AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025140120
REVIEW ARTICLE

 Three-dimensional bioprinting technologies and biomaterials for nerve guidance conduits: A review

Yuexi Zhuang1 Miriam Seiti1 Eleonora Ferraris1*
Show Less
1 Department of Mechanical Engineering, Faculty of Engineering Technology, KU Leuven, Leuven, Belgium
Received: 2 April 2025 | Accepted: 26 May 2025 | Published online: 6 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Repairing long peripheral nerve gap injuries and reconstructing corresponding functions remain two major challenges in regenerative medicine. The application of nerve conduits, constructed via neural tissue engineering (NTE) strategies, has emerged as a prominent research focus and an essential tool for nerve repair. Among NTE technologies, additive manufacturing (AM), especially bioprinting, represents one of the most promising fabrication approaches for neural conduits. This review systematically analyzes the current research progress on peripheral nerve conduit fabrication, particularly emphasizing how different conduit structures, biomaterials, and AM techniques synergistically influence nerve regeneration outcomes. The review also summarizes the principles and recommendations for selecting appropriate nerve conduit structures for different defect lengths and injury stages, providing a theoretical basis for the design and practical application of conduit structures. Additionally, it focuses on the role of advanced bioprinting technologies in enhancing conduit complexity, cell guidance, and functional recovery. Furthermore, this review highlights emerging trends and discusses critical future directions for integrating structure design, material selection, and printing strategies toward the next generation of nerve conduits. This review aims to provide a comprehensive perspective for advancing peripheral nerve repair by bridging biomaterial engineering, manufacturing innovations, and regenerative medicine needs.

Graphical abstract
Keywords
Additive manufacturing
Biofabrication
Nerve conduit
Neural tissue engineering
Funding
The research is funded by the Research Foundation Flanders (FWO) for the doctoral fellowship (1S47325N) granted to Yuexi Zhuang.
Conflict of interest
Eleonora Ferraris is an Editorial Board Member of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Pan, D, Mackinnon, SE, Wood MD. Advances in the repair of segmental nerve injuries and trends in reconstruction. Muscle Nerve. 2020;61(6):726-739. doi: 10.1002/mus.26797
  2. Joung D, Lavoie NS, Guo SZ, Park SH, Parr AM, McAlpine MC. 3D printed neural regeneration devices. Adv Funct Mater. 2020;30(1):1906237. doi: 10.1002/adfm.201906237
  3. Seddon HJ. Three types of nerve injury. Brain. 1943;66(4):237-288. doi: 10.1093/brain/66.4.237
  4. Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain. 1951;74(4):491-516. doi: 10.1093/brain/74.4.491
  5. Johnson EO, Soucacos PN. Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides. Injury-Int J Care Inj. 2008;39(3):30-36. doi: 10.1016/j.injury.2008.05.018
  6. Daly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface. 2011;9(67):202-221. doi: 10.1098/rsif.2011.0438
  7. Scheib J, HoKe A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9(12):668-676. doi: 10.1038/nrneurol.2013.227
  8. Yi S, Zhang Y, Gu XK, et al. Application of stem cells in peripheral nerve regeneration. Burns Trauma. 2020;8:tkaa002. doi: 10.1093/burnst/tkaa002
  9. Han Y, Yin J. Industry news: the additive manufacturing of nerve conduits for the treatment of peripheral nerve injury. Bio-Des Manuf. 2021;5(1):6-8. doi: 10.1007/s42242-021-00166-z
  10. Ray WZ, Mackinnon S.E. Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol. 2010;223(1):77-85. doi: 10.1016/j.expneurol.2009.03.031
  11. Neumeister MW, Winters JN. Neuroma. Clin Plast Surg. 2020;47(2):279-283. doi: 10.1016/j.cps.2019.12.008
  12. Stocco E, Barbon S, Emmi A, et al. Bridging gaps in peripheral nerves: from current strategies to future perspectives in conduit design. Int. J. Mol. Sci. 2023;24(11):9170. doi: 10.3390/ijms24119170
  13. Zhou WX, Rahman MSU, Sun CM, et al. Perspectives on the novel multifunctional nerve guidance conduits: from specific regenerative procedures to motor function rebuilding. Adv Mater. 2023;36(4):2307805. doi: 10.1002/adma.202307805
  14. Wang SF, Yaszemski MJ, Knight AM, Gruetzmacher JA, Windebank AJ, Lu LC. Photo-crosslinked poly (ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: material properties and preliminary biological evaluations. Acta Biomater. 2009;5(5): 1531-1542. doi: 10.1016/j.actbio.2008.12.015
  15. Liu XY, Duan XC. Mechanisms and treatments of peripheral nerve injury. Ann Plast Surg. 2023;91(2):313-318. doi: 10.1097/SAP.0000000000003480
  16. Yang XQ, Huang L, Yi XZY, Huang SY, Duan B, Yu AX. Multifunctional chitin-based hollow nerve conduit for peripheral nerve regeneration and neuroma inhibition. Carbohydr Polym. 2020;289:119443. doi: 10.1016/j.carbpol.2022.119443.
  17. Homaeigohar S, Tsai TY, Young TH, Yang HJ, Ji YR. An electroactive alginate hydrogel nanocomposite reinforced by functionalized graphite nanofilaments for neural tissue engineering. Carbohydr Polym. 2019; 224:115112. doi: 10.1016/j.carbpol.2019.115112
  18. Dong Q, Yang XD, Liang X, et al. Composite hydrogel conduit incorporated with platelet-rich plasma improved the regenerative microenvironment for peripheral nerve repair. ACS Appl Mater Interfaces. 2023;15(20): 24120-24133. doi: 10.1021/acsami.3c02548
  19. Zhang SJ, Wang J, Zheng ZZ, et al. Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair. Acta Biomater. 2021;134(15):116-130. doi: 10.1016/j.actbio.2021.07.028
  20. Gu XS, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014;35(24):6143-6156. doi: 10.1016/j.biomaterials.2014.04.064
  21. Fregnan F, Ciglieri E, Tos P, et al. Chitosan crosslinked flat scaffolds for peripheral nerve regeneration. Biomed Mater. 2016;11(4):045010. doi: 10.1088/1748-6041/11/4/045010
  22. Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25(10):1891. doi: 10.1016/j.biomaterials.2003.08.062
  23. Yang Y, De Laporte L, Rives CB, et al. Neurotrophin releasing single and multiple lumen nerve conduits. J Control Release. 2005;104(3):433. doi: 10.1016/j.jconrel.2005.02.022
  24. Jeffries EM, Wang YD. Biomimetic micropatterned multi-channel nerve guides by templated electrospinning. Biotechnol Bioeng. 2012;109(6):1571-1582. doi: 10.1002/bit.24412
  25. Bozkurt A, Brook GA, Moellers S, et al. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 2007;13(12):2971. doi: 10.1089/ten.2007.0116
  26. Vijayavenkataraman S, Zhang S, Thaharah S, Sriram G, Lu WF, Fuh JYH. Electrohydrodynamic jet 3D printed nerve guide conduits (NGCs) for peripheral nerve injury repair. Polymers. 2018;10(7):753. doi: 10.3390/polym10070753
  27. Wasti S, Adhikari S. Use of biomaterials for 3D printing by fused deposition modeling technique: a review. Front Chem. 2020;8:315. doi: 10.3389/fchem.2020.00315
  28. O’Brien CM, Holmes B, Faucett S, Zhang LG. Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng. Part B-Rev. 2015;21(1):103-114. doi: 10.1089/ten.teb.2014.0168
  29. Wang G, Zhao W, Liu YF, Cheng TJ. Review of space manufacturing technique and developments. Sci Sin-Phys Mech Astron. 2020;50(4):0416. doi: 10.1360/SSPMA-2019-0416
  30. Schmitt M, Mehta RM, Kim IY. Additive manufacturing infill optimization for automotive 3D-printed ABS components. Rapid Prototyp. J. 2020;26(1):89-99. doi: 10.1108/RPJ-01-2019-0007
  31. Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharma Res. 2016;33(8):1817-1832. doi: 10.1007/s11095-016-1933-1
  32. Alexander P, Stefan K, Ernst R. Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Addit Manuf. 2019;30:100894. doi: 10.1016/j.addma.2019.100894
  33. Chakraborty S, Biswas MC. 3D printing technology of polymer-fiber composites in textile and fashion industry: a potential roadmap of concept to consumer. Compos Struct. 2020;248:112562. doi: 10.1016/j.compstruct.2020.112562
  34. Qian Y, Han QX, Zhao XT, Li H, Yuan WE, Fan CY. Asymmetrical 3d nanoceria channel for severe neurological defect regeneration. iScience. 2019;12:216-231. doi: 10.1016/j.isci.2019.01.013
  35. Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication. 2016;8(1):013001. doi: 10.1088/1758-5090/8/1/013001
  36. Moroni L, Boland T, Burdick JA, et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 2018;36(4):384-402. doi: 10.1016/j.tibtech.2017.10.015
  37. Ijpma FFA, De Graaf RCV, Meek MF. The early history of tubulation in nerve repair. J Hand Surg-Eur. Vol. 2008;33E(5):581-586. doi: 10.1177/1753193408091349
  38. Lundborg G, Longo FM, Varón S. Nerve regeneration model and trophic factors in vivo. Brain Res. 1982;232(1): 157-161. doi: 10.1016/0006-8993(82)90618-7
  39. Williams LR, Longo FM, Powell HC, Lundborg G, Varón S. Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay. J Comp Neurol. 1983;218(4):460-70. doi: 10.1002/cne.902180409
  40. Ruiter GCW, Malessy MJA, Yaszemski MJ, Windebank AJ, Spinner RJ. Designing ideal conduits for peripheral nerve repair. Neurosurg Focus. 2009;26(2):E5. doi: 10.3171/FOC.2009.26.2.E5
  41. Qin JZ, Wang PJ, Wang Y. An experimental study on the repair of peripheral nerve defects by using polylactic-glycolic acid microfilaments wrapped in muscle flap and prefabricated in amniotic tube to simulate peripheral nerve regeneration microenvironment. Chin J Tissue Eng Res. 2009;13(16):3093-3096. doi: 10.3969/j.issn.3093-3096.2009.13.16.
  42. Lundborg G, Kanje M. Bioartificial nerve grafts: a prototype. Scand J Plast Reconstr Surg Hand Surg. 1996;30(2):105-110. doi: 10.3109/02844319609056391
  43. Wang SF, Cai L. Polymers for fabricating nerve conduits. Int J Polym Sci. 2010;2010:1-20. doi: 10.1155/2010/138686
  44. Moore MJ, Friedman JA, Lewellyn EB, et al. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials. 2006;27(3):419-429. doi: 10.1016/j.biomaterials.2005.07.045
  45. Lee DJ, Fontaine A, Meng XZ, Park D. Biomimetic nerve guidance conduit containing intraluminal microchannels with aligned nanofibers markedly facilitates in nerve regeneration. ACS Biomater Sci Eng. 2016;2(8):1403-1410. doi: 10.1021/acsbiomaterials.6b00344
  46. Wang YM, WangWJ, Wo Y, et al. Orientated guidance of peripheral nerve regeneration using conduits with a microtube array sheet (MTAS). ACS Appl Mater Interfaces. 2015;7(16):8437-8450. doi: 10.1021/acsami.5b00215
  47. Apablaza JA, Lezcano MF, Marquez AL, Sánchez KG, Oporto GH, Dias FJ. Main morphological characteristics of tubular polymeric scaffolds to promote peripheral nerve regeneration-a scoping review. Polymers. 2021;13(15):2563. doi: 10.3390/polym13152563
  48. Wan Y, Zhang J, Luo Y, Zhou T, Wu H. Preparation and degradation of chitosan-poly(p-dioxanone)/silk fibroin porous conduits. Polym Degrad Stabil. 2015;119:46-55. doi: 10.1016/j.polymdegradstab.2015.05.004
  49. Odelius K, Höglund A, Kumar S, et al. Porosity and pore size regulate the degradation product profile of polylactide. Biomacromolecules. 2011;12(4):1250-1258. doi: 10.1021/bm1015464
  50. Wu LB, Ding JD. Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-coglycolide) scaffolds for tissue engineering. J Biomed Mater Res Part A. 2005;75(4):767-777. doi: 10.1002/jbm.a.30487
  51. Song CB, Zhang JP, Cen L, Xi ZH, Zhao L, Yuan WK. Modeling strategies for the degradation behavior of porous polyester materials based on their key structural features. Ind Eng Chem Res. 2020;59(33):14806-14816. doi: 10.1021/acs.iecr.0c02694
  52. Tao J, Hu Y, Wang SJ, et al. A 3D-engineered porous conduit for peripheral nerve repair. Sci Rep. 2017;7:46038. doi: 10.1038/srep46038
  53. Clark P, Connolly P, Curtis SG, Dow JAT, Wilkinson CDW. Topographical control of cell behavior: I. Simple step cues. Development. 1987;99(3):439-448. doi: 10.1242/dev.99.3.439. https://webofscience.clarivate.cn/wos/alldb/full-record/ WOS:A1987G384800014
  54. Miller C, Jeftinija S, Mallapragada S. Synergistic effects of physical and chemical guidance cues on neurite alignment and outgrowth on biodegradable polymer substrates. Tissue Eng. 2002;8(3):367-378. doi: 10.1089/107632702760184646
  55. Schmalenberg KE, Uhrich KE. Micropatterned polymer substrates control alignment of proliferating Schwann cells to direct neuronal regeneration. Biomaterials. 2005;26(12):1423-1430. doi: 10.1016/j.biomaterials.2004.04.046
  56. Rutkowski GE, Miller CA, Jeftinija S, Mallapragada SK. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. J Neural Eng. 2004;1(3):151-157. doi: 10.1088/1741-2560/1/3/004
  57. Davis B, Wojtalewicz S, Labroo P, et al. Controlled release of FK506 from micropatterned PLGA films: potential for application in peripheral nerve repair. Neural Regen Res. 2018;13(7):1247-1252. doi: 10.4103/1673-5374.235063
  58. Yu X, Zhang DT, Liu C, et al. Micropatterned poly(D, L-lactide-co-caprolactone) conduits with KHI-peptide and NGF promote peripheral nerve repair after severe traction injury. Front Bioeng Biotechnol. 2021;9:744230. doi: 10.3389/fbioe.2021.744230
  59. Bolleboom A, de Ruiter GCW, Coert JH, Tuk B, Holstege JC, van Neck JW. Novel experimental surgical strategy to prevent traumatic neuroma formation by combining a 3D-printed Y-tube with an autograft. Lab Invest. 2019;130(1):184-196. doi: 10.3171/2017.8.JNS17276
  60. Zhang J, Tao J, Cheng H, et al. Nerve transfer with 3D-printed branch nerve Conduits. Burns Trauma. 2022;10:tkac010. doi: 10.1093/burnst/tkac010
  61. Hu Y, Wu Y, Gou ZY, et al. 3D-engineering of cellularized conduits for peripheral nerve regeneration. Sci Rep. 2016;6:32184. doi: 10.1038/srep32184
  62. Johnson BN, Lancaster KZ, Zhen GH, et al. 3D printed anatomical nerve regeneration pathways. Adv Funct Mater. 2015;25(39):6205-6217. doi: 10.1002/adfm.201501760
  63. Carvalho CR, Oliveira JM, Reis RL. Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit. Front Bioeng Biotechnol. 2019;7:337. doi: 10.3389/fbioe.2019.00337
  64. Wang EG, Inaba K, Byerly S, et al. Optimal timing for repair of peripheral nerve injuries. J Trauma Acute Care Surg. 2017;83(5):875-881. doi: 10.1097/TA.0000000000001570
  65. Wu GG, Wen XY, Kuang R, et al. Roles of macrophages and their interactions with schwann cells after peripheral nerve injury. Cell Mol Neurobiol. 2023;44(1):11. doi: 10.1007/s10571-023-01442-5
  66. Gezercan Y, Menekse G, Ökten AI, et al. The outcomes of late term surgical treatment of penetrating peripheral nerve injuries. Turk Neurosurg. 2026;26(1):146-152. doi: 10.5137/1019-5149.JTN.14094-15.1
  67. Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomaterialia. 2020;106:54-69, doi: 10.1016/j.actbio.2020.02.003
  68. Satchanska G, Davidova S, Petrov PD. Natural and synthetic polymers for biomedical and environmental applications. Polymer. 2024;16(8):1159. doi: 10.3390/polym16081159
  69. Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromol Biosci. 2006;6(1):13-26. doi: 10.1002/mabi.200500151
  70. Chiono V, Tonda‐Turo C, Ciardelli G. Artificial scaffolds for peripheral nerve reconstruction. Int Rev Neurobiol. 2009;87:173-198. doi: 10.1016/S0074-7742(09)87009-8
  71. Gu XS, Ding F, Yang YM, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol. 2011;93(2):204-230. doi: 10.1016/j.pneurobio.2010.11.002
  72. Benowitz LI, Popovich PG. Inflammation and axon regeneration. Curr Opin Neurol. 2011;24(6):577-583. doi: 10.1097/WCO.0b013e32834c208d
  73. Zhao YH, Wang YJ, Gong JH, et al. Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments. Biomaterials. 2017;134:64-77. doi: 10.1016/j.biomaterials.2017.02.026
  74. Nawrotek K, Kubicka M, Gatkowska J, et. al. Controlling the spatiotemporal release of nerve growth factor by chitosan/ polycaprolactone conduits for use in peripheral nerve regeneration. Int J Mol Sci. 2022;23(5):2852. doi: 10.3390/ijms23052852.
  75. Bianchini M, Zinno C, Micera S, Riva ER. Improved physiochemical properties of chitosan@PCL nerve conduits by natural molecule crosslinking. Biomolecules. 2023;13(12):1712. doi: 10.3390/biom13121712.
  76. Zhang M, An H, Wan T, et al. Micron track chitosan conduit fabricated by 3D-printed model topography provides bionic microenvironment for peripheral nerve regeneration. Int J Bioprinting. 2023;9(5):770. doi: 10.18063/ijb.770
  77. Yi BC, Zhang HL, Yu ZP, Yuan HH, Wang XL, Zhang YZ. Fabrication of high performance silk fibroin fibers via stable jet electrospinning for potential use in anisotropic tissue regeneration. J Mater Chem B. 2018;6(23):3934-3945. doi: 10.1039/c8tb00535d
  78. Chen ZY, Zhang Q, Li HM, Wei Q, Zhao X, Chen FL. Elastin-like polypeptide modified silk fibroin porous scaffold promotes osteochondral repair. Bioact Mater. 2021;6(3):589-601. doi: 10.1016/j.bioactmat.2020.09.003
  79. Nguyen TP, Nguyen QV, Nguyen VH, et al. Silk fibroin-based biomaterials for biomedical applications: a review. Polymers. 2019;11(12):1933. doi: 10.3390/polym11121933
  80. Dinis TM, Elia R, Vidal G, et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J Mech Behav Biomed Mater. 2015;41:43-55. doi: 10.1016/j.jmbbm.2014.09.029
  81. Zhao YH, Liang YY, Ding SP, Zhang KY, Mao HQ, Yang YM. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering. Biomaterials. 2020;255:120164. doi: 1016/j.biomaterials.2020.120164
  82. Wang Y, Ge Y, Yao K, Zhang L, Yang Y. Repair of sciatic nerve injury in rats by composite filipin conduit. J Nantong Univ Med Ed. 2021;41(03):207-211. https://caod.oriprobe.com/articles/61847006/Repair_ study_of_sciatic_nerve_injury_in_rats_with_combined_ silk_fibroi.htm
  83. Zhao YH, Niu CM, Shi JQ, Wang YY, Yang YM, Wang HB. Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regen Res. 2018;13(8):1455-1464. doi: 10.4103/1673-5374.235303
  84. Fujimaki H, Uchida K, Inoue G, et al. Oriented collagen tubes combined with basic fibroblast growth factor promote peripheral nerve regeneration in a 15 mm sciatic nerve defect rat model. J Biomed Mater Res Part A. 2017;105(1):8-14. doi: 10.1002/jbm.a.35866
  85. Yoo J, Park JH, Kwon YW, et al. Augmented peripheral nerve regeneration through elastic nerve guidance conduits prepared using a porous PLCL membrane with a 3D printed collagen hydrogel. Biomater Sci. 2020;8(22):6261. doi: 10.1039/d0bm00847h.
  86. Chen C, Xu HH, Liu XY, et al. 3D printed collagen/ silk fibroin scaffolds carrying the secretome of human umbilical mesenchymal stemcells ameliorated neurological dysfunction after spinal cord injury in rats. Regen Biomater. 2022;9:rbac014. doi: 10.1093/rb/rbac014
  87. Gaspar-Pintiliescu A, Stanciuc AM, Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. Int J Biol Macromol. 2019;138:854-865. doi: 10.1016/j.ijbiomac.2019.07.155
  88. Ulubayram K, Aksu E, Gurhan SID, Serbetci K, Hasirci N. Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. J Biomater Sci-Polym Ed. 2022;13(11):1203-1219. doi: 10.1163/156856202320892966
  89. Sultana S, Khan RA, Shahruzzaman M, Khan MA, Mustafa AI, Gafur MA. Effect of gamma radiation on the physico-and thermo-mechanical properties of gelatin-based films using 2-hydroxyethyl methacrylate (HEMA). Polym Plast Technol Eng. 2010;49(7):662-671. doi: 10.1080/03602551003681804
  90. Le HR, Natesan K, Pranti-Haran S. Mechanical property and biocompatibility of co-precipitated nano hydroxyapatite-gelatine composites. J Adv Ceram. 2015;4(3):237-243. doi: 10.1007/s40145-015-0155-z
  91. Sergi R, Bellucci D, Cannillo V. A review of bioactive glass/ natural polymer composites: state of the art. Materials. 2020;13(23):13235560. doi: 10.3390/ma13235560
  92. Gong H, Fei H, Xu Q, Guo M, Chen HH. 3D-engineered GelMA conduit filled with ECM promotes regeneration of peripheral nerve. J Biomed Mater Res Part A. 2020;108A:3. doi: 10.1002/jbm.a.36859
  93. Tao J, Zhang JM, Du T, et al. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater. 2019;90:49-59. doi: 10.1016/j.actbio.2019.03.047
  94. Liu JY, Zhang B, Li L, Yin J, Fu JZ. Additive-lathe 3D bioprinting of bilayered nerve conduits incorporated with supportive cells. Bioact Mater. 2021;6(1):219-229. doi: 10.1016/j.bioactmat.2020.08.010
  95. Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable polymeric bio(nano)materials and their biomedical applications: a comprehensive overview and recent updates. Polymers. 2024;16(2):206. doi: 10.3390/polym16020206
  96. Evans GRD, Brandt K, Widmer MS, et al. In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials. 1999;20(12):1109-1115. doi: 10.1016/S0142-9612(99)00010-1
  97. Cai J, Peng XJ, Nelson KD, Nelson KD, Eberhart R, Smith GM. Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation. J Biomed Mater Res Part A. 2005;75A(2):374-386. doi: 10.1002/jbm.a.30432
  98. Jahromi HK, Farzin A, Hasanzadeh E, et al. Enhanced sciatic nerve regeneration by poly-L-lactic acid/multi-wall carbon nanotube neural guidance conduit containing Schwann cells and curcumin encapsulated chitosan nanoparticles in rat. Mater Sci Eng C-Mater Biol Appl. 2020;109:110564. doi: 10.1016/j.msec.2019.110564
  99. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Maciel R. Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv. 2012;30(1):321-328. doi: 10.1016/j.biotechadv.2011.06.019
  100. Gerdefaramarzi RS, Ebrahimian-Hosseinabadi M, Khodaei M. 3D printed poly(lactic acid)/poly(ε- caprolactone)/graphene nanocomposite scaffolds for peripheral nerve tissue engineering. Arab J Chem. 2024; 17(9):105927. doi: 10.1016/j.arabjc.2024.105927
  101. Wang XD, Hu W, Cao Y, Yao J, Wu J, Gu XS. Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/ PGA artificial nerve graft. Brain. 2005;128(8):1897-1910. doi: 10.1093/brain/awh517
  102. Yue HX, Liu XZ, Hou KJ, Vyas C, Bartolo P. Stereolithography 3D printing of microgroove master moulds for topography-induced nerve guidance conduits. Int J Bioprinting. 2024;10(3):2725. doi: 10.36922/ijb.2725
  103. Zheng CS, Yang ZH, Chen SH, et al. Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair. Theranostics. 2021;11(6):2917-2931. doi: 10.7150/thno.50825
  104. Sachan R, Warkar SG, Purwar R. An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites. Polym Plast Technol Mater. 2022;62(3):327-358. doi: 10.1080/25740881.2022.2113890
  105. Xu PW, Tan S, Niu DY, et al. Effect of temperatures on stress-induced structural evolution and mechanical behaviors of polyglycolic acid/polycaprolactone blends. Polymer. 2023;283:126239. doi: 10.1016/j.polymer.2023.126239
  106. Zhu L, Jia SJ, Liu TJ, et al. Aligned PCL fiber conduits immobilized with nerve growth factor gradients enhance and direct sciatic nerve regeneration. Adv Funct Mater. 2020;30(39):2002610. doi: 10.1002/adfm.202002610
  107. Chen CC, Yu J, Ng HY, et al. The physicochemical properties of decellularized extracellular matrix coated 3D printed poly(ε-caprolactone) nerve conduits for promoting schwann cells proliferation and differentiation. Materials. 2018;11(9):1665. doi: 10.3390/ma11091665
  108. Qian Y, Zhao XT, Han QX, Chen W, Li H, Yuan WE. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nat Commun. 2018;9(1):323. doi: 10.1038/s41467-017-02598-7
  109. Luis AL, Rodrigues JM, Amado S, et al. PLGA 90/10 and caprolactone biodegradable nerve guides for the reconstruction of the rat sciatic nerve. Microsurgery. 2007;27(2):125-137. doi: 10.1002/micr.20317
  110. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377-1397. doi: 10.3390/polym3031377
  111. Ouyang YM, Huang C, Zhu Y, Fen CY, Ke QF. fabrication of seamless electrospun collagen/PLGA conduits whose walls comprise highly longitudinal aligned nanofibers for nerve regeneration. J Biomed Nanotechnol. 2013;9(6):931-943. doi: 10.1166/jbn.2013.1605
  112. Namhongsa M, Daranarong D, Sriyai M, et al. Surface-modified polypyrrole-coated PLCL and PLGA nerve guide conduits fabricated by 3D printing and electrospinning. Biomacromolecules. 2022;23(11):4532-4546. doi: 10.1021/acs.biomac.2c00626
  113. Lackington WA, Kocí Z, Alekseeva T, et al. Controlling the dose-dependent, synergistic and temporal effects of NGF and GDNF by encapsulation in PLGA microparticles for use in nerve guidance conduits for the repair of large peripheral nerve defects. J Control Release. 2019;304:51-64. doi: 10.1016/j.jconrel.2019.05.001
  114. Berkovitch Y, Cohen T, Peled E, et al. Hydrogel composition and laser micropatterning to regulate sciatic nerve regeneration. Tissue Eng Regen Med. 2017;12(4):1049-1061. doi: 10.1002/term.2606
  115. Seiti M, Degryse O, Ferraro RM, Giliani S, Bloemen V, et al. 3D Aerosol Jet® printing for microstructuring: Advantages and limitations. Int J Bioprinting. 2023;9(6): 0257. doi: 10.36922/ijb.0257
  116. Berkovitch Y, Yelin D, Seliktar D. Photo-patterning PEG-based hydrogels for neuronal engineering. Eur Polym J. 2015;72:473-483. doi: 10.1016/j.eurpolymj.2015.07.014
  117. Zhu H, Yao C, Wei BY, et al. 3D printing of functional bioengineered constructs for neural regeneration: a review. Int J Extreme Manuf. 2023;5(4):042004. doi: 10.1088/2631-7990/ace56c.
  118. Li JX, Wu ZW, Zhao L, et al. The heterogeneity of mesenchymal stem cells: an important issue to be addressed in cell therapy. Stem Cell Res Ther. 2023;14(1):381. doi: 10.1186/s13287-023-03587-y
  119. Andreotti JP, Silva WN, Costa AC, et al. Neural stem cell niche heterogeneity. Semin Cell Dev Biol. 2019;14(95):42-53. doi: 10.1016/j.semcdb.2019.01.005
  120. Ding F, Wu JA, Yang YM, et al. Use of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid)- based scaffold included with bone marrow mesenchymal cells for bridging 50-mm dog sciatic nerve gaps. Tissue Eng Part A. 2010;16(12):3779-3790. doi: 10.1089/ten.tea.2010.0299
  121. Santiago LY, Clavijo-Alvarez J, Brayfield C, Rubin JP, Marra KG. Delivery of adipose-derived precursor cells for peripheral nerve repair. Cell Transplant. 2009; 18(2):145-158. doi: 10.3727/096368909788341289
  122. Jiang LF, Jones S, Jia XF. Stem cell transplantation for peripheral nerve regeneration: current options and opportunities. Int J Mol Sci. 2017;18(1):94. doi: 10.3390/ijms18010094
  123. Oliveira JT, Almeida FM, Biancalana A, et al. Mesenchymal stem cells in a polycaprolactone conduit enhance median-nerve regeneration, prevent decrease of creatine phosphokinase levels in muscle, and improve functional recovery in mice. Neuroscience. 2010;170(4):1295-1303. doi: 10.1016/j.neuroscience.2010.08.042
  124. Greenberg DA, Jin KL. From angiogenesis to neuropathology. Nature. 2015;438(7070):954-959. doi: 10.1038/nature04481
  125. Zhang QZ, Nguyen PD, Shi SH, Burrell JC, Cullen DK, Le AD. 3D bio-printed scaffold-free nerve constructs with human gingiva derived mesenchymal stem cells promote rat facial nerve regeneration. Sci Rep. 2018;8:6634. doi: 10.1038/s41598-018-24888-w
  126. Cui Y, Yao Y, Zhao YN, et al. Functional collagen conduits combined with human mesenchymal stem cells promote regeneration after sciatic nerve transection in dogs. J Tissue Eng Regen Med. 2018;12(5):1285-1296. doi: 10.1002/term.2660
  127. Endo T, Kadoya K, Suzuki T, et al. Mature but not developing Schwann cells promote axon regeneration after peripheral nerve injury. NJP Regen Med. 2022;7:12. doi: 10.1038/s41536-022-00205-y
  128. Ning LQ, Mehta R, Cao C, et al. Embedded 3D bioprinting of gelatin methacryloyl-based constructs with highly tunable structural fidelity. ACS Appl Mater Interfaces. 2020;12(40):44563-44577. doi: 10.1021/acsami.0c15078
  129. Ning LQ, Zhu N, Mohabatpour F, Sarker MD, Schreyer DJ, Chen XB. Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions. J Mater Chem. 2019;7(29):4538-4551. doi: 10.1039/c9tb00669a
  130. Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg. 2010;63(9):1544-1552. doi: 10.1016/j.bjps.2009.09.012
  131. Mesentier-Louro LA, Rosso P, Carito V, et al. Nerve growth factor role on retinal ganglion cell survival and axon regrowth: effects of ocular administration in experimental model of optic nerve injury. Mol Neurobiol. 2019;56(2):1056-69. doi: 10.1007/s12035-018-1154-1
  132. Chen ZW, Wang MS. Effects of nerve growth factor on crushed sciatic nerve regeneration in rats. Microsurgery. 1995;16(8):547-551. doi: 10.1002/micr.1920160808
  133. Tang S, Zhu JX, Xu YB, Xiang AP, Jiang MH, Quan DP. The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats. Biomaterials. 2013; 34(29):7086-7096. doi: 10.1016/j.biomaterials.2013.05.080
  134. Xu F, Su GB. Calendula officinalis extract-loaded conduits improved sciatic nerve injury repair through upregulation of BDNF and GFAP. J Bioact Compat Polym. 2024;39(4):217-235. doi: 10.1177/08839115241258150
  135. Rao F, Wang YH, Zhang DY, et al. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. Theranostics. 2020; 10(4):1590-1603. doi: 10.7150/thno.36272
  136. Grothe C, Nikkhah G. The role of basic fibroblast growth factor in peripheral nerve regeneration. Anat Embryol. 2001;204(3):171-177. doi: 10.1007/s004290100205
  137. Cui Y, Lu C, Meng DQ, et al. Collagen scaffolds modified with CNTF and bFGF promote facial nerve regeneration in minipigs. Biomaterials. 2014;35(27):7819-7827. doi: 10.1016/j.biomaterials.2014.05.065
  138. Mobasseri SA, Terenghi G, Downes S. Micro-structural geometry of thin films intended for the inner lumen of nerve conduits affects nerve repair. J Mater Sci-Mater Med. 2013;24(7):1639-1647. doi: 10.1007/s10856-013-4922-5
  139. Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(4):6121-6130. doi: 10.1016/j.biomaterials.2010.04.050.
  140. Schmidleithner C, Malferarri S, Palgrave R, Bomze D, Schwentenwein M, Kalaskar DM. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. Biomed Mater. 2018;14(4):045018. doi: 10.1088/1748-605X/ab279d
  141. Zennifer A, Manivannan S, Sethuraman S, Kumbar SG, Sundaramurthi D. 3D bioprinting and photocrosslinking: emerging strategies & future perspectives. Biomater Adv. 2021;134:112576. doi: 10.1016/j.msec.2021.112576
  142. Arcaute K, Mann BK, Wicker RB. Fabrication of off-the-shelf multilumen poly(ethylene glycol) nerve guidance conduits using stereolithography. Tissue Eng Part C-Methods. 2010;17(1):27-38. doi: 10.1089/ten.tec.2010.0011
  143. Evangelista MS, Perez M, Salibian AA, et al. Single-lumen and multi-lumen poly(ethylene glycol) nerve conduits fabricated by stereolithography for peripheral nerve regeneration in vivo. J Reconstr Microsurg. 2015;31(5):327-335. doi: 10.1055/s-0034-1395415
  144. Farzan A, Borandeh S, Seppälä J. Conductive polyurethane/ PEGylated graphene oxide composite for 3D-printed nerve guidance conduits. Eur Polym J. 2022;167:111068. doi: 10.1016/j.eurpolymj.2022.111068
  145. Perez MA. Manufacturing nerve guidance conduits by stereolithography for use in peripheral nerve regeneration. The University of Texas at El Paso ProQuest Dissertations & Theses. 2013;1551240 https://scholarworks.utep.edu/dissertations/AAI1551240
  146. Singh A, Asikainen S, Teotia AK, et al. Biomimetic photocurable three-dimensional printed nerve guidance channels with aligned cryomatrix lumen for peripheral nerve regeneration. ACS Appl Mater Interfaces. 2018;10(50):43327-43342. doi: 10.1021/acsami.8b11677
  147. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074
  148. Wu Y, Su H, Li M, Xing HY. Digital light processing-based multi-material bioprinting: processes, applications, and perspectives. J Biomed Mater Res Part A. 2023;111(4):527-542. doi: 10.1002/jbm.a.37473
  149. Zhang JM, Hu QP, Wang S, Tao J, Gou ML. Digital light processing based three-dimensional printing for medical applications. Int J Bioprinting. 2020;6(1):12-27. doi: 10.18063/ijb.v6i1.242
  150. Wajdi F, Tontowi AE. 3D printed stent from graphene-polyethylene glycol diacrylate using digital light processing technique. Manag Syst Prod Eng. 2024;32(4):555-562. doi: 10.2478/mspe-2024-0053.
  151. Li H, Dai J, Wang Z, Zheng H, Li W, Wang M. Digital light processing (DLP)-based (bio)printing strategies for tissue modeling and regeneration. Aggregate. 2023;4(2):270. doi: 10.1002/agt2.270
  152. Lee SJ, Esworthy T, Stake S, et al. Advances in 3D bioprinting for neural tissue engineering. Adv Biosyst. 2018;2(4):1700213. doi: 10.1002/adbi.201700213
  153. Xu X, Tao J, Wang S, et al. 3D printing of nerve conduits with nanoparticle-encapsulated RGFP966. Appl Mater Today. 2019;16:247-256. doi: 10.1016/j.apmt.2019.05.014
  154. Tao J, Liu HF, Wu WB, et al. 3D-printed nerve conduits with live platelets for effective peripheral nerve repair. Adv Funct Mater. 2020;30(42):2004272. doi: 10.1002/adfm.202004272
  155. Ye WS, Li HB, Yu K, et al. 3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channels. Mater Des. 2020;192:108757. doi: 10.1016/j.matdes.2020.108757
  156. Huang WJ, Wang JE. Development of 3D-printed, biodegradable, conductive PGSA composites for nerve tissue regeneration. Macromol Biosci. 2023;23(3):2200470. doi: 10.1002/mabi.202200470
  157. Wu WB, Dong YC, Liu HF, et al. 3D printed elastic hydrogel conduits with 7,8-dihydroxyflavone release for peripheral nerve repair. Mater Today Bio. 2023;20:100652. doi: 10.1016/j.mtbio.2023.100652
  158. Bedir T, Ulag S, Ustundag CB, Gunduz O. 3D bioprinting applications in neural tissue engineering for spinal cord injury repair. Mater Sci Eng C-Mater Biol Appl. 2020;110:110741. doi: 10.1016/j.msec.2020.110741
  159. Cadena M, Ning LQ, King A, et al. 3D bioprinting of neural tissues. Adv Healthc Mater. 2020;10(15):2001600. doi: 10.1002/adhm.202001600
  160. Zhuang P, Ng WL, An J, Chua CK, Tan LP. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. PloS One. 2019;14(6): 0216776. doi: 10.1371/journal.pone.0216776
  161. Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials. 2017;124:106-115. doi: 10.1016/j.biomaterials.2017.01.042
  162. Vijayavenkataraman S, Vialli N, Fuh JYH, Lu WF. Conductive collagen/polypyrrole-b-polycaprolactone hydrogel for bioprinting of neural tissue constructs. Int J Bioprinting. 2020;6(4):309. doi: 10.18063/ijb.v5i2.1.229
  163. Kaplan B, Merdler U, Szklanny AA, et al. Rapid prototyping fabrication of soft and oriented polyester scaffolds for axonal guidance. Biomaterials. 2020;251:120062. doi: 10.1016/j.biomaterials.2020.120062
  164. Redolfi-Riva E, Pérez-Izquierdo M, Zinno C, et al. A novel 3D-printed/porous conduit with tunable properties to enhance nerve regeneration over the limiting gap length. Adv Mater Technol. 2023;8(17):2300136. doi: 10.1002/admt.202300136
  165. Englanda S, Rajaramb A, Schreyer DJ, Chen XB. Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro characterization for use in nerve regeneration. Bioprinting. 2017;5:1-9. doi: 10.1016/j.bprint.2016.12.001
  166. Das S, Jegadeesan JT, Basu B. Advancing peripheral nerve regeneration: 3D bioprinting of gelma-based cell-laden electroactive bioinks for nerve conduits. ACS Biomater Sci Eng. 2024;10(3):1620-1645. doi: 10.1021/acsbiomaterials.3c01226
  167. Moldovan NI, Hibino N, Nakayama K. Principles of the Kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng Part B-Rev. 2017;23(3):237-244. doi: 10.1089/ten.teb.2016.0322
  168. Yurie H, Ikeguchi R, Aoyama T, et al. The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PloS One. 2017;12(2):e0171448. doi: 10.1371/journal.pone.0171448
  169. Takeuchi H, Ikeguchi R, Aoyama T, et al. A scaffold-free bio 3D nerve conduit for repair of a 10-mm peripheral nerve defect in the rats. Microsurgery. 2020;40(2):207-216. doi: 10.1002/micr.30533
  170. Yurie H, Ikeguchi R, Aoyama T, et al. Bio 3D conduits derived from bone marrow stromal cells promote peripheral nerve regeneration. Cell Transplant. 2020;29: 0963689720951551. doi: 10.1177/0963689720951551
  171. Mitsuzawa S, Ikeguchi R, Aoyama T, et al. The efficacy of a scaffold-free bio 3D conduit developed from autologous dermal fibroblasts on peripheral nerve regeneration in a canine ulnar nerve injury model: a preclinical proof-of concept study. Cell Transplant. 2019;28(9-10):1231-1241. doi: 10.1177/0963689719855346
  172. Fang YC, Wang CJ, Liu ZB, et al. 3D printed conductive multiscale nerve guidance conduit with hierarchical fibers for peripheral nerve regeneration. Adv Sci. 2023;10(12):202205744. doi: 10.1002/advs.202205744
  173. Wang J, Cheng Y, Wang HY, et al. Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration. Acta Biomater. 2020;117:180-191. doi: 10.1016/j.actbio.2020.09.037

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing