AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025140118
RESEARCH ARTICLE

Dual-strategy modification for three-dimensional-printed silk methacryloyl hydrogels: Nanofiber reinforcement and poly(ethylene oxide)-induced porosity

Bingxue Xv1† Xin An1† Ning Zhou1 Wenxin Meng1 Yvmeng Luo1 Guomin Wu1*
Show Less
1 College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
†These authors contributed equally to this work.
Received: 1 April 2025 | Accepted: 19 May 2025 | Published online: 19 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hydrogels have emerged as promising scaffolds for cartilage tissue engineering due to their structural mimicry of native articular cartilage extracellular matrix. However, conventional hydrogels typically exhibit only nanoscale porosity and poor mechanical properties, which limit nutrient delivery, metabolic waste exchange, and structural fidelity. To address these challenges, we developed an innovative cell-laden porous silk methacryloyl (SilMA) hydrogel system with biomechanical reinforcement using three-dimensional (3D) bioprinting. The porous architecture was created through a water-in-water emulsification strategy employing poly(ethylene oxide) (PEO) as a sacrificial template. This pore-forming process resulted in a remarkable structural modulation, achieving an increase of over 100% in average pore diameter and a 75% enhancement in overall porosity compared to hydrogels without PEO. However, this structural modification compromised the compressive modulus by approximately 50%. Therefore, homogenized electrospun silk fibroin nanofibers (NFs) were incorporated into the bio-ink to improve the mechanical properties and optimize surface topography. The introduction of NFs (1–2 wt%) not only recovered the compressive strength and modulus (close to SilMA hydrogels) but also improved the 3D printability of PEO/SilMA hydrogels. Additionally, the hydrogel demonstrated excellent biocompatibility and markedly upregulated expression of chondrogenic-related genes, including COL2A1, ACAN, and SOX9. Furthermore, the subcutaneous implantation experiments in non-obese diabetic/severe combined immunodeficiency mice further confirmed the potential of PEO/NF/SilMA hydrogels in promoting cartilage formation. Therefore, this study proposes a promising dual-strategy approach for cartilage tissue engineering, integrating NFs reinforcement and PEO-induced porosity.  

Graphical abstract
Keywords
Cartilage regeneration
Electrospun nanofiber
Poly(ethylene oxide)
Silk methacryloyl
Three-dimensional bioprinting
Funding
This research was funded by the National Natural Science Foundation of China (No. 82201034), and partially funded by Hefei Municipal Natural Science Foundation (No. 202348), Anhui Medical University Enhancement Program for Basic and Clinical Collaborative Research (No. 2022xkjT017), Anhui Provincial Institute of Translational Medicine Research Fund Project (No. 2021zhyx-C69), Anhui Medical University Graduate Research and Practice Innovation Program (No. YJS20230160).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Ferrari AJ, Santomauro DF, Aali A, Abate YH, Abbafati C, Murray CJL. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024;403(10440):2133-2161. doi: 10.1016/s0140-6736(24)00757-8
  2. Bayir E, Sahinler M, Celtikoglu MM, Sendemir A. Bioreactors in tissue engineering: mimicking the microenvironment. Biomaterials for Organ and Tissue Regeneration. Cambridge, UK: Elsevier. 2020:709-752. doi: 10.1016/B978-0-08-102906-0.00018-0
  3. Li Y, Li L, Li Y, Feng L, Wang B, Li G. Enhancing cartilage repair with optimized supramolecular hydrogel-based scaffold and pulsed electromagnetic field. Bioact. Mater. 2023;22:312-324. doi: 10.1016/j.bioactmat.2022.10.010
  4. Zhang Y, Liu X, Zeng L, Zhang J, Zuo J, Chen X. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater. 2019;29(36):1903279. doi: 10.1002/adfm.201903279
  5. Kundu, B., Rajkhowa, R., Kundu, S.C., Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65(4):457-470. doi: 10.1016/j.addr.2012.09.043
  6. Huang K, Zhang Q-Y, Tan J, Nie R, Feng Z-Y, Xie H-Q. Accelerated cartilage regeneration through immunomodulation and enhanced chondrogenesis by an extracellular matrix hydrogel encapsulating kartogenin. Chem Eng Jl. 2024;497:154993. doi: 10.1016/j.cej.2024.154993
  7. Faber L, Yau A, Chen Y. Translational biomaterials of four-dimensional bioprinting for tissue regeneration. Biofabrication. 2023;16(1):012001. doi: 10.1088/1758-5090/acfdd0
  8. Zhang YS, Oklu R, Dokmeci MR, Khademhosseini A. Three-dimensional bioprinting strategies for tissue engineering. Cold Spring Harb Perspect Med. 2018;8(2):a025718. doi: 10.1101/cshperspect.a025718
  9. Li Q, Xu S, Feng Q, Dai Q, Yao L, Cao X. 3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration. Bioact. Mater. 2021;6(10):3396-3410. doi: 10.1016/j.bioactmat.2021.03.013
  10. Khademhosseini A, Langer R. Microengineered hydrogels for tissue engineering. Biomaterials. 2007;28(34):5087-5092. doi: 10.1016/j.biomaterials.2007.07.021
  11. Gao C, Dai W, Wang X, Zhang L, Wang Y, Cai Q. Magnesium gradient-based hierarchical scaffold for dual-lineage regeneration of osteochondral defect. Adv Funct Mater. 2023;33(43):2304829 . doi: 10.1002/adfm.202304829
  12. Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev. 2010;16(4):371-383. doi: 10.1089/ten.TEB.2009.0639
  13. Santos MI, da Silva LCE, Bomediano MP, Catori DM, Gonçalves MC, de Oliveira MG. 3D printed nitric oxide-releasing poly(acrylic acid)/F127/cellulose nanocrystal hydrogels. Soft Matter. 2021;17(26):6352-6361. doi: 10.1039/d1sm00163a
  14. Shahbazi M, Jäger H, Huc-Mathis D, et al. Depletion flocculation of high internal phase pickering emulsion inks: a colloidal engineering approach to develop 3D printed porous scaffolds with tunable bioactive delivery. ACS Appl Mater Interfaces. 2024;16(33):43430-43450. doi: 10.1021/acsami.4c11035
  15. Li K, Shi Z, Meng Z. Study on the foam properties of peanut oil body (POB)-based oil-in-water-in-oil (O/W/O) foamed emulsion gel: the key role played by the interface between the water phase and the outer oil phase. Food Chem. 2025;464:141663. doi: 10.1016/j.foodchem.2024.141663
  16. Frith WJ. Mixed biopolymer aqueous solutions-phase behaviour and rheology. Adv Colloid Interface Sci. 2010;161(1-2):48-60. doi: 10.1016/j.cis.2009.08.001
  17. Ying GL, Jiang N, Maharjan S, Yin YX, Chai RR, Zhang YS. Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv Mater. 2018;30(50):1805460. doi: 10.1002/adma.201805460
  18. Wang L-S, Du C, Toh WS, Wan ACA, Gao SJ, Kurisawa M. Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials. 2014;35(7):2207-2217. doi: 10.1016/j.biomaterials.2013.11.070
  19. Zhou Y, Liang K, Zhao S, Zhan C, Li J, Xiao P. Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. Int J Biol Macromol. 2018;108:383-390. doi: 10.1016/j.ijbiomac.2017.12.032
  20. Kim SH, Yeon YK, Lee JM, Chao JR, Lee Y, Park CH. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun. 2018;9(1):1620. doi: 10.1038/s41467-018-03759-y
  21. Zhang Q, Lu H, Kawazoe N, Chen G. Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomater. 2014;10(5):2005-2013. doi: 10.1016/j.actbio.2013.12.042
  22. Ying G, Jiang N, Parra-Cantu C, Tang G, Zhang J, Zhang YS. Bioprinted injectable hierarchically porous gelatin methacryloyl hydrogel constructs with shape-memory properties. Adv Funct Mater. 2020;30(46):2003740. doi: 10.1002/adfm.202003740
  23. Wang C, Su Y, Xie J. Advances in electrospun nanofibers: versatile materials and diverse biomedical applications. Acc Mater Res. 2024;5(8):987-999. doi: 10.1021/accountsmr.4c00145
  24. Huang T, Zeng Y, Li C, Zhou Z, Xu J, Wang K. Application and development of electrospun nanofiber scaffolds for bone tissue engineering. ACS Biomater Sci Eng. 2024;10(7):4114-4144. doi: 10.1021/acsbiomaterials.4c00028
  25. Long M, Wu G, Tao F, Ma S, Dong X, Deng H. Nanofibrous textured silk aerogel with 3D channel arrays and adjustable mechanical properties for bone tissue regeneration. Int J Biol Macromol. 2024;278(Pt 2):134372. doi: 10.1016/j.ijbiomac.2024.134372
  26. Song Y, Shimanovich U, Michaels TCT, et al. Fabrication of fibrillosomes from droplets stabilized by protein nanofibrils at all-aqueous interfaces. Nat Commun. 2016;7(1):12934. doi: 10.1038/ncomms12934
  27. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6(10):1612-1631. doi: 10.1038/nprot.2011.379
  28. Ma X, Wu G, Dai F, et al. Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications. Carbohydr Polym. 2021;251:117058. doi: 10.1016/j.carbpol.2020.117058
  29. Nicolai T, Murray B. Particle stabilized water in water emulsions. Food Hydrocoll. 2017;68:157-163. doi: 10.1016/j.foodhyd.2016.08.036
  30. Sawyer Mt, Eixenberger J, Nielson O, Manzi J, Francis C, Estrada D. Correlative imaging of three-dimensional cell culture on opaque bioscaffolds for tissue engineering applications. ACS Appl Biomater. 2023;6(9):3717-3725. doi: 10.1021/acsabm.3c00408
  31. Yoon J, Han H, Jan J. Nanomaterials-incorporated hydrogels for 3D bioprinting technology. Nano Converg. 2023;10(1):52. doi: 10.1186/s40580-023-00402-5
  32. Chang A, Babhadiashar N, Barrett-Catton E, Asuri P. Role of nanoparticle-polymer interactions on the development of double-network hydrogel nanocomposites with high mechanical strength. Polymers. 2020;12(2):470. doi: 10.3390/polym12020470
  33. Cheng Y, Cheng G, Xie C, Yin C, Dong X, Li Z. Biomimetic silk fibroin hydrogels strengthened by silica nanoparticles distributed nanofibers facilitate bone repair. Adv Healthc Mater. 2021;10(9):2001646. doi: 10.1002/adhm.202001646
  34. Lee J, Sultan M, Kim S, et al. Artificial auricular cartilage using silk fibroin and polyvinyl alcohol hydrogel. Int J Mol Sci. 2017;18(8):1707. doi: 10.3390/ijms18081707
  35. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474-5491. doi: 10.1016/j.biomaterials.2005.02.002
  36. Lutzweiler G, Ndreu Halili A, Engin Vrana N. The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics. 2020;12(7):602. doi: 10.3390/pharmaceutics12070602
  37. Navaei A, Saini H, Christenson W, Sullivan RT, Ros R, Nikkhah M. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomater. 2016;41:133-146. doi: 10.1016/j.actbio.2016.05.027
  38. Chen S, Lei T, Zhang Y, Wu H, He S, Liu Y. Nanofiber induced silk fibroin nanofiber/silk fibroin (SFNF/SF) fibrous scaffolds for 3D cell culture. Fibers Polym. 2023;24(2):433-444. doi: 10.1007/s12221-023-00113-y
  39. Wang C-C, Yan K-C, Lin K-H, Liu H-C, Lin F-H. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials. 2011;32(29):7118-7126. doi: 10.1016/j.biomaterials.2011.06.018
  40. Jia L, Zhang Y, Yao L, Zhang P, Ci Z, Zhou G. Regeneration of human-ear-shaped cartilage with acellular cartilage matrix-based biomimetic scaffolds. Appl Mater Today. 2020;20:100639. doi: 10.1016/j.apmt.2020.100639
  41. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26(4):433-441. doi: 10.1016/j.biomaterials.2004.02.052
  42. Im GI, Ko JY, Lee JH. Chondrogenesis of adipose stem cells in a porous polymer scaffold: influence of the pore size. Cell Transplant. 2012;21(11):2397-2405. doi: 10.3727/096368912X638865
  43. Sheng R, Chen J, Wang H, Luo Y, Liu J, Zhang W. Nanosilicate-reinforced silk fibroin hydrogel for endogenous regeneration of both cartilage and subchondral bone. Adv Healthc Mater. 2022;11(17):e2200602. doi: 10.1002/adhm.202200602
  44. Braxton T, Lim K, Alcala-Orozco C, et al. Mechanical and physical characterization of a biphasic 3D printed silk-infilled scaffold for osteochondral tissue engineering. ACS Biomater Sci Eng. 2024;10(12):7606-7618. doi: 10.1021/acsbiomaterials.4c01865
  45. Li H, Li J, Yu S, Wu C, Zhan W. The mechanical properties of tibiofemoral and patellofemoral articular cartilage in compression depend on anatomical regions. Sci Rep. 2021;11(1):6128. doi: 10.1038/s41598-021-85716-2
  46. Jin R, Xu B, Guo D, et al. Advanced chemical modification technology of inorganic oxide nanoparticles in epoxy resin and mechanical properties of epoxy resin nanocomposites: a review. Nano Mater Sci. 2024;18(8);1707. doi: 10.3390/ijms18081707
  47. Shao C, Li Y, Chi J, Ye F, Zhao Y. Hierarchically inverse opal porous scaffolds from droplet microfluidics for biomimetic 3D cell co-culture. Engineering. 2021;7(12):1778-1785. doi: 10.1016/j.eng.2020.06.031
  48. Luo B, Wang S, Song X, Chen S, Qi Q, You Z. An encapsulation‐free and hierarchical porous triboelectric scaffold with dynamic hydrophilicity for efficient cartilage regeneration. Adv Mater. 2024;36(27):2401009. doi: 10.1002/adma.202401009
  49. Chen Y, Mehmood K, Chang Y-F, Tang Z, Li Y, Zhang H. The molecular mechanisms of glycosaminoglycan biosynthesis regulating chondrogenesis and endochondral ossification. Life Sci. 2023;335:122243. doi: 10.1016/j.lfs.2023.122243
  50. Jia L, Hua Y, Zeng J, Liu W, Wang D, Jiang H. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix. Bioact Mater. 2022;16:66-81. doi: 10.1016/j.bioactmat.2022.02.032
  51. Bettahalli NMS, Arkesteijn ITM, Wessling M, Poot AA, Stamatialis D. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds. Acta Biomater. 2013;9(6):6928-6935. doi: 10.1016/j.actbio.2013.02.029

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing