AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025120092
RESEARCH ARTICLE

Bionic trabecular titanium alloy scaffolds produced by selective laser melting enhancement of bone and vascular regeneration through Schwann cell-mediated mechanotransduction

Jiqing Wang1 Aofei Xu1 Weiying Zhang1 Xingda Huang1 Xuezhe Han1 Shuming Li1 Dezhi Wang2* Jiantao Liu1*
Show Less
1 Department of Orthopedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
2 Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
Received: 17 March 2025 | Accepted: 2 May 2025 | Published online: 2 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Using selective laser melting, a metal three-dimensional (3D) printing technique, we developed bionic trabecular titanium alloy scaffolds with a micro–nano composite porous structure to address the limitations of traditional titanium implants. By integrating bionic design principles with advanced metal 3D printing strategies, these scaffolds mimic the trabecular network of cancellous bone, reducing elastic modulus (to ~4 GPa) and mitigating stress shielding. The bioprinted scaffolds exhibited enhanced surface properties that promoted Schwann cell (SC) adhesion, elongation, and spindle-like morphology, forming cellular networks along the microporous architecture. In contrast, SCs on solid titanium scaffolds displayed a flattened morphology with limited functionality. Transcriptomic analysis revealed that the scaffold’s micro–nano structure regulated SC behavior via the focal adhesion kinase-mitogen-activated protein kinase mechanotransduction pathway, enhancing the secretion of pro-osteogenic (e.g., platelet-derived growth factor with two A subunits) and pro-angiogenic (e.g., vascular endothelial growth factor) factors. Trabecular-like scaffold-conditioned medium significantly accelerated bone marrow mesenchymal stem cell proliferation, osteogenic differentiation, and endothelial cell angiogenesis, achieving a 36% higher healing rate compared to controls. While in vivo validation remains essential, our in vitro model isolates SC-driven mechanisms, avoiding systemic confounders. This study highlights the potential of 3D bioprinted scaffolds for personalized bone defect repair, offering a biomechanically and biologically optimized solution to enhance osseointegration.

 

 

Graphical abstract
Keywords
3D printing
Bone regeneration
Mechanotransduction
Schwann cells
Selective laser melting
Titanium alloy
Funding
This work was supported by grants from the ShaanxiNatural Science Basic Research Foundation (No. 2024JC-YBQN-0964), the Xi’an Science and Technology Plan Project (No. 22YXYJ0032), the Shaanxi Health and Family Planning Commission (No. 2017SF-087, 2021SF- 170, and 2022E001), and the Xi’an Central Hospital Project (No. 2023ZD002).
Conflict of interest
The authors declare no competing financial or non-financial interests.
References
  1. Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM, Cooper C. The epidemiology of osteoporosis. Br Med Bull. 2020;133(1):105-117. doi: 10.1093/bmb/ldaa005
  2. Beird HC, Bielack SS, Flanagan AM, et al. Osteosarcoma. Nat Rev Dis Primers. 2022;8(1):77. doi: 10.1038/s41572-022-00409-y
  3. Shi Y, Liu J, Du M, et al. Customized barrier membrane (titanium alloy, poly ether-ether ketone and unsintered hydroxyapatite/poly-l-lactide) for guided bone regeneration. Front Bioeng Biotechnol. 2022;10:916967. doi: 10.3389/fbioe.2022.916967
  4. Rout PK, Roy S, Ganguly S, Rathore DK. A review on properties of magnesium-based alloys for biomedical applications. Biomed Phys Eng Express. 2022;8(4):042002. doi: 10.1088/2057-1976/ac6d81
  5. Jiang P, Zhang Y, Hu R, et al. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater. 2023;27:15-57. doi: 10.1016/j.bioactmat.2023.03.006
  6. Li J, Zheng Y, Yu Z, et al. Surface-modified titanium and titanium-based alloys for improved osteogenesis: a critical review. Heliyon. 2024;10(1):e23779. doi: 10.1016/j.heliyon.2023.e23779
  7. Liu B, Wang H, Zhang N, Zhang M, Cheng CK. Femoral stems with porous lattice structures: a review. Front Bioeng Biotechnol. 2021;9:772539. doi: 10.3389/fbioe.2021.772539
  8. Zhang B, Li J, He L, Huang H, Weng J. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration. Acta Biomater. 2020;114:431-448. doi: 10.1016/j.actbio.2020.07.024
  9. Ziaie B, Velay X, Saleem W. Advanced porous hip implants: a comprehensive review. Heliyon. 2024;10(18): e37818. doi: 10.1016/j.heliyon.2024.e37818
  10. Hou C, An J, Zhao D, et al. Surface modification techniques to produce micro/nano-scale topographies on Ti-based implant surfaces for improved osseointegration. Front Bioeng Biotechnol. 2022;10:835008. doi: 10.3389/fbioe.2022.835008
  11. Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696-711. doi: 10.1038/s41580-020-00279-w
  12. Damiati LA, El Soury M. Bone-nerve crosstalk: a new state for neuralizing bone tissue engineering–a mini review. Front Med (Lausanne). 2024;11:1386683. doi: 10.3389/fmed.2024.1386683
  13. Yuan Q, Liao D, Yang X, et al. Effect of implant surface microtopography on proliferation, neurotrophin secretion, and gene expression of Schwann cells. J Biomed Mater Res A. 2010;93(1):381-8. doi: 10.1002/jbm.a.32548
  14. Wang YY, Gong P, Zhang J. Effects of different implant surface properties on the biological behavior of Schwann cells. Hua Xi Kou Qiang Yi Xue Za Zhi. 2021;39(3): 279-285. doi: 10.7518/hxkq.2021.03.006
  15. Jing Z, Zhang T, Xiu P, et al. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review. Biomed Mater. 2020;15(5):052003. doi: 10.1088/1748-605X/ab9078
  16. Fan L, Chen S, Yang M, Liu Y, Liu J. Metallic materials for bone repair. Adv Healthc Mater. 2024;13(3):e2302132. doi: 10.1002/adhm.202302132
  17. Gao X, Zhao Y, Wang M, Liu Z, Liu C. Parametric design of hip implant with gradient porous structure. Front Bioeng Biotechnol. 2022;10:850184. doi: 10.3389/fbioe.2022.850184
  18. Arias-González F, Rodríguez-Contreras A, Punset M, et al. Laser-Deposited beta type Ti-42Nb alloy with anisotropic mechanical properties for pioneering biomedical implants with a very low elastic modulus. Materials (Basel). 2022;15(20):7172. doi: 10.3390/ma15207172
  19. Yang S, Jiang W, Ma X, et al. Nanoscale morphologies on the surface of 3D-printed titanium implants for improved osseointegration: a systematic review of the literature. Int J Nanomedicine. 2023;18:4171-4191. doi: 10.2147/ijn.S409033
  20. Gu Y, Sun Y, Shujaat S, Braem A, Politis C, Jacobs R. 3D-printed porous Ti6Al4V scaffolds for long bone repair in animal models: a systematic review. J Orthop Surg Res. 2022;17(1):68. doi: 10.1186/s13018-022-02960-6
  21. Shao H, Zhang Q, Sun M, et al. Effects of hydroxyapatite-coated porous titanium scaffolds functionalized by exosomes on the regeneration and repair of irregular bone. Front Bioeng Biotechnol. 2023;11:1283811. doi: 10.3389/fbioe.2023.1283811
  22. Niinomi M, Liu Y, Nakai M, Liu H, Li H. Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regen Biomater. 2016;3(3):173-85. doi: 10.1093/rb/rbw016
  23. Dai Y, Lu T, Li L, et al. Electrospun composite PLLA-PPSB nanofiber nerve conduits for peripheral nerve defects repair and regeneration. Adv Healthc Mater. 2024; 13(10):e2303539. doi: 10.1002/adhm.202303539
  24. Li X, He N, Li X, et al. Graphdiyne-loaded polycaprolactone nanofiber scaffold for peripheral nerve regeneration. J Colloid Interface Sci. 2023;646:399-412. doi: 10.1016/j.jcis.2023.05.054
  25. da Silva VA, Bobotis BC, Correia FF, et al. The impact of biomaterial surface properties on engineering neural tissue for spinal cord regeneration. Int J Mol Sci. 2023; 24(17):13642. doi: 10.3390/ijms241713642
  26. Wang Z, Zhao Y, Bai H, et al. Bioactive prosthesis interface compositing variable-stiffness hydrogels regulates stem cells fates to facilitate osseointegration through mechanotransduction. Int J Biol Macromol. 2024; 259(Pt 2):129073. doi: 10.1016/j.ijbiomac.2023.129073
  27. Park EJ, Truong VL, Jeong WS, Min WK. Brain-derived neurotrophic factor (BDNF) enhances osteogenesis and may improve bone microarchitecture in an ovariectomized rat model. Cells. 2024;13(6):518. doi: 10.3390/cells13060518
  28. Fitzpatrick V, Martín-Moldes Z, Deck A, et al. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials. 2021;276:120995. doi: 10.1016/j.biomaterials.2021.120995
  29. Wu Z, Pu P, Su Z, Zhang X, Nie L, Chang Y. Schwann cell-derived exosomes promote bone regeneration and repair by enhancing the biological activity of porous Ti6Al4V scaffolds. Biochem Biophys Res Commun. 2020;531(4):559-565. doi: 10.1016/j.bbrc.2020.07.094
  30. Wei X, Zhou W, Tang Z, et al. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis. Bioact Mater. 2023;20:16-28. doi: 10.1016/j.bioactmat.2022.05.011
  31. Choudhary R, Bulygina I, Lvov V, et al. Mechanical, structural, and biological characteristics of polylactide/ wollastonite 3D printed scaffolds. Polymers (Basel). 2022;14(19):3932. doi: 10.3390/polym14193932
  32. Ait Said H, Mabroum H, Lahcini M, et al. Manufacturing methods, properties, and potential applications in bone tissue regeneration of hydroxyapatite-chitosan biocomposites: a review. Int J Biol Macromol. 2023; 243:125150. doi: 10.1016/j.ijbiomac.2023.125150
  33. Zhang Z, Lv Y, Harati J, et al. Submicron-grooved films modulate the directional alignment and biological function of schwann cells. J Funct Biomater. 2023;14(5):238. doi: 10.3390/jfb14050238
  34. Kong D, Wang Q, Huang J, et al. Design and manufacturing of biomimetic scaffolds for bone repair inspired by bone trabeculae. Comput Biol Med. 2023;165:107369. doi: 10.1016/j.compbiomed.2023.107369
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing