AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025150135
RESEARCH ARTICLE

Precise tuning of microstructure for surface bacteriostasis using two-photon polymerization 3D printing technology

Fang-Yi Huo1† Wentao Zhu2† Kan Zhou3† Enduo Zhou1 Lei-Ming Cao3 Qian Zhu2 Bo Cai2* Lin-Lin Bu3* Hong He1*
Show Less
1 State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
2 Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei, China
3 State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial – Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
†These authors contributed equally to this work.
Received: 11 April 2025 | Accepted: 19 May 2025 | Published online: 22 May 2025
© 2025 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

In nature, many biological surfaces exhibit inherent bacteriostatic property due to the existence of special microstructures. However, the key factors and underlying mechanisms driving this property remain unclear. A significant challenge lies in the lack of proper techniques for precisely fabricating such microstructures as well as finely tuning their morphological parameters. In this study, we adopted a two-photon 3D printing-based approach to fabricate microstructures on specified surfaces with accurate control over their morphology, enabling the investigation of structural bacteriostasis. Through abstracting the subtle morphology on shark skin, we replicated their bacteriostatic microstructures and were able to regulate their morphology at the micron scale. By culturing Streptococcus mutans on the surface of these microstructures, we validated their bacteriostatic performance and demonstrated that morphological parameters significantly influenced the efficacy of structural bacteriostasis. Other kinds of microstructures such as micro-holes with bacteriostatic property could also be fabricated and investigated utilizing this two-photon polymerization technology. We believe this strategy offers a powerful tool for researching bacteriostatic mechanisms of various microstructures and will inspire their broad applications in both daily and industrial settings.

Graphical abstract
Keywords
3D printing
Antisepsis
Bacteriostatic microstructures
Biomimetics
Two-photon polymerization
Funding
This study was supported by Postdoctoral Science Foundation of China (2018M630883 and 2019T120688), Hubei Province Chinese Medicine Research Project (ZY2023Q015), Natural Science Foundation of Hubei Province (2023AFB665), Central Universities (Wuhan University) Clinical Medicine + X (2042024YXB017), the Medical Young Talents Program of Hubei Province, and Wuhan Young Medical Talents Training Project to L.-L. Bu Natural Science Foundation of China (61904057), Natural Science Foundation of Hubei Province (2018CFB124), and Research Programs of Science and Technology, Department of Education of Hubei Province (B2023256) to B. Cai, and International Orthodontics Foundation Young Research Grants Award (IOF2024Y11) to F.-Y. Huo.
Conflict of interest
The authors declare they have no competing interests
References
  1. Otto M. Physical stress and bacterial colonization. FEMS Microbiol Rev. 2014;38(6):1250-1270. doi: 10.1111/1574-6976.12088
  2. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16(3):143-155. doi: 10.1038/nrmicro.2017.157
  3. Muhammad MH, Idris AL, Fan X, et al. Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol. 2020;11:928. doi: 10.3389/fmicb.2020.00928
  4. Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev. 2009;73(3):407-450. doi: 10.1128/mmbr.00014-09
  5. Akcalı A, Lang NP. Dental calculus: the calcified biofilm and its role in disease development. Periodontol 2000. 2018;76(1):109-115. doi: 10.1111/prd.12151
  6. Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 2020;28(8):668-681. doi: 10.1016/j.tim.2020.03.016
  7. Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16(7):397-409. doi: 10.1038/s41579-018-0019-y
  8. Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019;8:76. doi: 10.1186/s13756-019-0533-3
  9. Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018; 9(1):522-554. doi: 10.1080/21505594.2017.1313372
  10. Wu H, Moser C, Wang HZ, Høiby N, Song ZJ. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015;7(1):1-7. doi: 10.1038/ijos.2014.65
  11. Nwabuife JC, Omolo CA, Govender T. Nano delivery systems to the rescue of ciprofloxacin against resistant bacteria “E. coli; P. aeruginosa; Saureus; and MRSA” and their infections. J Control Release. 2022;349:338-353. doi: 10.1016/j.jconrel.2022.07.003
  12. Fu X, Rehman U, Wei L, et al. Silver-dendrimer nanocomposite as emerging therapeutics in anti-bacteria and beyond. Drug Resist Updat. 2023;68:100935. doi: 10.1016/j.drup.2023.100935
  13. Kalghatgi S, Spina CS, Costello JC, et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci Transl Med. 2013;5(192):192ra85. doi: 10.1126/scitranslmed.3006055
  14. Jaggessar A, Shahali H, Mathew A, Yarlagadda P. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J Nanobiotechnology. 2017;15(1):64. doi: 10.1186/s12951-017-0306-1
  15. Shahali H, Hasan J, Cheng HH, Ramarishna S, Yarlagadda PK. A systematic approach towards biomimicry of nanopatterned cicada wings on titanium using electron beam lithography. Nanotechnology. 2021;32(6):065301. doi: 10.1088/1361-6528/abbeaa
  16. Xu M, Wang X, Wang B, et al. Carbonized lotus leaf/ZnO/ Au for enhanced synergistic mechanical and photocatalytic bactericidal activity under visible light irradiation. Colloids Surf B Biointerfaces. 2022;215:112468. doi: 10.1016/j.colsurfb.2022.112468
  17. Satheesh S, Ba-akdah MA, Al-Sofyani AA. Natural antifouling compound production by microbes associated with marine macroorganisms — a review. Electron J Biotechnol. 2016;21:26-35. doi: 10.1016/j.ejbt.2016.02.002
  18. Ge X, Ren C, Ding Y, et al. Micro/nano-structured TiO(2) surface with dual-functional antibacterial effects for biomedical applications. Bioact Mater. 2019;4:346-357. doi: 10.1016/j.bioactmat.2019.10.006
  19. Wang S, Deng Y, Yang L, Shi X, Yang W, Chen ZG. Enhanced antibacterial property and osteo-differentiation activity on plasma treated porous polyetheretherketone with hierarchical micro/nano-topography. J Biomater Sci Polym Ed. 2018;29(5):520-542. doi: 10.1080/09205063.2018.1425181
  20. Gao A, Yan Y, Li T, Liu F. Biomimetic urchin-like surface based on poly (lactic acid) membrane for robust anti-wetting and anti-bacteria properties. Mater Lett. 2019;237:240-244. doi: 10.1016/j.matlet.2018.11.063
  21. Li Y-N, Zhao Y, Liu J-J. Precisely engineered bionic Cu-doped titanium dioxide nanoarrays/fluorine-doped tin oxide with excellent antibacterial and antifouling properties. Tungsten. 2024;6(3):522-528. doi: 10.1007/s42864-023-00255-9
  22. Zhang Y, Zhao W, Chen Z, et al. Influence of biomimetic boundary structure on the antifouling performances of siloxane modified resin coatings. Colloids Surf A: Physicochem Eng Aspects. 2017;528:57-64. doi: 10.1016/j.colsurfa.2017.05.044
  23. Liu M, Wang S, Wei Z, Song Y, Jiang L. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater. 2009;21(6):665-669. doi: 10.1002/adma.200801782
  24. Cormican CM, Bektaş S, Martin-Martinez FJ, Alexander S. Emerging trends in bioinspired superhydrophobic and superoleophobic sustainable surfaces. Adv Mater. 2025;37(12):2415961. doi: 10.1002/adma.202415961
  25. Xu Y, Luan X, He P, et al. Fabrication and functional regulation of biomimetic interfaces and their antifouling and antibacterial applications: a review. Small. 2024; 20(21):e2308091. doi: 10.1002/smll.202308091
  26. Shao Z, Shen R, Gui Z, et al. Ethyl cellulose/gelatin/β- cyclodextrin/curcumin nanofibrous membrane with antibacterial and formaldehyde adsorbable capabilities for lightweight and high-performance air filtration. Int J Biol Macromol. 2024;254(Pt 2):127862. doi: 10.1016/j.ijbiomac.2023.127862
  27. Wu W, Han C, Liang R, et al. Fabrication and performance of graphene flexible pressure sensor with micro/nano structure. Sensors (Basel). 2021;21(21):7022. doi: 10.3390/s21217022
  28. Gao Y, Ding Q, Li W, Gu R, Zhang P, Zhang L. Role and mechanism of a micro-/nano-structured porous zirconia surface in regulating the biological behavior of bone marrow mesenchymal stem cells. ACS Appl Mater Interfaces. 2023;15(11):14019-14032. doi: 10.1021/acsami.2c22736
  29. Chen Y, Wang C, Zhang Z, et al. 3D-printed piezocatalytic hydrogels for effective antibacterial treatment of infected wounds. Int J Biol Macromol. 2024;268(Pt 2):131637. doi: 10.1016/j.ijbiomac.2024.131637
  30. Jing X, Fu H, Yu B, Sun M, Wang L. Two-photon polymerization for 3D biomedical scaffolds: Overview and updates. Front Bioeng Biotechnol. 2022;10:994355. doi: 10.3389/fbioe.2022.994355
  31. Pao YH, Rentzepis PM. Laser‐induced production of free radicals in organic compounds. Appl Phys Lett. 1965;6(5):93-95. doi: 10.1063/1.1754182
  32. Zhou X, Liu X, Gu Z. Photoresist development for 3D printing of conductive microstructures via two-photon polymerization. Adv Mater. 2024;36(48):2409326. doi: 10.1002/adma.202409326
  33. O’Halloran S, Pandit A, Heise A, Kellett A. Two-photon polymerization: fundamentals, materials, and chemical modification strategies. Adv Sci (Weinh). 2023;10(7):e2204072. doi: 10.1002/advs.202204072
  34. Sanders ME, Akkermans LM, Haller D, et al. Safety assessment of probiotics for human use. Gut Microbes. 2010;1(3):164-185. doi: 10.4161/gmic.1.3.12127
  35. Chowdhury MAH, Ashrafudoulla M, Mevo SIU, Mizan MFR, Park SH, Ha SD. Current and future interventions for improving poultry health and poultry food safety and security: a comprehensive review. Compr Rev Food Sci Food Saf. 2023;22(3):1555-1596. doi: 10.1111/1541-4337.13121
  36. Chitrakar B, Zhang M, Adhikari B. Dehydrated foods: are they microbiologically safe? Crit Rev Food Sci Nutr. 2019;59(17):2734-2745. doi: 10.1080/10408398.2018.1466265
  37. Xu D, Gu T, Lovley DR. Microbially mediated metal corrosion. Nat Rev Microbiol. 2023;21(11):705-718. doi: 10.1038/s41579-023-00920-3
  38. Battaglia TW, Mimpen IL, Traets JJH, et al. A pan-cancer analysis of the microbiome in metastatic cancer. Cell. 2024;187(9):2324-2335.e19. doi: 10.1016/j.cell.2024.03.021
  39. Yong J, Chew KW, Khoo KS, Show PL, Chang JS. Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnol Adv. 2021;47:107684. doi: 10.1016/j.biotechadv.2020.107684
  40. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9(1):3294. doi: 10.1038/s41467-018-05470-4
  41. Skoulas E, Manousaki A, Fotakis C, Stratakis E. Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci Rep. 2017;7:45114. doi: 10.1038/srep45114
  42. Li Y, Zhang LY, Zhang C, Zhang ZR, Liu L. Bioinspired antifouling Fe-based amorphous coating via killing-resisting dual surface modifications. Sci Rep. 2022;12(1):819. doi: 10.1038/s41598-021-04746-y
  43. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103-112. doi: 10.1016/j.copbio.2016.03.014
  44. Su R, Chen J, Zhang X, et al. 3D-printed micro/nano-scaled mechanical metamaterials: fundamentals, technologies, progress, applications, and challenges. Small. 2023;19(29):e2206391. doi: 10.1002/smll.202206391
  45. Zhang Y, Su Y, Zhao Y, Wang Z, Wang C. Two-photon 3D printing in metal-organic framework single crystals. Small. 2022;18(18):e2200514. doi: 10.1002/smll.202200514
  46. Ivanova EP, Hasan J, Webb HK, et al. Bactericidal activity of black silicon. Nat Commun. 2013;4:2838. doi: 10.1038/ncomms3838
  47. Ivanova EP, Hasan J, Webb HK, et al. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by Cicada wings. Small. 2012;8(16):2489-2494. doi: 10.1002/smll.201200528
  48. Linklater DP, Nguyen HKD, Bhadra CM, Juodkazis S, Ivanova EP. Influence of nanoscale topology on bactericidal efficiency of black silicon surfaces. Nanotechnology. 2017;28(24):245301. doi: 10.1088/1361-6528/aa700e
  49. Bandara CD, Singh S, Afara IO, et al. Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl Mater Interfaces. 2017;9(8):6746-6760. doi: 10.1021/acsami.6b13666
  50. Linklater DP, Juodkazis S, Rubanov S, Ivanova EP. Comment on “Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli”. ACS Appl Mater Interfaces. 2017;9(35):29387-29393. doi: 10.1021/acsami.7b05707
  51. Wang X, Bhadra CM, Yen Dang TH, et al. A bactericidal microfluidic device constructed using nano-textured black silicon. RSC Adv. 2016;6(31):26300. doi: 10.1039/C6RA03864F
  52. Zhu WT, Huo FY, Cao LM, et al. Two-photon polymerization 3D printing of biomimetic microstructures for functionalizing surfaces to inhibit bacterial growth. Chem Eng J. 2025;511:161907. doi: 10.1016/j.cej.2025.161907
  53. Li B, Tan H, Anastasova S, Power M, Seichepine F, Yang GZ. A bio-inspired 3D micro-structure for graphene-based bacteria sensing. Biosens Bioelectron. 2019;123:77-84. doi: 10.1016/j.bios.2018.09.087
  54. Akbari E, Buntat Z, Afroozeh A, Zeinalinezhad A, Nikoukar A. Escherichia coli bacteria detection by using graphene-based biosensor. IET Nanobiotechnol. 2015;9(5):273-279. doi: 10.1049/iet-nbt.2015.0010
  55. Krishnamurthi VR, Harris N, Rogers A, Zou M, Wang Y. Interactions of E. coli with cylindrical micro-pillars of different geometric modifications. Colloids Surf B Biointerfaces. 2022;209(Pt 2):112190. doi: 10.1016/j.colsurfb.2021.112190

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing