AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025130110
Cite this article
25
Download
286
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW ARTICLE

Integrated applications of microfluidics, organoids, and 3D bioprinting in in vitro 3D biomimetic models

Shiyao Li1† Xuliang Liu2† Leyi Zhang3† Qi Wang1,4*
Show Less
1 Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, Liaoning, China
2 Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
3 Department of Pharmacy, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
4 Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, Liaoning, China
†These authors contributed equally to this work.
Received: 27 March 2025 | Accepted: 29 April 2025 | Published online: 2 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Biomedical research has long faced challenges in accurately replicating human organ microenvironments and overcoming interspecies biological differences, thereby limiting the in-depth understanding of physiopathological mechanisms and hindering the development of cutting-edge therapeutic approaches. Recently, novel technologies such as organoids, microfluidics, and three-dimensional (3D) bioprinting offer promising solutions, fostering innovation, and accelerating progress in biomedical science. However, none of these technologies alone can serve as a fully representative preclinical model, underscoring the need for integrated approaches. This review provides a comprehensive overview of various strategies combining microfluidics, organoids, and 3D bioprinting to develop more physiologically relevant preclinical models. After briefly introducing each technology, we examine the advantages of their pairwise integrations and discuss their prospects for drug research, disease modeling, and beyond. In addition, we explore the potential of combining all three technologies, including the emerging concept of 4D culture systems, which incorporate the temporal dimension to better mimic dynamic biological processes. We anticipate that these integrated models will propel significant advances in biomedical research and contribute to the transformation of future healthcare.  

 

Graphical abstract
Keywords
3D bioprinting
Combinations
In vitro 3D biomimetic models
Microfluidics
Organoids
Funding
Not applicable.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Santos AK, Scalzo S, de Souza RTV, et al. Strategic use of organoids and organs-on-chip as biomimetic tools. Semin Cell Dev Biol. 2023;144:3-10. doi: 10.1016/j.semcdb.2022.09.010
  2. Mooney D, Dankers P, Roche E, Wang H. Engineering active materials for biomedical applications. Adv Mater. 2024;36(43):e2412651. doi: 10.1002/adma.202412651
  3. Perner F, Pahl HL, Zeiser R, Heidel FH. Malignant JAK-signaling: at the interface of inflammation and malignant transformation. Leukemia. 2025;39(5):1011-1030. doi: 10.1038/s41375-025-02569-8
  4. Bullman S. The intratumoral microbiota: from microniches to single cells. Cell. 2023;186(8):1532-1534. doi: 10.1016/j.cell.2023.03.012
  5. Luo Q, Shang K, Zhu J, et al. Biomimetic cell culture for cell adhesive propagation for tissue engineering strategies. Mater Horiz. 2023;10(11):4662-4685. doi: 10.1039/d3mh00849e
  6. Cao C, Memete O, Dun Y, et al. Promoting epithelial regeneration in chemically induced acute lung injury through Sox9-positive alveolar type 2 epithelial cells. Stem Cell Res Ther. 2025;16(1):13. doi: 10.1186/s13287-024-04124-1
  7. Unagolla JM, Jayasuriya AC. Recent advances in organoid engineering: a comprehensive review. Appl Mater Today. 2022;29:101582. doi: 10.1016/j.apmt.2022.101582
  8. Zhou Z, Cong L, Cong X. Patient-derived organoids in precision medicine: drug screening, organoid-on-a-chip and living organoid biobank. Front Oncol. 2021;11:762184. doi: 10.3389/fonc.2021.762184
  9. Zhao Z, Chen X, Dowbaj AM, et al. Organoids. Nat Rev Methods Primers. 2022;2:94. doi: 10.1038/s43586-022-00174-y
  10. Hofer M, Lutolf MP. Engineering organoids. Nat Rev Mater. 2021;6(5):402-420. doi: 10.1038/s41578-021-00279-y
  11. Ahn Y, An JH, Yang HJ, et al. Human blood vessel organoids penetrate human cerebral organoids and form a vessel-like system. Cells. 2021;10(8):2036. doi: 10.3390/cells10082036
  12. Saorin G, Caligiuri I, Rizzolio F. Microfluidic organoids-on-a-chip: the future of human models. Semin Cell Dev Biol. 2023;144:41-54. doi: 10.1016/j.semcdb.2022.10.001
  13. Ren Y, Yang X, Ma Z, et al. Developments and opportunities for 3D bioprinted organoids. IJB. 2024;7(3):364. doi: 10.18063/ijb.v7i3.364
  14. Xie M, Zhan Z, Li Y, et al. Functional microfluidics: theory, microfabrication, and applications. Int J Extrem Manuf. 2024;6(3):032005. doi: 10.1088/2631-7990/ad2c5f
  15. Koivisto M, Tolvanen TA, Toimela T, et al. Functional human cell-based vascularised cardiac tissue model for biomedical research and testing. Sci Rep. 2022;12(1):13459. doi: 10.1038/s41598-022-17498-0
  16. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181-189. doi: 10.1038/nature13118
  17. Nunes JK, Stone HA. Introduction: microfluidics. Chem Rev. 2022;122(7):6919-6920. doi: 10.1021/acs.chemrev.2c00052
  18. Tien J, Dance YW. Microfluidic biomaterials. Adv Healthc Mater. 2021;10(4):e2001028. doi: 10.1002/adhm.202001028
  19. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662-1668. doi: 10.1126/science.1188302
  20. Abdulla A, Chen S, Chen Z, et al. Three-dimensional microfluidics with dynamic fluidic perturbation promotes viability and uniformity of human cerebral organoids. Biosens Bioelectron. 2023;240:115635. doi: 10.1016/j.bios.2023.115635
  21. Liu W, Song J, Du X, et al. AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater. 2019;91:195-208. doi: 10.1016/j.actbio.2019.04.053
  22. Dadgar N, Gonzalez-Suarez AM, Fattahi P, et al. A microfluidic platform for cultivating ovarian cancer spheroids and testing their responses to chemotherapies. Microsyst Nanoeng. 2020;6:93. doi: 10.1038/s41378-020-00201-6
  23. Tan J, Sun X, Zhang J, et al. Exploratory evaluation of EGFR-targeted anti-tumor drugs for lung cancer based on lung-on-a-chip. Biosensors (Basel). 2022;12(8):618. doi: 10.3390/bios12080618
  24. Besanjideh M, Shamloo A, Hannani SK. Evaluating the reliability of tumour spheroid-on-chip models for replicating intratumoural drug delivery: considering the role of microfluidic parameters. J Drug Target. 2023;31(2):179-193. doi: 10.1080/1061186X.2022.2119478
  25. Valverde MG, Mille LS, Figler KP, et al. Biomimetic models of the glomerulus. Nat Rev Nephrol. 2022;18(4):241-257. doi: 10.1038/s41581-021-00528-x
  26. Klak M, Bryniarski T, Kowalska P, et al. Novel strategies in artificial organ development: what is the future of medicine? Micromachines (Basel). 2020;11(7):646. doi: 10.3390/mi11070646
  27. Chliara MA, Elezoglou S, Zergioti I. Bioprinting on organ-on-chip: development and applications. Biosensors (Basel). 2022;12(12):1135. doi: 10.3390/bios12121135
  28. Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586-1597. doi: 10.1016/j.cell.2016.05.082
  29. Wang H, Ning X, Zhao F, Zhao H, Li D. Human organoids-on-chips for biomedical research and applications. Theranostics. 2024;14(2):788-818. doi: 10.7150/thno.90492
  30. Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21(10):571-584. doi: 10.1038/s41580-020-0259-3
  31. Kim H, Perlingeiro RCR. Generation of human myogenic progenitors from pluripotent stem cells for in vivo regeneration. Cell Mol Life Sci. 2022;79(8):406. doi: 10.1007/s00018-022-04434-8
  32. Sen D, Voulgaropoulos A, Keung AJ. Effects of early geometric confinement on the transcriptomic profile of human cerebral organoids. BMC Biotechnol. 2021; 21(1):59. doi: 10.1186/s12896-021-00718-2
  33. Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell. 2024;187(14):3461-3495. doi: 10.1016/j.cell.2024.05.053
  34. Kim E, Choi S, Kang B, et al. Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature. 2020; 588(7839):664-669. doi: 10.1038/s41586-020-3034-x
  35. Sheridan MA, Fernando RC, Gardner L, et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat Protoc. 2020;15(10):3441-3463. doi: 10.1038/s41596-020-0381-x
  36. Minoli M, Cantore T, Hanhart D, et al. Bladder cancer organoids as a functional system to model different disease stages and therapy response. Nat Commun. 2023; 14(1):2214. doi: 10.1038/s41467-023-37696-2
  37. Gras-Peña R, Danzl NM, Khosravi-Maharlooei M, et al. Human stem cell-derived thymic epithelial cells enhance human T-cell development in a xenogeneic thymus. J Allergy Clin Immunol. 2022;149(5):1755-1771. doi: 10.1016/j.jaci.2021.09.038
  38. Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol. 2020;319(1):C151-C165. doi: 10.1152/ajpcell.00120.2020
  39. Gjorevski N, Nikolaev M, Brown TE, et al. Tissue geometry drives deterministic organoid patterning. Science. 2022;375(6576):eaaw9021. doi: 10.1126/science.aaw9021
  40. Kim W, Lee Y, Kang D, Kwak T, Lee HR, Jung S. 3D inkjet-bioprinted lung-on-a-chip. ACS Biomater Sci Eng. 2023;9(5):2806-2815. doi: 10.1021/acsbiomaterials.3c00089
  41. Lee J, Park D, Seo Y, Chung JJ, Jung Y, Kim SH. Organ-level functional 3D tissue constructs with complex compartments and their preclinical applications. Adv Mater. 2020;32(51):e2002096. doi: 10.1002/adma.202002096
  42. Zhao X, Xu Z, Xiao L, et al. Review on the Vascularization of Organoids and Organoids-on-a-Chip. Front Bioeng Biotechnol. 2021;9:637048. doi: 10.3389/fbioe.2021.637048
  43. Yuan L, Xie S, Bai H, et al. Reconstruction of dynamic mammary mini gland in vitro for normal physiology and oncogenesis. Nat Methods. 2023;20(12):2021-2033. doi: 10.1038/s41592-023-02039-y
  44. Jiang S, Zhao H, Zhang W, et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity. Cell Rep Med. 2020;1(9):100161. doi: 10.1016/j.xcrm.2020.100161
  45. Zhu L, Yuhan J, Yu H, Zhang B, Huang K, Zhu L. Decellularized extracellular matrix for remodeling bioengineering organoid’s microenvironment. Small. 2023;19(25):e2207752. doi: 10.1002/smll.202207752
  46. Wörsdörfer P, Ergün S. The impact of oxygen availability and multilineage communication on organoid maturation. Antioxid Redox Signal. 2021;35(3):217-233. doi: 10.1089/ars.2020.8195
  47. LeSavage BL, Suhar RA, Broguiere N, Lutolf MP, Heilshorn SC. Next-generation cancer organoids. Nat Mater. 2022;21(2):143-159. doi: 10.1038/s41563-021-01057-5
  48. Dominijanni AJ, Devarasetty M, Forsythe SD, Votanopoulos KI, Soker S. Cell viability assays in three-dimensional hydrogels: a comparative study of accuracy. Tissue Eng Part C Methods. 2021;27(7):401-410. doi: 10.1089/ten.TEC.2021.0060
  49. de Medeiros G, Ortiz R, Strnad P, et al. Multiscale light-sheet organoid imaging framework. Nat Commun. 2022;13(1):4864. doi: 10.1038/s41467-022-32465-z
  50. Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small joint organoids 3D bioprinting: construction strategy and application. Small. 2024;20(8):e2302506. doi: 10.1002/smll.202302506
  51. Daly AC, Prendergast ME, Hughes AJ, Burdick JA. Bioprinting for the biologist. Cell. 2021;184(1):18-32. doi: 10.1016/j.cell.2020.12.002
  52. Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue engineering. Theranostics. 2021;11(16):7948-7969. doi: 10.7150/thno.61621
  53. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi: 10.1016/j.biomaterials.2019.119536
  54. Bosmans C, Ginés Rodriguez N, Karperien M, et al. Towards single-cell bioprinting: micropatterning tools for organ-on-chip development. Trends Biotechnol. 2024;42(6):739-759. doi: 10.1016/j.tibtech.2023.11.014
  55. Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006
  56. Patrício SG, Sousa LR, Correia TR, et al. Freeform 3D printing using a continuous viscoelastic supporting matrix. Biofabrication. 2020;12(3):035017. doi: 10.1088/1758-5090/ab8bc3
  57. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084
  58. Lee H, Kim J, Choi Y, Cho DW. Application of gelatin bioinks and cell-printing technology to enhance cell delivery capability for 3D liver fibrosis-on-a-chip development. ACS Biomater Sci Eng. 2020;6(4):2469-2477. doi: 10.1021/acsbiomaterials.9b01735
  59. Rukavina P, Koch F, Wehrle M, et al. In vivo evaluation of bioprinted prevascularized bone tissue. Biotechnol Bioeng. 2020;117(12):3902-3911. doi: 10.1002/bit.27527
  60. Yvanoff C, Willaert RG. Development of bone cell microarrays in microfluidic chips for studying osteocyte-osteoblast communication under fluid flow mechanical loading. Biofabrication. 2022;14(2):025014. doi: 10.1088/1758-5090/ac516e
  61. Carou-Senra P, Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Inkjet printing of pharmaceuticals. Adv Mater. 2024;36(11):2309164. doi: 10.1002/adma.202309164
  62. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793-10833. doi: 10.1021/acs.chemrev.0c00008
  63. Castilho M, Levato R, Bernal PN, et al. Hydrogel-based bioinks for cell electrowriting of well-organized living structures with micrometer-scale resolution. Biomacromolecules. 2021;22(2):855-866. doi: 10.1021/acs.biomac.0c01577
  64. Hong H, Seo YB, Kim DY, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials. 2020;232:119679. doi: 10.1016/j.biomaterials.2019.119679
  65. Falandt M, Bernal PN, Dudaryeva O, et al. Spatial‐selective volumetric 4D printing and single‐photon grafting of biomolecules within centimeter‐scale hydrogels via tomographic manufacturing. Adv Mater Technol. 2023;8(15):2300026. doi: 10.1002/admt.202300026
  66. Größbacher G, Bartolf-Kopp M, Gergely C, et al. Volumetric printing across melt electrowritten scaffolds fabricates multi-material living constructs with tunable architecture and mechanics. Adv Mater. 2023;35(32):e2300756. doi: 10.1002/adma.202300756
  67. Maibohm C, Silvestre OF, Borme J, Sinou M, Heggarty K, Nieder JB. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. Sci Rep. 2020;10(1):8740. doi: 10.1038/s41598-020-64955-9
  68. Moldovan D, Choi J, Choo Y, Kim WS, Hwa Y. Laser-based three-dimensional manufacturing technologies for rechargeable batteries. Nano Converg. 2021;8(1):23. doi: 10.1186/s40580-021-00271-w
  69. Zhang J, Wehrle E, Rubert M, Müller R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. Int J Mol Sci. 2021;22(8):3971. doi: 10.3390/ijms22083971
  70. Ning L, Gil CJ, Hwang B, et al. Biomechanical factors in three-dimensional tissue bioprinting. Appl Phys Rev. 2020;7(4):041319. doi: 10.1063/5.0023206
  71. Mohabatpour F, Duan X, Yazdanpanah Z, et al. Bioprinting of alginate-carboxymethyl chitosan scaffolds for enamel tissue engineeringin vitro. Biofabrication. 2022;15(1): 015022. doi: 10.1088/1758-5090/acab35015022
  72. Sadeghianmaryan A, Naghieh S, Alizadeh Sardroud H, et al. Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering. Int J Biol Macromol. 2020;164:3179-3192. doi: 10.1016/j.ijbiomac.2020.08.180
  73. Kołodziejska M, Jankowska K, Klak M, Wszoła M. Chitosan as an underrated polymer in modern tissue engineering. Nanomaterials. 2021;11(11):3019. doi: 10.3390/nano11113019
  74. Abu-Jdayil B, Ghannam M, Alsayyed Ahmed K, Djama M. The effect of biopolymer chitosan on the rheology and stability of na-bentonite drilling mud. Polymers (Basel). 2021;13(19):3361. doi: 10.3390/polym13193361
  75. Al-Hajri S, Negash BM, Rahman MM, Haroun M, Al-Shami TM. Effect of silica nanoparticles on polymer adsorption reduction on marcellus shale. ACS Omega. 2021;6(44):29537-29546. doi: 10.1021/acsomega.1c03653
  76. Li Q, Li Y, Jin Z, Li Y, Chen Y, Zhou J. Viscoelasticity and solution stability of cyanoethylcellulose with different molecular weights in aqueous solution. Molecules. 2021;26(11):3201. doi: 10.3390/molecules26113201
  77. Li C, Zheng Z, Jia J, et al. Preparation and characterization of photocurable composite extracellular matrix-methacrylated hyaluronic acid bioink. J Mater Chem B. 2022;10(22):4242-4253. doi: 10.1039/d2tb00548d
  78. Zimmerling A, Yazdanpanah Z, Cooper DML, Johnston JD, Chen X. 3D printing PCL/nHA bone scaffolds: exploring the influence of material synthesis techniques. Biomater Res. 2021;25(1):3. doi: 10.1186/s40824-021-00204-y
  79. Pfau MR, Beltran FO, Woodard LN, et al. Evaluation of a self-fitting, shape memory polymer scaffold in a rabbit calvarial defect model. Acta Biomater. 2021;136: 233-242. doi: 10.1016/j.actbio.2021.09.041
  80. Fang Z, Xiao Y, Geng X, et al. Fabrication of heparinized small diameter TPU/PCL bi-layered artificial blood vessels and in vivo assessment in a rabbit carotid artery replacement model. Biomater Adv. 2022;133:112628. doi: 10.1016/j.msec.2021.112628
  81. Yang FT, Chen YM, Rwei SP. Influence of cross-linking and crystalline morphology on the shape-memory properties of PET/PEN/PCL copolyesters using trimesic acid and glycerol. Polymers (Basel). 2023;15(9):2082. doi: 10.3390/polym15092082
  82. Liu X, Song S, Huang J, et al. HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation. J Mater Chem B. 2020;8(28):6115-6127. doi: 10.1039/d0tb00616e
  83. Liang DS, Wen ZJ, Wang JH, et al. Legumain protease-sheddable PEGylated, tuftsin-modified nanoparticles for selective targeting to tumour-associated macrophages. J Drug Target. 2022;30(1):82-93. doi: 10.1080/1061186X.2021.1906886
  84. Xu X, Wang Z, Li M, et al. Reconstructed hierarchically structured keratin fibers with shape-memory features based on reversible secondary-structure transformation. Adv Mater. 2023;35(41):e2304725. doi: 10.1002/adma.202304725
  85. Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D printing for biomedical applications. Adv Mater. 2024;36(31):e2402301. doi: 10.1002/adma.202402301
  86. Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active materials for functional origami. Adv Mater. 2024;36(9):e2302066. doi: 10.1002/adma.202302066
  87. McCracken JM, Donovan BR, White TJ. Materials as machines. Adv Mater. 2020;32(20):e1906564. doi: 10.1002/adma.201906564
  88. Wang Z, Xiang L, Lin F, Tang Y, Cui W. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications. J Control Release. 2023;353:147-165. doi: 10.1016/j.jconrel.2022.11.035
  89. Juraski AC, Sharma S, Sparanese S, et al. 3D bioprinting for organ and organoid models and disease modeling. Expert Opin Drug Discov. 2023;18(9):1043-1059. doi: 10.1080/17460441.2023.2234280
  90. Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25(17):3707-3715. doi: 10.1016/j.biomaterials.2003.10.052
  91. Hafa L, Breideband L, Ramirez Posada L, et al. Light sheet-based laser patterning bioprinting produces long-term viable full-thickness skin constructs. Adv Mater. 2024;36(8):e2306258. doi: 10.1002/adma.202306258
  92. Sun H, Sun L, Ke X, et al. Prediction of clinical precision chemotherapy by patient-derived 3D bioprinting models of colorectal cancer and its liver metastases. Adv Sci (Weinh). 2024;11(2):e2304460. doi: 10.1002/advs.202304460
  93. Herzog J, Franke L, Lai Y, Gomez Rossi P, Sachtleben J, Weuster-Botz D. 3D bioprinting of microorganisms: principles and applications. Bioprocess Biosyst Eng. 2024;47(4):443-461. doi: 10.1007/s00449-023-02965-3
  94. Ansaf RB, Ziebart R, Gudapati H, et al. 3D bioprinting-a model for skin aging. Regen Biomater. 2023;10:rbad060. doi: 10.1093/rb/rbad060
  95. Homan KA, Gupta N, Kroll KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods. 2019;16(3):255-262. doi: 10.1038/s41592-019-0325-y
  96. Lee KK, McCauley HA, Broda TR, Kofron MJ, Wells JM, Hong CI. Human stomach-on-a-chip with luminal flow and peristaltic-like motility. Lab Chip. 2018;18(20):3079-3085. doi: 10.1039/C8LC00910D
  97. Fang G, Lu H, Al-Nakashli R, et al. Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication. 2021;14(1):015006. doi: 10.1088/1758-5090/ac2ef9
  98. Quintard C, Tubbs E, Jonsson G, et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat Commun. 2024;15(1):1452. doi: 10.1038/s41467-024-45710-4
  99. Lim J, Ching H, Yoon JK, Jeon NL, Kim Y. Microvascularized tumor organoids-on-chips: advancing preclinical drug screening with pathophysiological relevance. Nano Converg. 2021;8(1):12. doi: 10.1186/s40580-021-00261-y
  100. Song HHG, Lammers A, Sundaram S, et al. Transient support from fibroblasts is sufficient to drive functional vascularization in engineered tissues. Adv Funct Mater. 2020;30(48):2003777. doi: 10.1002/adfm.202003777
  101. Shin N, Kim Y, Ko J, et al. Vascularization of iNSC spheroid in a 3D spheroid-on-a-chip platform enhances neural maturation. Biotechnol Bioeng. 2022;119(2):566-574. doi: 10.1002/bit.27978
  102. Nashimoto Y, Hayashi T, Kunita I, et al. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr Biol (Camb). 2017;9(6):506-518. doi: 10.1039/c7ib00024c
  103. Glaser DE, Curtis MB, Sariano PA, et al. Organ-on-a-chip model of vascularized human bone marrow niches. Biomaterials. 2022;280:121245. doi: 10.1016/j.biomaterials.2021.121245
  104. Shaji M, Tamada A, Fujimoto K, Muguruma K, Karsten SL, Yokokawa R. Deciphering potential vascularization factors of on-chip co-cultured hiPSC-derived cerebral organoids. Lab Chip. 2024;24(4):680-696. doi: 10.1039/d3lc00930k
  105. Huang YH, Watanabe M, Yamashita T, Sudo R. Construction of highly vascularized hepatic spheroids of primary hepatocytes via pro-angiogenic strategy in vitro. Biofabrication. 2025;17(3):035001. doi: 10.1088/1758-5090/adc8d4
  106. Tronolone JJ, Mathur T, Chaftari CP, Jain A. A machine-learned microvasculature optimizes physiological insulin secretion in a vascularized pancreas-chip. FASEB J. 2022;36(S1):6103. doi: 10.1096/fasebj.2022.36.S1.R6103
  107. Weng KC, Kurokawa YK, Hajek BS, Paladin JA, Shirure VS, George SC. Human induced pluripotent stem-cardiac-endothelial-tumor-on-a-chip to assess anticancer efficacy and cardiotoxicity. Tissue Eng Part C Methods. 2020;26(1):44-55. doi: 10.1089/ten.TEC.2019.0248
  108. Seiler KM, Bajinting A, Alvarado DM, et al. Patient-derived small intestinal myofibroblasts direct perfused, physiologically responsive capillary development in a microfluidic Gut-on-a-Chip model. Sci Rep. 2020; 10(1):3842. doi: 10.1038/s41598-020-60672-5
  109. Pinho D, Santos D, Vila A, Carvalho S. Establishment of colorectal cancer organoids in microfluidic-based system. Micromachines (Basel). 2021;12(5):497. doi: 10.3390/mi12050497
  110. Rizzuti M, Melzi V, Brambilla L, et al. Shaping the neurovascular unit exploiting human brain organoids. Mol Neurobiol. 2024;61(9):6642-6657. doi: 10.1007/s12035-024-03998-9
  111. Gheibi P, Zeng S, Son KJ, et al. Microchamber cultures of bladder cancer: a platform for characterizing drug responsiveness and resistance in PDX and primary cancer cells. Sci Rep. 2017;7(1):12277. doi: 10.1038/s41598-017-12543-9
  112. Huang Y, Liu T, Huang Q, Wang Y. From organ-on-a-chip to human-on-a-chip: a review of research progress and latest applications. ACS Sens. 2024;9(7):3466-3488. doi: 10.1021/acssensors.4c00004
  113. Schneider O, Moruzzi A, Fuchs S, et al. Fusing spheroids to aligned μ-tissues in a Heart-on-Chip featuring oxygen sensing and electrical pacing capabilities. Mater Today Bio. 2022:15:100280. doi: 10.1101/2022.02.26.482011
  114. Yang C, Wu W, Yang 1†, et al. Controlled preparation of droplets for cell encapsulation by air-focused microfluidic bioprinting. Int J Bioprint. 2024;10(1):1102. doi: 10.36922/ijb.1102
  115. Chen L, Xiao Y, Wu Q, et al. Emulsion designer using microfluidic three-dimensional droplet printing in droplet. Small. 2021;17(39):e2102579. doi: 10.1002/smll.202102579
  116. Ouyang L, Armstrong JPK, Chen Q, Lin Y, Stevens MM. Void-free 3D bioprinting for in-situ endothelialization and microfluidic perfusion. Adv Funct Mater. 2020;30(26):1909009. doi: 10.1002/adfm.201909009
  117. Dornhof J, Zieger V, Kieninger J, et al. Bioprinting-based automated deposition of single cancer cell spheroids into oxygen sensor microelectrode wells. Lab Chip. 2022;22(22):4369-4381. doi: 10.1039/d2lc00705c
  118. Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45-59. doi: 10.1016/j.biomaterials.2016.09.003
  119. Silvani G, Basirun C, Wu H, et al. A 3D-bioprinted vascularized glioblastoma-on-a-chip for studying the impact of simulated microgravity as a novel pre-clinical approach in brain tumor therapy. Adv Ther. 2021;4(11): 2100106. doi: 10.1002/adtp.202100106
  120. Fritschen A, Lindner N, Scholpp S, et al. High-scale 3D-bioprinting platform for the automated production of vascularized organs-on-a-chip. Adv Healthc Mater. 2024;13(17):e2304028. doi: 10.1002/adhm.202304028
  121. Singh NK, Han W, Nam SA, et al. Three-dimensional cell-printing of advanced renal tubular tissue analogue. Biomaterials. 2020;232:119734. doi: 10.1016/j.biomaterials.2019.119734
  122. Serex L, Sharma K, Rizov V, Bertsch A, McKinney JD, Renaud P. Microfluidic-assisted bioprinting of tissues and organoids at high cell concentrations. Biofabrication. 2021;13(2):025006. doi: 10.1088/1758-5090/abca80
  123. Highley CB, Song KH, Daly AC, Burdick JA. Jammed microgel inks for 3D printing applications. Adv Sci (Weinh). 2019;6(1):1801076. doi: 10.1002/advs.201801076
  124. Maharjan S, Ma C, Singh B, et al. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev. 2024;208:115237. doi: 10.1016/j.addr.2024.115237
  125. Hu Y, Zhu T, Cui H, Cui H. Integrating 3D bioprinting and organoids to better recapitulate the complexity of cellular microenvironments for tissue engineering. Adv Healthc Mater. 2025;14(3):e2403762. doi: 10.1002/adhm.202403762
  126. Han Y, King M, Tikhomirov E, et al. Towards 3D bioprinted spinal cord organoids. Int J Mol Sci. 2022;23(10):5788. doi: 10.3390/ijms23105788
  127. Lawlor KT, Vanslambrouck JM, Higgins JW, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2021;20(2):260-271. doi: 10.1038/s41563-020-00853-9
  128. Zhang T, Sheng S, Cai W, et al. 3-D bioprinted human-derived skin organoids accelerate full-thickness skin defects repair. Bioact Mater. 2024;42:257-269. doi: 10.1016/j.bioactmat.2024.08.036
  129. Zhang Y, Li D, Liu Y, et al. 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage–bone interface. Innovation (Camb). 2024;5(1):100542. doi: 10.1016/j.xinn.2023.100542
  130. Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171:57-71. doi: 10.1016/j.biomaterials.2018.04.034
  131. Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat Mater. 2021;20(1):22-29. doi: 10.1038/s41563-020-00803-5
  132. Rezakhani S, Gjorevski N, Lutolf MP. Extracellular matrix requirements for gastrointestinal organoid cultures. Biomaterials. 2021;276:121020. doi: 10.1016/j.biomaterials.2021.121020
  133. Clark CC, Yoo KM, Sivakumar H, et al. Immersion bioprinting of hyaluronan and collagen bioink-supported 3D patient-derived brain tumor organoids. Biomed Mater. 2022;18(1):015014. doi: 10.1088/1748-605X/aca05d
  134. Wen K, Gorbushina AA, Schwibbert K, Bell J. Microfluidic platform with precisely controlled hydrodynamic parameters and integrated features for generation of microvortices to accurately form and monitor biofilms in flow. ACS Biomater Sci Eng. 2024;10(7):4626-4634. doi: 10.1021/acsbiomaterials.4c00101
  135. Hu T, Cui X, Zhu M, et al. 3D-printable supramolecular hydrogels with shear-thinning property: fabricating strength tunable bioink via dual crosslinking. Bioact Mater. 2020;5(4):808-818. doi: 10.1016/j.bioactmat.2020.06.001
  136. Luo Z, Zhang H, Chen R, et al. Digital light processing 3D printing for microfluidic chips with enhanced resolution via dosing- and zoning-controlled vat photopolymerization. Microsyst Nanoeng. 2023;9:103. doi: 10.1038/s41378-023-00542-y
  137. Carvalho MR, Caballero D, Kundu SC, Reis RL, Oliveira JM. Biomimetic and soft lab-on-a-chip platform based on enzymatic-crosslinked silk fibroin hydrogel for 3D cell co-culture. Biomed Mater. 2024;19(6):065032. doi: 10.1088/1748-605X/ad8829
  138. Reineke B, Paulus I, Löffelsend S, et al. On-chip fabrication and in-flow 3D-printing of microgel constructs: from chip to scaffold materials in one integral process. Biofabrication. 2024;16(2):025038. doi: 10.1088/1758-5090/ad3318
  139. Fournié V, Venzac B, Trevisiol E, et al. A microfluidics-assisted photopolymerization method for high-resolution multimaterial 3D printing. Addit Manuf. 2023;72:103629. doi: 10.1016/j.addma.2023.103629
  140. Böcherer D, Li Y, Rein C, Franco Corredor S, Hou P, Helmer D. High-resolution 3D printing of dual-curing thiol-ene/ epoxy system for fabrication of microfluidic devices for bioassays. Adv Funct Mater. 2024;34(29):2401516. doi: 10.1002/adfm.202401516
  141. Liu P, Fu L, Song Z, et al. Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells. Analyst. 2021;146(17):5255-5263. doi: 10.1039/d1an00927c
  142. Cantoni F, Barbe L, Pohlit H, Tenje M. A perfusable multi-hydrogel vasculature on-chip engineered by 2-photon 3D printing and scaffold molding to improve microfabrication fidelity in hydrogels. Adv Mater Technol. 2024;9(4):2300718. doi: 10.1002/admt.202300718
  143. Khan I, Prabhakar A, Delepine C, Tsang H, Pham V, Sur M. A low-cost 3D printed microfluidic bioreactor and imaging chamber for live-organoid imaging. Biomicrofluidics. 2021;15(2):024105. doi: 10.1063/5.0041027
  144. Fiorotto R, Mariotti V, Taleb SA, et al. Cell-matrix interactions control biliary organoid polarity, architecture, and differentiation. Hepatol Commun. 2023;7(4):e0094. doi: 10.1097/HC9.0000000000000094
  145. Becker ML, Burdick JA. Introduction: polymeric biomaterials. Chem Rev. 2021;121(18):10789-10791. doi: 10.1021/acs.chemrev.1c00354
  146. Yang X, Jiang T, Liu L, et al. Observing single cells in whole organs with optical imaging. J Innov Opt Health Sci. 2023;16(01):2330002.doi: 10.1142/S1793545823300021
  147. Velicky P, Miguel E, Michalska JM, et al. Dense 4D nanoscale reconstruction of living brain tissue. Nat Methods. 2023;20(8):1256-1265 doi: 10.1016/j.compositesa.2021.106799
  148. Bernal PN, Bouwmeester M, Madrid-Wolff J, et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv Mater. 2022;34(15):e2110054. doi: 10.1002/adma.202110054
  149. Yu K, Zhang X, Sun Y, et al. Printability during projection-based 3D bioprinting. Bioact Mater. 2022;11:254-267. doi: 10.1016/j.bioactmat.2021.09.021
  150. Budi NYP, Lai WY, Huang YH, Ho HN. 3D organoid cultivation improves the maturation and functional differentiation of cholangiocytes from human pluripotent stem cells. Front Cell Dev Biol. 2024;12:1361084. doi: 10.3389/fcell.2024.1361084
  151. Rnjak-Kovacina J, Choi YS, Lim KS. Biofabrication applications. Adv Healthc Mater. 2022;11(24):e2202934. doi: 10.1002/adhm.202202934
  152. Wang Y, Kaplan D. Special issue: leaders in biomedical engineering. ACS Biomater Sci Eng. 2020;6(5): 2495-2497. doi: 10.1021/acsbiomaterials.0c00606
  153. Cabral M, Cheng K, Zhu D. Three-dimensional bioprinting of organoids: past, present, and prospective. Tissue Eng Part A. 2024;30(11-12):314-321. doi: 10.1089/ten.TEA.2023.0209
  154. Weltin A, Hammer S, Noor F, Kaminski Y, Kieninger J, Urban GA. Accessing 3D microtissue metabolism: lactate and oxygen monitoring in hepatocyte spheroids. Biosens Bioelectron. 2017;87:941-948. doi: 10.1016/j.bios.2016.07.094
  155. Esene JE, Burningham AJ, Tahir A, Nordin GP, Woolley AT. 3D printed microfluidic devices for integrated solid-phase extraction and microchip electrophoresis of preterm birth biomarkers. Anal Chim Acta. 2024;1296: 342338. doi: 10.1016/j.aca.2024.342338
  156. Kluwe F, Michelet R, Mueller-Schoell A, et al. Perspectives on model-informed precision dosing in the digital health era: challenges, opportunities, and recommendations. Clin Pharmacol Ther. 2021;109(1):29-36. doi: 10.1002/cpt.2049
  157. Murphy JF, Lavelle M, Asciak L, et al. Biofabrication and biomanufacturing in Ireland and the UK. Biodes Manuf. 2024;7(6):825-856. doi: 10.1007/s42242-024-00316-z
  158. Rahimifard M, Bagheri Z, Hadjighassem M, et al. Investigation of anti-cancer effects of new pyrazino[1,2-a] benzimidazole derivatives on human glioblastoma cells through 2D in vitro model and 3D-printed microfluidic device. Life Sci. 2022;302:120505. doi: 10.1016/j.lfs.2022.120505
  159. Herland A, Maoz BM, Das D, et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat Biomed Eng. 2020;4(4):421-436. doi: 10.1038/s41551-019-0498-9
  160. Vurat MT, Şeker Ş, Lalegül-Ülker Ö, Parmaksiz M, Elçin AE, Elçin YM. Development of a multicellular 3D-bioprinted microtissue model of human periodontal ligament-alveolar bone biointerface: towards a pre-clinical model of periodontal diseases and personalized periodontal tissue engineering. Genes Dis. 2022;9(4):1008-1023. doi: 10.1016/j.gendis.2020.11.011
  161. Tebon PJ, Wang B, Markowitz AL, et al. Drug screening at single-organoid resolution via bioprinting and interferometry. Nat Commun. 2023;14(1):3168. doi: 10.1038/s41467-023-38832-8
  162. Miao T, Chen K, Wei X, et al. High-throughput fabrication of cell spheroids with 3D acoustic assembly devices. Int J Bioprint. 2023;9(4):733. doi: 10.18063/ijb.733
  163. Cui K, Wang Y, Zhu Y, et al. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. Microsyst Nanoeng. 2020;6(1):49. doi: 10.1038/s41378-020-0165-z
  164. Yin Y, Vázquez-Rosado EJ, Wu D, et al. Microfluidic coaxial 3D bioprinting of cell-laden microfibers and microtubes for salivary gland tissue engineering. Biomater Adv. 2023;154:213588. doi: 10.1016/j.bioadv.2023.213588
  165. Choi YM, Lee H, Ann M, Song M, Rheey J, Jang J. 3D bioprinted vascularized lung cancer organoid models with underlying disease capable of more precise drug evaluation. Biofabrication. 2023;15(3):034104. doi: 10.1088/1758-5090/acd95f
  166. Huang J, Xu Z, Jiao J, et al. Microfluidic intestinal organoid-on-a-chip uncovers therapeutic targets by recapitulating oxygen dynamics of intestinal IR injury. Bioact Mater. 2023;30:1-14. doi: 10.1016/j.bioactmat.2023.07.001
  167. Zou Z, Lin Z, Wu C, et al. Micro‐engineered organoid‐on‐a‐chip based on mesenchymal stromal cells to predict immunotherapy responses of HCC patients. Adv Sci. 2023;10(27):2302640. doi: 10.1002/advs.202302640
  168. Flores-Torres S, Dimitriou NM, Pardo LA, et al. Bioprinted multicomponent hydrogel co-culture tumor-immune model for assessing and simulating tumor-infiltrated lymphocyte migration and functional activation. ACS Appl Mater Interfaces. 2023;15(28):33250-33262. doi: 10.1021/acsami.3c02995
  169. Alrashoudi AA, Albalawi HI, Aldoukhi AH, et al. Fabrication of a lateral flow assay for rapid in-field detection of covid-19 antibodies using additive manufacturing printing technologies. IJB. 2024;7(4):399. doi: 10.18063/ijb.v7i4.399
  170. Ching T, Vasudevan J, Chang SY, et al. Biomimetic vasculatures by 3D-printed porous molds. Small. 2022;18(39):e2203426. doi: 10.1002/smll.202203426
  171. Nishijima T, Okuyama K, Shibata S, et al. Novel artificial nerve transplantation of human iPSC-derived neurite bundles enhanced nerve regeneration after peripheral nerve injury. Inflamm Regener. 2024;44(1):6. doi: 10.1186/s41232-024-00319-4
  172. Xie C, Liang R, Ye J, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials. 2022;288:121741. doi: 10.1016/j.biomaterials.2022.121741
  173. Lu Z, Miao X, Song Q, et al. Detection of lineage-reprogramming efficiency of tumor cells in a 3D-printed liver-on-a-chip model. Theranostics. 2023;13(14):4905-4918. doi: 10.7150/thno.86921
  174. Bues J, Biočanin M, Pezoldt J, et al. Deterministic scRNA-seq captures variation in intestinal crypt and organoid composition. Nat Methods. 2022;19(3):323-330. doi: 10.1038/s41592-021-01391-1
  175. Qazi TH, Blatchley MR, Davidson MD, et al. Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell. 2022;29(5):678-691. doi: 10.1016/j.stem.2022.03.013
  176. Daly AC, Davidson MD, Burdick JA. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun. 2021;12(1):753. doi: 10.1038/s41467-021-21029-2
  177. Javanmardi E, Maresova P, Xie N, Mierzwiak R. Exploring business models for managing uncertainty in healthcare, medical devices, and biotechnology industries. Heliyon. 2024;10(4):e25962. doi: 10.1016/j.heliyon.2024.e25962
  178. Zushin PJH, Mukherjee S, Wu JC. FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J Clin Invest. 2023;133(21):e175824. doi: 10.1172/JCI175824
  179. Shishkina LN, Mazurkov OY, Bormotov NI, et al. Safety and pharmacokinetics of the substance of the anti-smallpox drug NIOCH-14 after oral administration to laboratory animals. Viruses. 2023;15(1):205. doi: 10.3390/v15010205
  180. Shang L, Zhao Y, Cui W. Regenerative medicine entering a new era. Small. 2022;18(36):e2204625. doi: 10.1002/smll.202204625
  181. Boccardi M, Gold M, Mahant V, Marincola FM, Gunn A. Why should academia care about the Target Product Profile? J Transl Med. 2024;22(1):716. doi: 10.1186/s12967-024-05520-0
  182. Fu J, Gao Q, Li S. Application of intelligent medical sensing technology. Biosensors. 2023;13(8):812. doi: 10.3390/bios13080812
  183. Lee ED, Aurand ER, Friedman DC, Engineering Biology Research Consortium Microbiomes Roadmapping Working Group. Engineering microbiomes-looking ahead. ACS Synth Biol. 2020;9(12):3181-3183. doi: 10.1021/acssynbio.0c00558
  184. Xing Y, Zhang MS, Xiao JH, Liu RM. Galangin induces the osteogenic differentiation of human amniotic mesenchymal stem cells via the JAK2/STAT3 signaling pathway. Eur J Pharmacol. 2022;935:175326. doi: 10.1016/j.ejphar.2022.175326
  185. Cai Z, Zhu M, Xu L, et al. Directed differentiation of human induced pluripotent stem cells to heart valve cells. Circulation. 2024;149(18):1435-1456. doi: 10.1161/CIRCULATIONAHA.123.065143
  186. Wang Y, Liu X, Xie B, Yuan H, Zhang Y, Zhu J. The NOTCH1- dependent HIF1α/VGLL4/IRF2BP2 oxygen sensing pathway triggers erythropoiesis terminal differentiation. Redox Biol. 2020;28:101313. doi: 10.1016/j.redox.2019.101313
  187. De Belly H, Paluch EK, Chalut KJ. Interplay between mechanics and signalling in regulating cell fate. Nat Rev Mol Cell Biol. 2022;23(7):465-480. doi: 10.1038/s41580-022-00472-z
  188. Zhou Z, Pang Y, Ji J, et al. Harnessing 3D in vitro systems to model immune responses to solid tumours: a step towards improving and creating personalized immunotherapies. Nat Rev Immunol. 2024;24(1):18-32. doi: 10.1038/s41577-023-00896-4.
  189. Nikolaev M, Mitrofanova O, Broguiere N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature. 2020;585(7826):574-578. doi: 10.1038/s41586-020-2724-8
  190. Salmon I, Grebenyuk S, Abdel Fattah AR, et al. Engineering neurovascular organoids with 3D printed microfluidic chips. Lab Chip. 2022;22(8):1615-1629. doi: 10.1039/d1lc00535a
  191. Yi SA, Zhang Y, Rathnam C, Pongkulapa T, Lee K. Bioengineering approaches for the advanced organoid research. Adv Mater. 2021;33(45):2007949. doi: 10.1002/adma.202007949
  192. Jin H, Xue Z, Liu J, Ma B, Yang J, Lei L. Advancing organoid engineering for tissue regeneration and biofunctional reconstruction. Biomater Res. 2024;28:0016. doi: 10.34133/bmr.0016
  193. Chethikkattuveli Salih AR, Hyun K, Asif A, et al. Extracellular matrix optimization for enhanced physiological relevance in hepatic tissue-chips. Polymers (Basel). 2021;13(17):3016. doi: 10.3390/polym13173016
  194. Bhar B, Das E, Manikumar K, Mandal BB. 3D bioprinted human skin model recapitulating native-like tissue maturation and immunocompetence as an advanced platform for skin sensitization assessment. Adv Healthc Mater. 2024;13(15):e2303312. doi: 10.1002/adhm.202303312. Epub 2024 Mar 26. PMID: 38478847
  195. Karwasra R, Sharma S, Sharma I, Shahid N, Umar T. Diabetology and nanotechnology: a compelling combination. Recent Pat Nanotechnol. 2025;19(1):4-16. doi: 10.2174/0118722105253055231016155618
  196. Joshi P, Nascimento HSD, Kang SY, et al. Dynamic culture of bioprinted liver tumor spheroids in a pillar/perfusion plate for predictive screening of anticancer drugs. Biotechnol Bioeng. 2025;122(4):995-1009. doi: 10.1002/bit.28924
  197. Borriello M, Tarabella G, D’Angelo P, et al. Lab on a chip device for diagnostic evaluation and management in chronic renal disease: a change promoting approach in the patients’ follow up. Biosensors. 2023;13(3):373. doi: 10.3390/bios13030373
  198. Gao X. Frontiers in biomedical engineering. Adv Funct Mater. 2020;30: 2005265. doi: 10.1002/adfm.202005265
  199. Khodaverdi K, Naghib SM, Mozafari MR, Rahmanian M. Chitosan/hydroxyapatite hydrogels for localized drug delivery and tissue engineering: a review. Carbohydr Polym Technol Appl. 2025;9:100640. doi: 10.1016/j.carpta.2024.100640
  200. Marcos LF, Wilson SL, Roach P. Tissue engineering of the retina: from organoids to microfluidic chips. J Tissue Eng. 2021;12:20417314211059876. doi: 10.1177/20417314211059876
  201. Liu X, Sun A, Brodský J, et al. Microfluidics chips fabrication techniques comparison. Sci Rep. 2024;14(1):28793. doi: 10.1038/s41598-024-80332-2
  202. Duanmu L, Yu Y, Meng X. Microdroplet PCR in microfluidic chip based on constant pressure regulation. Micromachines (Basel). 2023;14(6):1257. doi: 10.3390/mi14061257
  203. Gu Y, Zhang W, Wu X, Zhang Y, Xu K, Su J. Organoid assessment technologies. Clin Transl Med. 2023;13(12):e1499. doi: 10.1002/ctm2.1499
  204. Baptista LS, Porrini C, Kronemberger GS, Kelly DJ, Perrault CM. 3D organ-on-a-chip: the convergence of microphysiological systems and organoids. Front Cell Dev Biol. 2022;10:1043117. doi: 10.3389/fcell.2022.1043117
  205. Lee J, Hong J, Kim W, Kim GH. Bone-derived dECM/ alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Carbohydr Polym. 2020;250:116914. doi: 10.1016/j.carbpol.2020.116914
  206. Ning L, Guillemot A, Zhao J, Kipouros G, Chen X. Influence of flow behavior of alginate-cell suspensions on cell viability and proliferation. Tissue Eng Part C Methods. 2016;22(7):652-662. doi: 10.1089/ten.TEC.2016.0011
  207. Coşkun S, Akbulut SO, Sarıkaya B, Çakmak S, Gümüşderelioğlu M. Formulation of chitosan and chitosan-nanoHAp bioinks and investigation of printability with optimized bioprinting parameters. Int J Biol Macromol. 2022;222(Pt A):1453-1464. doi: 10.1016/j.ijbiomac.2022.09.078
  208. Dravid A, McCaughey-Chapman A, Raos B, O’Carroll SJ, Connor B, Svirskis D. Development of agarose– gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Biomed Mater. 2022;17(5):055001. doi: 10.1088/1748-605X/ac759f
  209. Amirrah IN, Lokanathan Y, Zulkiflee I, Wee MFMR, Motta A, Fauzi MB. A comprehensive review on collagen type I development of biomaterials for tissue engineering: from biosynthesis to bioscaffold. Biomedicines. 2022;10(9):2307. doi: 10.3390/biomedicines10092307
  210. Netti F, Aviv M, Dan Y, Rudnick-Glick S, Halperin- Sternfeld M, Adler-Abramovich L. Stabilizing gelatin-based bioinks under physiological conditions by incorporation of ethylene-glycol-conjugated Fmoc-FF peptides. Nanoscale. 2022;14(23):8525-8533. doi: 10.1039/d1nr08206j
  211. Wu D, Zheng K, Yin W, et al. Enhanced osteochondral regeneration with a 3D-Printed biomimetic scaffold featuring a calcified interfacial layer. Bioactive Mater. 2024;36:317-329. doi: 10.1016/j.bioactmat.2024.03.004
  212. Yi K, Li Q, Lian X, Wang Y, Tang Z. Utilizing 3D bioprinted platelet-rich fibrin-based materials to promote the regeneration of oral soft tissue. Regen Biomater. 2022;9:rbac021. doi: 10.1093/rb/rbac021
  213. Laki K. The polymerization of proteins: the action of thrombin on fibrinogen. Arch Biochem Biophys. 2022;726:109244. doi: 10.1016/j.abb.2022.109244
  214. Al Kayal T, Buscemi M, Cavallo A, Foffa I, Soldani G, Losi P. Plasminogen-loaded fibrin scaffold as drug delivery system for wound healing applications. Pharmaceutics. 2022;14(2):251. doi: 10.3390/pharmaceutics14020251
  215. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioact Mater. 2022;10:15-31. doi: 10.1016/j.bioactmat.2021.09.014
  216. Ning L, Yang B, Mohabatpour F, et al. Process-induced cell damage: pneumatic versus screw-driven bioprinting. Biofabrication. 2020;12(2):025011. doi: 10.1088/1758-5090/ab5f53
  217. Dai M, Belaïdi JP, Fleury G, et al. Elastin-like polypeptide-based bioink: a promising alternative for 3D bioprinting. Biomacromolecules. 2021;22(12):4956-4966. doi: 10.1021/acs.biomac.1c00861
  218. Ding X, Zhao H, Li Y, et al. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering. Adv Drug Deliv Rev. 2020;160:78-104. doi: 10.1016/j.addr.2020.10.005
  219. Jian H, Wang M, Dong Q, et al. Dipeptide self-assembled hydrogels with tunable mechanical properties and degradability for 3D bioprinting. ACS Appl Mater Interfaces. 2019;11(50):46419-46426. doi: 10.1021/acsami.9b13905
  220. Monfared M, Mawad D, Rnjak-Kovacina J, Stenzel MH. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications. J Mater Chem B. 2021;9(31):6163-6175. doi: 10.1039/d1tb00624j
  221. Bandyopadhyay A, Mandal BB, Bhardwaj N. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. J Biomed Mater Res A. 2022;110(4):884-898. doi: 10.1002/jbm.a.37336
  222. de Castro KC, Coco JC, Dos Santos ÉM, et al. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: a 10-year overview. J Control Release. 2023;353:802-822. doi: 10.1016/j.jconrel.2022.12.017
  223. Serafin A, Murphy C, Rubio MC, Collins MN. Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;122:111927. doi: 10.1016/j.msec.2021.111927
  224. Monavari M, Homaeigohar S, Fuentes-Chandía M, et al. 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO2-CaO nanoparticles for bone tissue engineering. Mater Sci Eng C 2021;131:112470. doi: 10.1016/j.msec.2021.112470
  225. McClements DJ. Composite hydrogels assembled from food-grade biopolymers: fabrication, properties, and applications. Adv Colloid Interface Sci. 2024;332:103278. doi: 10.1016/j.cis.2024.103278

 



 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing