AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.8440
RESEARCH ARTICLE

Optimization of alginate/gelatin/dextran-aldehyde bioink for 3D bioprinting and cell engraftment

Hosub Lim1 Daun Seo2 Kyung Deok Park1 Hye-Eun Shim3 Ji Hye Park3 Eun-Jung Ann3 Junghyun Kim2 Jae Young Lee2* Junhee Lee1* Sun-Woong Kang3,4*
Show Less
1 Department of Bionic Machinery, Research Institute of AI Robotics, Korea Institute of Machinery & Materials, Daejeon, Republic of Korea
2 School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
3 Center for Biomimetic Technology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
4 School of Korea Institute of Toxicology, University of Science and Technology, Daejeon, Republic of Korea
Submitted: 7 January 2025 | Accepted: 26 March 2025 | Published: 26 March 2025
(This article belongs to the Special Issue Bioprinting for Tissue Engineering and Modeling)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The development of bioinks with optimized printability, mechanical properties, and biocompatibility is critical for advancing three-dimensional (3D) bioprinting and tissue engineering. In this study, we introduce an alginate/gelatin/dextran-aldehyde (AGDA) bioink, designed to balance structural integrity and cellular functionality. Among the tested formulations, AGDA1 demonstrated superior performance, with optimized printability and high cell compatibility. AGDA bioinks involve dual crosslinking (ionic gelation of alginate and Schiff base formation between gelatin and dextran-aldehyde), permitting appropriate stiffness, viscosity, and thixotropic behavior. Fibroblasts encapsulated in AGDA, either as single cells, spheroids, or a combination of both, exhibited high viability and proliferative capacity. Notably, the combination method supported the highest cellular density and fibroblast-specific morphological transformations, surpassing the commercially available GelXA bioink. These findings highlight AGDA’s potential as a versatile bioink for fabricating complex and scalable tissue constructs. In summary, this study contributes to the development of bioinks tailored for enhanced cell engraftment and regenerative applications.

Graphical abstract
Keywords
Bioink
Bioprinting
Dual crosslinking
Spheroid
Tissue engineering
Funding
This research was supported by the Challengeable Future Defense Technology Research and Development Program through the Agency For Defense Development (ADD) funded by the Defense Acquisition Program Administration (DAPA) in 2024 (No. 915060201).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs. Sci Rep. 2020;10(1):14023. doi: 10.1038/s41598-020-70086-y2
  2. Shukla P, Yeleswarapu S, Heinrich MA, Prakash J, Pati F. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling. Biofabrication. 2022;14(3):032002. doi: 10.1088/1758-5090/ac6d11
  3. Wang Z, Xiang L, Lin F, Tang Y, Cui WJ. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications. Control Release. 2023;353:147-165. doi: 10.1016/j.jconrel.2022.11.035
  4. Maharjan S, Ma C, Singh B, et al. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev. 2024;208:115237. doi: 10.1016/j.addr.2024.115237
  5. Zennifer A, Manivannan S, Sethuraman S, Kumbar SG, Sundaramurthi D. 3D bioprinting and photocrosslinking: emerging strategies & future perspectives. Biomater Adv. 2022;134:112576. doi: 10.1016/j.msec.2021.112576
  6. Zhang J, Wehrle E, Rubert M, Müller R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. Int J Mol Sci. 2021;22(8):3971. doi: 10.3390/ijms22083971
  7. Zhang W, Kuss M, Yan Y, Shi W. Dynamic alginate hydrogel as an antioxidative bioink for bioprinting. Gels. 2023;9(4):312. doi: 10.3390/gels9040312
  8. Lan X, Ma Z, Szojka ARA, et al. TEMPO-oxidized cellulose nanofiber-alginate hydrogel as a bioink for human meniscus tissue engineering. Front Bioeng Biotechnol. 2021;9:766399. doi: 10.3389/fbioe.2021.766399
  9. Kim J, Choi YJ, Gal CW, Sung A, Park H, Yun HS. Development of an alginate-gelatin bioink enhancing osteogenic differentiation by gelatin release. Int J Bioprint. 2023;9(2):660. doi: 10.18063/ijb.v9i2.660
  10. Gao Q, Kim BS, Gao G. Advanced strategies for 3D bioprinting of tissue and organ analogs using alginate hydrogel bioinks. Mar Drugs. 2021;19(12):708. doi: 10.3390/md19120708
  11. Hao L, Zhao S, Hao S, et al. Functionalized gelatin-alginate based bioink with enhanced manufacturability and biomimicry for accelerating wound healing. Int J Biol Macromol. 2023;240:124364. doi: 10.1016/j.ijbiomac.2023.124364
  12. Stola GP, Paoletti C, Nicoletti L, et al. Internally-crosslinked alginate dialdehyde/alginate/gelatin-based hydrogels as bioinks for prospective cardiac tissue engineering applications. Int J Bioprint. 2024:10;4014. doi: 10.36922/ijb.4014
  13. Cruz EM, Machado LS, Zamproni LN, et al. A gelatin methacrylate-based hydrogel as a potential bioink for 3D bioprinting and neuronal differentiation. Pharmaceutics. 2023;15(2):627. doi: 10.3390/pharmaceutics15020627
  14. Shi W, Fang F, Kong Y, et al. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Biofabrication. 2021;14(1). doi: 10.1088/1758-5090/ac42de
  15. Musilová L, Achbergerová E, Vítková L, et al. Cross-linked gelatine by modified dextran as a potential bioink prepared by a simple and non-toxic process. Polymers (Basel). 2022;14(3):391. doi: 10.3390/polym14030391
  16. Banigo AT, Nauta L, Zoetebier B, Karperien M. Coaxial bioprinting of enzymatically crosslinkable hyaluronic acid-tyramine bioinks for tissue regeneration. Polymers (Basel). 2024;16(17):2470. doi: 10.3390/polym16172470
  17. Ouyang L, Armstrong JPK, Lin Y, et al. Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci Adv. 2020;6(38):eabc5529. doi: 10.1126/sciadv.abc5529
  18. Hauptstein J, Forster L, Nadernezhad A, et al. Bioink platform utilizing dual-stage crosslinking of hyaluronic acid tailored for chondrogenic differentiation of mesenchymal stromal cells. Macromol Biosci. 2022;22:e2100331. doi: 10.1002/mabi.202100331
  19. Hu T, Cui X, Zhu M, et al. 3D-printable supramolecular hydrogels with shear-thinning property: fabricating strength tunable bioink via dual crosslinking. Bioact Mater. 2020;5:808-818. doi: 10.1016/j.bioactmat.2020.06.001
  20. Shin JY, Yeo YH, Jeong JE, Park SA, Park WH. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications. Carbohydr Polym. 2020;238:116192. doi: 10.1016/j.carbpol.2020.116192
  21. Glaeser JD, Bao X, Kaneda G, et al. iPSC-neural crest derived cells embedded in 3D printable bio-ink promote cranial bone defect repair. Sci Rep. 2022;12:18701. doi: 10.1038/s41598-022-22502-8
  22. Oliveros AL, Kingham PJ, Lammi MJ, Wiberg M, Kelk P. Three-dimensional osteogenic differentiation of bone marrow mesenchymal stem cells promotes matrix metallopeptidase 13 (MMP13) expression in Type I collagen hydrogels. Int J Mol Sci. 2021;22:13594. doi: 10.3390/ijms222413594
  23. Chang HK, Yang DH, Ha MY, et al. 3D printing of cell-laden visible light curable glycol chitosan bioink for bone tissue engineering. Carbohydr Polym. 2022;287:119328. doi: 10.1016/j.carbpol.2022.119328
  24. Fang Y, Ji M, Yang Y, et al. 3D printing of vascularized hepatic tissues with a high cell density and heterogeneous microenvironment. Biofabrication. 2023;15(4). doi: 10.1088/1758-5090/ace5e0
  25. Kripamol R, Velayudhan S, Anil Kumar PR. Evaluation of allylated gelatin as a bioink supporting spontaneous spheroid formation of HepG2 cells. Int J Biol Macromol. 2024;274(Pt 1):133259. doi: 10.1016/j.ijbiomac.2024.133259
  26. Lee HW, Chen KT, Li YE, Yeh YC, Chiang CY, Lee IC. Dual crosslinking silk fibroin/pectin-based bioink development and the application on neural stem/progenitor cells spheroid laden 3D bioprinting. Int J Biol Macromol. 2024; 269(Pt 2):131720. doi: 10.1016/j.ijbiomac.2024.131720
  27. Sun W, Zhang J, Qin Y, et al. A simple and efficient strategy for preparing a cell-spheroid-based bioink. Adv Healthc Mater. 2022;11(15):e2200648. doi: 10.1002/adhm.202200648
  28. Jeong JE, Han SS, Shin HE, et al. Hyaluronic microparticle-based biomimetic artificial neighbors of cells for three-dimensional cell culture. Carbohydrate Polym. 2022;294:119770. doi: 10.1016/j.carbpol.2022.119770
  29. Schmidt SK, Schmid R, Arkudas A, Kengelbach-Weigand A, Bosserhoff AK. Tumor cells develop defined cellular phenotypes after 3D-bioprinting in different bioinks. Cells. 2019;8:1295. doi: 10.3390/cells8101295
  30. Zhang Y, Ding Z, Liu Y, Zhang Y, Jiang S. White-light-emitting hydrogels with self-healing properties and adjustable emission colors. J Colloid Interface Sci. 2021;582:825-835. doi: 10.1016/j.jcis.2020.08.080
  31. Kang SW, Jeon O, Kim BS. Poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering. Tissue Eng. 2005;11:438-447. doi: 10.1089/ten.2005.11.438
  32. Park KH, Ryu B, Song JJ, et al. Hyaluronic acid microparticles for effective spheroid culture and transplantation in liver tissue. Chem Eng J. 2023;464:142666. doi: 10.1016/j.cej.2023.142666
  33. Im S, Choe G, Seok JM, et al. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering. Int J Biol Macromol. 2022:205:520-529. doi: 10.1016/j.ijbiomac.2022.02.012
  34. Rashik C, Muhire BS, Vijayavenkataraman S. Computational fluid dynamics assessment of the effect of bioprinting parameters in extrusion bioprinting. Int J Bioprint 2022;8:545. doi: 10.18063/ijb.v8i2.545
  35. Andreas B, Filipa D, Campos D, et al. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016;5:326-333. doi: 10.1002/adhm.201500677
  36. Rajabi M, McConnell M, Cabral J, Ali MA. Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr Polym. 2021;260:117768. doi: 10.1016/j.carbpol.2021.117768
  37. Falcone G, Schrüfer S, Kuth S, et al. Ready-to-print alginate inks: the effect of different divalent cations on physico-chemical properties of 3D printable alginate hydrogels. Carbohydr Polym Technol Appl. 2024;7:100524. doi: 10.1016/j.carpta.2024.100524
  38. Piras CC, Smith DK. Multicomponent polysaccharide alginate-based bioinks. J Mater Chem B. 2020;8(36):8171-8188. doi: 10.1039/D0TB01005G
  39. Lee M, Kim YS, Park J, et al. A paintable and adhesive hydrogel cardiac patch with sustained release of ANGPTL4 for infarcted heart repair. Bioact Mater. 2023;31:395-407. doi: 10.1016/j.bioactmat.2023.08.020
  40. Hong SJ, Kim DH, Ryoo JH, et al. Influence of gelatin on adhesion, proliferation, and adipogenic differentiation of adipose tissue-derived stem cells cultured on soy protein-agarose scaffolds. Foods. 2024;13(14):2247. doi: 10.3390/foods13142247
  41. Li K, Wang X, Li J, Wang J, Yu W, Ge L. Bioinspired gelatin nano-film implanted into composite scaffold exhibiting both expandable adhesion and enhanced proliferation. Int J Biol Macromol. 2022;220:1570-1578. doi: 10.1016/j.ijbiomac.2022.09.080
  42. Nelson C, Tuladhar S, Launen L, Habib MA. 3D bio-printability of hybrid pre-crosslinked hydrogels. Int J Mol Sci. 2021;22:13481. doi: 10.3390/ijms222413481
  43. Choe G, Lee M, Oh S, et al. Three-dimensional bioprinting of mesenchymal stem cells using an osteoinductive bioink containing alginate and BMP-2-loaded PLGA nanoparticles for bone tissue engineering. Biomater Adv. 2022;136:212789. doi: 10.1016/j.bioadv.2022.212789
  44. Kumar A, Nune KC, Murr LE, Misra RDK. Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process–structure–property paradigm. Int Mater Rev. 2016;61:20-25. doi: 10.1080/09506608.2015.1128310
  45. Park KW, Truong TT, Park JH, et al. Robust and customizable spheroid culture system for regenerative medicine. Biofabrication. 2024;16:045016. doi: 10.1088/1758-5090/ad6795
  46. Han SS, Cho Mo, Huh KM, Kang SW. Effects of nanopatterned-surface dishes on chondrocyte growth and cell progression. RSC Adv. 2021;11:39-47. doi: 10.1039/d0ra08256b
  47. Han SS, Yoon HY, Yhee JY, et al. In situ cross-linkable hyaluronic acid hydrogels using copper free click chemistry for cartilage tissue engineering. Polym Chem. 2018;9:20-27. doi: 10.1039/C7PY01654A

 

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing