with underlying disease capable of more precise drug evaluation. Biofabrication. 2023;15(3):034104. doi: 10.1088/1758-5090/acd95f
  164. Jungeun K, Hoe Suk K, Ga Yeon K, et al. Abstract P5-02- 02: development of automated 3d high-throughput drug screening platform for patient-derived breast cancer organoids. Cancer Res. 2022;82:2. doi: 10.1158/1538-7445.sabcs21-p5-02-02
  165. Hou S, Tiriac H, Sridharan BP, et al. Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening. SLAS Discov. 2018;23(6):574-584. doi: 10.1177/2472555218766842
  166. Arutyunyan I, Jumaniyazova E, Makarov A, Fatkhudinov T. In vitro models of head and neck cancer: from primitive to most advanced. J Pers Med. 2023;13(11):1575. doi: 10.3390/jpm13111575
  167. Azhakesan A, Kern J, Mishra A, et al. 3D bioprinted head and neck squamous cell carcinoma (HNSCC) model using tunicate derived nanocellulose (NC) bioink. Adv Healthc Mater. 2025;14(7):e2403114. doi: 10.1002/adhm.202403114
  168. Baka Z, Godier C, Lamy L, et al. A coculture based, 3D bioprinted ovarian tumor model combining cancer cells and cancer associated fibroblasts. Macromol Biosci. 2023;23(3):e2200434. doi: 10.1002/mabi.202200434
  169. Tebon PJ, Wang B, Markowitz AL, et al. Drug screening at single-organoid resolution via bioprinting and interferometry. Nat Commun. 2023;14(1):3168. doi: 10.1038/s41467-023-38832-8
  170. Nhan P, Jenny JH, Bobby T, et al. A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids. Commun Biol. 2019;2(1):1. doi: 10.1038/s42003-019-0305-x
  171. Krendl FJ, Primavesi F, Oberhuber R, et al. The importance of preclinical models for cholangiocarcinoma drug discovery. Expert Opin Drug Discov. 2025;20(2):205-216. doi: 10.1080/17460441.2025.2457637
  172. Joshi P, Nascimento HSD, Kang SY, et al. Dynamic culture of bioprinted liver tumor spheroids in a pillar/perfusion plate for predictive screening of anticancer drugs. Biotechnol Bioeng. 2025;122(4):995-1009. doi: 10.1002/bit.28924
  173. Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cell Oncol. 2025;48(1):1-26. doi: 10.1007/s13402-024-00960-8
  174. Maloney E, Clark C, Sivakumar H, et al. Immersion bioprinting of tumor organoids in multi-well plates for increasing chemotherapy screening throughput. Micromachines. 2020;11(2):208. doi: 10.3390/mi11020208
  175. Gong Z, Mao Y, Huang L, et al. Acoustic printing of patient-derived organoids that preserve tumor microenvironment for personalized drug screening. Adv Mater Technol. 2023;8(11):2201942. doi: 10.1002/admt.202201942
  176. Nieto D, Jiménez G, Moroni L, López-Ruiz E, Gálvez-Martín P, Marchal JA. Biofabrication approaches and regulatory framework of metastatic tumor-on-a-chip models for precision oncology. Med Res Rev. 2022;42(5):1978-2001. doi: 10.1002/med.21914
  177. Wang F, Song P, Wang J, et al. Organoid bioinks: construction and application. Biofabrication. 2024;16(3):3467c. doi: 10.1088/1758-5090/ad467c
  178. Wu Z, Liu R, Shao N, Zhao Y. Developing 3D bioprinting for organs-on-chips. Lab Chip. 2025;25(5):1081-1096. doi: 10.1039/d4lc00769g
  179. O’Connor CE, Zhang F, Neufeld A, et al. Bioprinted platform for parallelized screening of engineered microtissues in vivo. Cell Stem Cell. 2025;1;32(5):838-853.e6. doi: 10.1016/j.stem.2025.03.002
  180. Capeling MM, Czerwinski M, Huang S, et al. Nonadhesive alginate hydrogels support growth of pluripotent stem cell-derived intestinal organoids. Stem Cell Rep. 2019;12(2):381-394. doi: 10.1016/j.stemcr.2018.12.001
  181. Baptista LS, Porrini C, Kronemberger GS, Kelly DJ, Perrault CM. 3D organ-on-a-chip: the convergence of microphysiological systems and organoids. Front Cell Dev Biol. 2022;10:1043117. doi: 10.3389/fcell.2022.1043117
  182. Bengtsson A, Andersson R, Rahm J, Ganganna K, Andersson B, Ansari D. Organoid technology for personalized pancreatic cancer therapy. Cell Oncol (Dordr). 2021;44(2):251-260. doi: 10.1007/s13402-021-00585-1
  183. Mahdavi R, Hashemi-Najafabadi S, Ghiass MA, et al. Design, fabrication, and characterization of a user-friendly microfluidic device for studying liver zonation-on-chip (ZoC). Biomed Microdevices. 2025;27(1):8. doi: 10.1007/s10544-025-00738-1
  184. Myszczyszyn A, Muench A, Lehmann V, et al. A hollow fiber membrane-based liver organoid-on-a-chip model for examining drug metabolism and transport. Biofabrication. 2025;17(2):206. doi: 10.1088/1758-5090/adc3ce
  185. Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Patient-specific organoid and organ-on-a-chip: 3D cell-culture meets 3D printing and numerical simulation. Adv Biol (Weinh). 2021;5(6):e2000024. doi: 10.1002/adbi.202000024
  186. Park B, Park J, Han S, et al. Advances in organoid-on-a-chip for recapitulation of human physiological events. Mater Today. 2025;84:75-94. doi: 10.1016/j.mattod.2025.02.002
  187. Tonon F, Giobbe GG, Zambon A, et al. In vitro metabolic zonation through oxygen gradient on a chip. Sci Rep. 2019;9(1):13557. doi: 10.1038/s41598-019-49412-6
  188. McCarty WJ, Usta OB, Yarmush ML. A microfabricated platform for generating physiologically-relevant hepatocyte zonation. Sci Rep. 2016;6(1):26868. doi: 10.1038/srep26868
  189. Mitani S, Takayama K, Nagamoto Y, et al. Human ESC/ iPSC-derived hepatocyte-like cells achieve zone-specific hepatic properties by modulation of WNT signaling. Mol Ther. 2017;25(6):1420-1433. doi: 10.1016/j.ymthe.2017.04.006
  190. Wang Q, Liu J, Yin W, et al. Microscale tissue engineering of liver lobule models: advancements and applications. Front Bioeng Biotechnol. 2023;11:1303053. doi: 10.3389/fbioe.2023.1303053
  191. Saw TB, Doostmohammadi A, Nier V, et al. Topological defects in epithelia govern cell death and extrusion. Nature. 2017;544(7649):212-216. doi: 10.1038/nature21718
  192. Gupta K, Ng IC, Balachander GM, et al. Bile canaliculi contract autonomously by releasing calcium into hepatocytes via mechanosensitive calcium channel. Biomaterials. 2020;259:120283. doi: 10.1016/j.biomaterials.2020.120283
  193. Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods. 2014;11(8):847-54. doi: 10.1038/nmeth.3016
  194. Kang R, Park S, Shin S, Bak G, Park JC. Electrophysiological insights with brain organoid models: a brief review. BMB Rep. 2024;57(7):311-317. doi: 10.5483/BMBRep.2024-0077
  195. Zhou J, Vijayavenkataraman S. 3D-printable conductive materials for tissue engineering and biomedical applications. Bioprinting. 2021;24:e00166. doi: 10.1016/j.bprint.2021.e00166
  196. Liu P. 3D da yin wei liu kong xin pian xi bao fen xi ping tai de gou jian ji qi ying yong [Construction and Application of a 3D-Printed Microfluidic Chip-Based Cell Analysis Platform] [dissertation]. Shandong Normal University; 2023. h t t p s : / / d . w a n f a n g d a t a . c o m . c n / t h e s i s / vChhUaGVzaXNOZXdTMjAyNDA5MjAxNTE3MjUS CUQwMzAyNDMyOBoIe XRhZ mhk ZXM%3D.
  197. Mai S, Inkielewicz-Stepniak I. Graphene oxide nanoparticles and organoids: a prospective advanced model for pancreatic cancer research. Int J Mol Sci. 2024;25(2):1066. doi: 10.3390/ijms25021066
  198. Salmon I, Grebenyuk S, Abdel Fattah AR, et al. Engineering neurovascular organoids with 3D printed microfluidic chips. Lab Chip. 2022;22(8):1615-1629. doi: 10.1039/d1lc00535a
  199. Park YG, Kim S, Min S, et al. Soft 3D bioelectrodes for intraorganoid signal monitoring in cardiac models. Nano Lett. 2025;25(16):6481-6490. doi: 10.1021/acs.nanolett.5c00069
  200. Lee S, Chung WG, Jeong H, et al. Electrophysiological analysis of retinal organoid development using 3D microelectrodes of liquid metals. Adv Mater (Deerfield Beach, Fla). 2024;36(35):e2404428. doi: 10.1002/adma.202404428
  201. Dong K, Liu WC, Su Y, et al. Scalable electrophysiology of millimeter-scale animals with electrode devices. BME Front. 2023;4:0034. doi: 10.34133/bmef.0034
  202. Acha C, George D, Diaz LC, et al. Neuromodulation in neural organoids with shell MEAs. bioRxiv. 2025. doi: 10.1101/2025.02.18.637712
  203. Saleh MS, Ritchie SM, Nicholas MA, et al. CMU array: a 3D nanoprinted, fully customizable high-density microelectrode array platform. Sci Adv. 2022;8(40):eabj4853. doi: 10.1126/sciadv.abj4853
  204. Patel D, Shetty S, Acha C, et al. Microinstrumentation for brain organoids. Adv Healthc Mater. 2024;13(21): e2302456. doi: 10.1002/adhm.202302456
  205. Li TL, Liu Y, Forro C, et al. Stretchable mesh microelectronics for the biointegration and stimulation of human neural organoids. Biomaterials. 2022;290:121825. doi: 10.1016/j.biomaterials.2022.121825
  206. Mao M, Han K, Gao J, et al. Engineering highly aligned and densely populated cardiac muscle bundles via fibrin remodeling in 3D-printed anisotropic microfibrous lattices. Adv Mater (Deerfield Beach, Fla). 2025;37(9):e2419380. doi: 10.1002/adma.202419380
  207. Zilinskaite N, Shukla RP, Baradoke A. Use of 3D printing techniques to fabricate implantable microelectrodes for electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. ACS Meas Sci Au. 2023;3(5):315-336. doi: 10.1021/acsmeasuresciau.3c00028
  208. Kalmykov A, Huang C, Bliley J, et al. Organ-on-e-chip: three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci Adv. 2019;5(8):eaax0729. doi: 10.1126/sciadv.aax0729
  209. Spedicati M, Tivano F, Zoso A, et al. 3D bioartificial stretchable scaffolds mimicking the mechanical hallmarks of human cardiac fibrotic tissue. Int J Bioprint. 2024;10(3):2247. doi: 10.36922/ijb.2247
  210. Vashistha R, Kumar P, Dangi AK, Sharma N, Chhabra D, Shukla P. Quest for cardiovascular interventions: precise modeling and 3D printing of heart valves. J Biol Eng. 2019;13:12. doi: 10.1186/s13036-018-0132-5
  211. Chen A, Su J, Li Y, et al. 3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering. Int J Extreme Manuf. 2023;5(3):8. doi: 10.1088/2631-7990/acd88f
  212. Simonneau C, Duschmalé M, Gavrilov A, et al. Investigating receptor-mediated antibody transcytosis using blood-brain barrier organoid arrays. Fluids Barriers CNS. 2021; 18(1):43. doi: 10.1186/s12987-021-00276-x
  213. Shen C, Zhang ZJ, Li XX, et al. Intersection of nanomaterials and organoids technology in biomedicine. Front Immunol. 2023;14:1172262. doi: 10.3389/fimmu.2023.1172262
  214. Paone LS, Benmassaoud MM, Curran A, Vega SL, Galie PA. A 3D-printed blood-brain barrier model with tunable topology and cell-matrix interactions. Biofabrication. 2023;16(1):260. doi: 10.1088/1758-5090/ad0260
  215. Marino A, Tricinci O, Battaglini M, et al. A 3D real-scale, biomimetic, and biohybrid model of the blood-brain barrier fabricated through two-photon lithography. Small. 2018;14(6):2959. doi: 10.1002/smll.201702959
  216. Carton F, Malatesta M. In vitro models of biological barriers for nanomedical research. Int J Mol Sci. 2022;23(16):8910. doi: 10.3390/ijms23168910
  217. Sharma A, Fernandes DC, Reis RL, et al. Cutting-edge advances in modeling the blood-brain barrier and tools for its reversible permeabilization for enhanced drug delivery into the brain. Cell Biosci. 2023;13(1):137. doi: 10.1186/s13578-023-01079-3
  218. Reina-Mahecha A, Beers MJ, van der Veen HC, Zuhorn IS, van Kooten TG, Sharma PK. A review of the role of bioreactors for iPSCs-based tissue-engineered articular cartilage. Tissue Eng Regen Med. 2023;20(7):1041-1052. doi: 10.1007/s13770-023-00573-6
  219. Xiu Z, Yang Q, Xie F, Han F, He W, Liao W. Revolutionizing digestive system tumor organoids research: exploring the potential of tumor organoids. J Tissue Eng. 2024;15:20417314241255470. doi: 10.1177/20417314241255470
  220. Labour MN, Le Guilcher C, Aid-Launais R, et al. Development of 3D hepatic constructs within polysaccharide-based scaffolds with tunable properties. Int J Mol Sci. 2020;21(10):3644. doi: 10.3390/ijms21103644
  221. Shin J, Kang R, Hyun K, et al. Machine learning-enhanced optimization for high-throughput precision in cellular droplet bioprinting. Adv Sci (Weinh). 2025:12(20):e2412831. doi: 10.1002/advs.202412831
  222. Hwang HH, You S, Ma X, et al. High throughput direct 3D bioprinting in multiwell plates. Biofabrication. 2021;13(2):2200434. doi: 10.1088/1758-5090/ab89ca
  223. Hu W, Cao M, Liao L, et al. An automated digital microfluidic system based on inkjet printing. Micromachines (Basel). 2024;15(11):2247. doi: 10.3390/mi15111285
  224. Bai L, Wu Y, Li G, Zhang W, Zhang H, Su J. AI-enabled organoids: Construction, analysis, and application. Bioact Mater. 2024;31:525-548. doi: 10.1016/j.bioactmat.2023.09.005
  225. Ear PH, Marinoni I, Dayton T, et al. NET models meeting 2024 white paper: the current state of neuroendocrine tumour research models and our future aspirations. Endocr Oncol. 2024;4(1):e240055. doi: 10.1530/eo-24-0055
  226. Ma W, Lu H, Xiao Y, Wu C. Advancing organoid development with 3D bioprinting. OR. 2025;1(1):40004. doi: 10.36922/or025040004

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing