Evaluation of 3D-printed silicone phantoms with controllable MRI signal properties

3D printing technology is widely used for creating magnetic resonance imaging (MRI) phantoms, mimicking tissue, and contrast levels found in real patients. Traditionally, 3D-printed structures were filled with gels containing contrast agents. Recently, studies have shown that some 3D-printed materials can be directly used to create MRI phantoms. However, each material typically produces a unique MRI signal, requiring specific materials for desired contrasts, or a single material can produce various contrasts, but these often do not match the properties of different soft tissues. In this study, we aimed to investigate MRI signal properties of 3D-printed phantoms made of silicone in MRI. We determined the MRI relaxation times of extrusion silicone 3D-printed phantoms from different materials with different infill densities and correlated them with the reference values in soft tissues. We also evaluated the performance of our approach using realistic tumor phantoms. A reproducibility analysis as well as longitudinal stability analysis was also performed. The experimental results showed that the 3D-printed silicone phantoms could achieve MRI signal properties with good correspondence to a range of soft tissues and organs (T1 relaxation time range from 850.8 to 1113.3 ms and T2 relaxation time range from 22.6 to 140.7 ms). Our results demonstrated good stability of the T1 and T2 values over time and also good agreement for the replicas compared to the original samples, confirming the reproducibility of the printed materials. A good agreement was observed between the MRI signal property in tumor phantoms and the reference values of invasive ductal carcinoma of the breast in patients.

- van der Heide UA, Frantzen-Steneker M, Astreinidou E, Nowee ME, van Houdt PJ. MRI basics for radiation oncologists. Clin Transl Radiat Oncol. 2019;18:74-79. doi: 10.1016/j.ctro.2019.04.008
- Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N. Overview of radiomics in breast cancer diagnosis and prognostication. Breast. 2020;49:74-80. doi: 10.1016/j.breast.2019.10.018
- Hatamikia S, George G, Schwarzhans F, Mahbod A, Woitek R. Breast MRI radiomics and machine learning-based predictions of response to neoadjuvant chemotherapy - how are they affected by variations in tumor delineation? Comput Struct Biotechnol J. 2023;23:52-63. doi: 10.1016/j.csbj.2023.11.016
- Bianchini L, Botta F, Origgi D, et al. PETER PHAN: an MRI phantom for the optimisation of radiomic studies of the female pelvis. Phys Med. 2020;71:71-81. doi: 10.1016/j.ejmp.2020.02.003
- Gallivanone F, D’Ambrosio D, Carne I, et al. A tri-modal tissue-equivalent anthropomorphic phantom for PET, CT and multi-parametric MRI radiomics. Phys Med. 2022;98:28-39. doi: 10.1016/j.ejmp.2022.04.007
- Lee J, Steinmann A, Ding Y, et al. Radiomics feature robustness as measured using an MRI phantom. Sci Rep. 2021;11(1):3973. doi: 10.1038/s41598-021-83593-3
- Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys. 2018;45(9):e740-e760. doi: 10.1002/mp.13058
- Kut C, Kao T, Morcos M, Kim Y, Boctor E, Viswanathan AN. 3D-printed magnetic resonance (MR)-based gynecological phantom for image-guided brachytherapy training. Brachytherapy. 2022;21(6):799-805. doi: 10.1016/j.brachy.2022.07.005
- Altermatt A, Santini F, Deligianni X, et al. Design and construction of an innovative brain phantom prototype for MRI. Magn Reson Med. 2019;81(2):1165-1171. doi: 10.1002/mrm.27464
- Cox BL, Ludwig KD, Adamson EB, Eliceiri KW, Fain SB. An open source, 3D printed preclinical MRI phantom for repeated measures of contrast agents and reference standards. Biomed Phys Eng Express. 2018;4(2):027005. doi: 10.1088/2057-1976/aa9491
- Cho HM, Cheolpyo H, Changwoo L, Ding H, Taeho K, Ahn B. LeGo-compatible modular mapping phantom for magnetic resonance imaging. Sci Rep. 2020;10:14755. doi: 10.1038/s41598-020-71279-1
- Mitsouras D, Lee TC, Liacouras P, et al. Three-dimensional printing of MRI-visible phantoms and MR image-guided therapy simulation. Magn Reson Med. 2017;77(2):613-622. doi: 10.1002/mrm.26136
- Rai R, Holloway LC, Brink C, et al. Multicenter evaluation of MRI-based radiomic features: a phantom study. Med Phys. 2020;47(7):3054-3063. doi: 10.1002/mp.14173
- Rausch I, Valladares A, Sundar LKS, et al. Standard MRI-based attenuation correction for PET/MRI phantoms: a novel concept using MRI-visible polymer. EJNMMI Phys. 2021;8(1):18. doi: 10.1186/s40658-021-00364-9
- Rai R, Wang YF, Manton D, Dong B, Deshpande S, Liney GP. Development of multi-purpose 3D printed phantoms for MRI. Phys Med Biol. 2019;64(7):075010. doi: 10.1088/1361-6560/ab0b49
- Valladares A, Oberoi G, Berg A, Beyer T, Unger E, Rausch I. Additively manufactured, solid object structures for adjustable image contrast in magnetic resonance imaging. Z Med Phys. 2022;32(4):466-476. doi: 10.1016/j.zemedi.2022.03.003
- Yunker BE, Stupic KF, Wagner JL, et al. Characterization of 3-dimensional printing and casting materials for use in magnetic resonance imaging phantoms at 3 T. J Res Natl Inst Stand Technol. 2020;vol:125028. doi: 10.6028/jres.125.028
- Rai R, Manton D, Jameson MG, et al. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging. Med Phys. 2018;45(2):758-766. doi: 10.1002/mp.12727
- Jiangfeng Q, Kun H, Brandon AD, et al. Constructing customized multimodal phantoms through 3D printing: a preliminary evaluation. Front Phys. 2021;9:605630. doi: 10.3389/fphy.2021.605630
- Woletz M, Chalupa‐Gantner F, Hager B, et al. Toward printing the brain: a microstructural ground truth phantom for MRI. Adv Mater Technol. 2024;9(3):2300176. doi: 10.1002/admt.202300176
- Hatamikia S, Jaksa L, Kronreif G, et al. Silicone phantoms fabricated with multi-material extrusion 3D printing technology mimicking imaging properties of soft tissues in CT. Z Med Phys. 2023;S0939-3889,26(23)00076-4. doi: 10.1016/j.zemedi.2023.05.007
- Jaksa L, Aryeetey OJ, Hatamikia S, et al. 3D-Printed multi-material liver model with simultaneous mechanical and radiological tissue-mimicking features for improved realism. Int J Bioprint. 2023;9(4):721. doi: 10.18063/ijb.721
- Hatamikia S, Kronreif G, Unger A, et al. 3D printed patient-specific thorax phantom with realistic heterogenous bone radiopacity using filament printer technology. Z Med Phys. 2022;32(4):438-452. doi: 10.1016/j.zemedi.2022.02.001
- Chen Y, Panda A, Pahwa S, et al. Three-dimensional MR fingerprinting for quantitative breast imaging. Radiology. 2019;290(1):33-40. doi: 10.1148/radiol.2018180836
- Fram EK, Herfkens RJ, Johnson GA, et al. Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn Reson Imaging. 1987;5(3):201-208. doi: 10.1016/0730-725x(87)90021-x
- Poon CS, Henkelman RM. Practical T2 quantitation for clinical applications. J Magn Reson Imaging. 1992;2(5):541-553. doi: 10.1002/jmri.1880020512
- Bojorquez JZ, Bricq S, Acquitter C, Brunotte F, Walker PM, Lalande A. What are normal relaxation times of tissues at 3 T? Magn Reson Imaging. 2017;35:69-80. doi: 10.1016/j.mri.2016.08.021
- Carr ME, Keenan KE, Rai R, Metcalfe P, Walker A, Holloway L. Determining the longitudinal accuracy and reproducibility of T1 and T2 in a 3T MRI scanner. J Appl Clin Med Phys. 2021;22(11):143-150. doi: 10.1002/acm2.13432
- De Bazelaire CMJ, Duhamel GD, Rofsky NM, Alsop DC. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology. 2004;230(3):652-659. doi: 10.1148/radiol.2303021331
- Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol. 2004;183(2):343-351. doi: 10.2214/ajr.183.2.1830343
- Chen Y, Jiang Y, Pahwa S, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology. 2016;279(1):278-286. doi: 10.1148/radiol.2016152037
- Fennessy FM, Fedorov A, Gupta SN, Schmidt EJ, Tempany CM, Mulkern RV. QIN: practical considerations in T1 mapping of prostate for dynamic contrast enhancement pharmacokinetic analyses. Magn Reson Imaging. 2012;30(9):1224-1233. doi: 10.1016/j.mri.2012.06.011
- Piechnik SK, Ferreira VM, Dall’Armellina E, et al. Shortened modified Look–Locker inversion recovery (shmolli) for clinical myocardial t1-mapping at 1.5 and 3 twithin a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12(1):69. doi: 10.1186/1532-429X-12-69
- Shin W, Gu H, Yang Y. Fast high-resolution T1 mapping using inversion-recovery look–locker echo-planar imaging at steady state: optimization for accuracy and reliability. Magn Reson Med. 2009;61(4):899-906. doi: 10.1002/mrm.21836
- Chen L, Bernstein M, Huston J, Fain S. Measurements of T1 relaxation times at 3.0 T: implications for clinical MRA. Proceedings International Society for. Magn Reson Med. 2001:1.
- Bojorquez JZ, Bricq S, Brunotte F, Walker PM, Lalande AA. A novel alternative to classify tissues from T 1 and T 2 relaxation times for prostate MRI. Magn Reason Mater Phys Biol Med. 2016;29(5):1–12. doi: 10.1007/s10334-016-0562-3
- Van Heeswijk RB, Feliciano H, Bongard C, et al. Free-breathing 3 T magnetic resonance T2-mapping of the heart. J Am Coll Cardiol Imaging. 2012;5(12):1231-1239. doi: 10.1016/j.jcmg.2012.06.010
- Rakow-Penner R, Daniel B, Yu H, Sawyer-Glover A, Glover GH. Relaxation times of breast tissue at 1.5 T and 3 T measured using IDEAL. J Magn Reson Imaging. 2006;23(1):87-91. doi: 10.1002/jmri.20469
- Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MAMR. Fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reason Med. 2015;74(6):1621-1631. doi: 10.1002/mrm.25559
- Bidhult S, Kantasis G, Aletras AH, Arheden H, Heiberg E, Hedström E. Validation of T1 and T2 algorithms for quantitative MRI: performance by a vendor-independent software. BMC Med Imaging. 2016;16(1):46. doi: 10.1186/s12880-016-0148-6
- Jaksa L, Pahr D, Kronreif G, Lorenz A. Development of a multi-material 3D printer for functional anatomic models. Int J Bioprint. 2021;7(4):420. doi: 10.18063/ijb.v7i4.420
- James Aryeetey O, Jaksa l, Bittner-Frank M, Lorenz A, Pahr DH. Development of 3D printed tissue-mimicking materials: Combining fiber reinforcement and fluid content for improved surgical rehearsal. Materialia. 2024; 34:102088. doi: 10.1016/j.mtla.2024.102088
- Gillaspie EA, Matsumoto JS, Morris NE, et al. From 3-dimensional printing to 5-dimensional printing: enhancing thoracic surgical planning and resection of complex tumors. Ann Thorac Surg. 2016;101(5):1958-1962. doi: 10.1016/j.athoracsur.2015.12.075
- Kokkinis D, Schaffner M, Studart A. Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun. 2015;6:8643. doi: 10.1038/ncomms9643
- Foresti R, Rossi S, Pinelli S, et al. In-vivo vascular application via ultra-fast bioprinting for future 5D personalised nanomedicine. Sci Rep. 2020;10:3205. doi: 10.1038/s41598-020-60196-y