A novel tantalum scaffold promoting osteoporotic osseointegration by controlled immune regulation

Implant failure due to osteoporosis remains a significant clinical challenge that requires further investigation and resolution. The immunomodulatory properties of bone implant materials are of great significance for the regulation of bone immune microenvironment to promote osteogenesis. This study aims to utilize 3D printing technology to develop a personalized porous tantalum-based MZIF-8-PDA@PTa scaffold and to achieve uniform control of melatonin (MT) and ZIF-8 nano-drug controlled delivery system through polydopamine coating, as well as investigate the effects of osteoporosis on bone regeneration and osseointegration. The MZIF-8-PDA@ PTa scaffold displayed favorable biocompatibility, biodegradability, and mechanical properties, thereby providing an optimal microenvironment for new bone formation. Additionally, the findings indicated that the MZIF-8-PDA@PTa scaffold was capable of recruiting and stimulating M2 macrophage polarization, inhibiting inflammation, and promoting the proliferation and differentiation of bone marrow mesenchymal stem cells. Scaffolds were implanted into the distal femurs of ovariectomized (OVX) rats to ultimately promote bone regeneration and osseointegration in an osteoporotic environment. Moreover, transcriptome sequencing revealed that the MZIF-8-PDA@PTa scaffold was able to promote osteogenic differentiation and mineralization via the P38-MAPK signaling pathway in BMSC cells. Taken together, the MZIF-8-PDA@PTa scaffold enhances bone regeneration and osseointegration in osteoporotic environments through the modulation of macrophage M2 polarization. Consequently, this study offers an alternative approach to creating biomaterials suitable for individuals with osteoporosis.

- Szczęsny G, Kopec M, Politis DJ, Kowalewski ZL, Łazarski A, Szolc T. A review on biomaterials for orthopaedic surgery and traumatology: from past to present. Materials (Basel). 2022;15(10):3622. doi: 10.3390/ma15103622
- Gabay Bass N, Katarivas Levy G, Ron T, et al. Electrochemical behaviour and direct cell viability analysis of hybrid implants made of Ti-6Al-4V lattices infiltrated with a bioabsorbable Zn-based alloy. Metals. 2022;12:1735. doi: 10.3390/met12101735
- Lotz EM, Berger MB, Schwartz Z, Boyan BD. Regulation of osteoclasts by osteoblast lineage cells depends on titanium implant surface properties. Acta Biomater. 2018;68:296-307. doi: 10.1016/j.actbio.2017.12.039
- Steffi C, Shi Z, Kong CH, Wang W. Modulation of osteoclast interactions with orthopaedic biomaterials. J Funct Biomater. 2018;9:18. doi: 10.3390/jfb9010018
- Tang J, Wu Z, Yao X, et al. From bio-inertness to osseointegration and antibacterial activity: a one-step micro-arc oxidation approach for multifunctional Ti implants fabricated by additive manufacturing. Mater Des. 2022;221:110962. doi: 10.1016/j.matdes.2022.110962
- Tomizawa T, Ishikawa M, Bello-Irizarry SN, et al. Biofilm producing Staphylococcus epidermidis (RP62A strain) inhibits osseous integration without osteolysis and histopathology in a murine septic implant model. J Orthop Res. 2020;38:852-860. doi: 10.1002/jor.24512
- Kruse HV, Lewin WT, Suchowerska N, et al. Plasma immersion ion‐implanted 3D‐printed PEEK bone implants: in vivo sheep study shows strong osseointegration. Plasma Process Polym. 2022;19:2100244. doi: 10.1002/ppap.202100244
- Wang W, Chen H, Xiao J, et al. Microenvironment-responsive injectable hydrogel for neuro-vascularized bone regeneration. Mater Today Bio. 2024;29:101369. doi: 10.1016/j.mtbio.2024.101369
- Almohandes A, Lund H, Carcuac O, Petzold M, Berglundh T, Abrahamsson I. Accuracy of bone-level assessments following reconstructive surgical treatment of experimental peri-implantitis. Clin Oral Implants Res. 2022;33:433-440. doi: 10.1111/clr.13903
- Laux CJ, Hodel SM, Farshad M, Müller DA. Carbon fibre/ polyether ether ketone (CF/PEEK) implants in orthopaedic oncology. World J Surg Oncol. 2018;16:241. doi: 10.1186/s12957-018-1545-9
- George M, Naveen SV, Murali MR, Murugan SS, Kumaravel TS, Sathya TN. Review of selected orthopaedic implants for their genotoxicity potential. Int J Sci Technol. 2023;16:2311-2316. doi: 10.17485/IJST/v16i30.george
- Gudapati S, Kalyan SR, Santosh KV, et al. Multifarious bone cement and its applications in endodontics – a review. Int J Oral Health Dent. 2022;8(1):9-13. doi: 10.18231/j.ijohd.2022.003
- Espiritu J, Meier M, Seitz J-M. The current performance of biodegradable magnesium-based implants in magnetic resonance imaging: a review. Bioact Mater. 2021;6:4360-4367. doi: 10.1016/j.bioactmat.2021.04.012
- Song X, Tetik H, Jirakittsonthon T, et al. Biomimetic 3D printing of hierarchical and interconnected porous hydroxyapatite structures with high mechanical strength for bone cell culture. Adv Eng Mater. 2019;21(1):1800678. doi: 10.1002/adem.201800678
- Zhang X, He J, Qiao L, et al. 3D printed PCLA scaffold with nano‐hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug‐resistant bacteria colonization. Cell Prolif. 2022;55:e13289. doi: 10.1111/cpr.13289
- Yang Y, Lei D, Huang S, et al. Elastic 3D‐printed hybrid polymeric scaffold improves cardiac remodeling after myocardial infarction. Adv Healthc Mater. 2019;8:1900065. doi: 10.1002/adhm.201900065
- Später T, Mariyanats AO, Syachina MA, et al. In vitro and in vivo analysis of adhesive, anti-inflammatory, and proangiogenic properties of novel 3D printed hyaluronic acid glycidyl methacrylate hydrogel scaffolds for tissue engineering. ACS Biomater Sci Eng. 2020;6:5744-5757. doi: 10.1021/acsbiomaterials.0c00741
- He Y, Liu W, Guan L, et al. A 3D-printed PLCL scaffold coated with collagen type I and its biocompatibility. BioMed Res Int. 2018;2018:1-10. doi: 10.1155/2018/5147156
- Meesuk L, Suwanprateeb J, Thammarakcharoen F, et al. Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds. Sci Rep. 2022;12:19509. doi: 10.1038/s41598-022-24160-2
- Huang Y, Zhang Z, Bi F, et al. Personalized 3D‐printed scaffolds with multiple bioactivities for bioroot regeneration. Adv Healthc Mater. 2023;12:2300625. doi: 10.1002/adhm.202300625
- Yun J, Lee J, Ha CW, et al. The effect of 3‐D printed polylactic acid scaffold with and without hyaluronic acid on bone regeneration. J Periodontol. 2022;93:1072-1082. doi: 10.1002/JPER.21-0428
- Zhang S, Li R, Song M, Han J, Fan X. Exploration of M2 macrophage membrane as a biotherapeutic agent and strong synergistic therapeutic effects in ischemic stroke. J Control Release. 2025;378:476-489. doi: 10.1016/j.jconrel.2024.11.033
- Liu K, Kong L, Cui H, et al. Thymosin α1 reverses oncolytic adenovirus-induced M2 polarization of macrophages to improve antitumor immunity and therapeutic efficacy. Cell Rep Med. 2024;5:101751. doi: 10.1016/j.xcrm.2024.101751
- Li J, Luo X, Shiu PH-T, et al. Protective effects of Amauroderma rugosum on dextran sulfate sodium-induced ulcerative colitis through the regulation of macrophage polarization and suppression of oxidative stress. Biomed Pharmacother. 2024;176:116901. doi: 10.1016/j.biopha.2024.116901
- Chang J-W, Liu S-C, Lin Y-Y, et al. Nesfatin-1 stimulates CCL2-dependent monocyte migration and M1 macrophage polarization: implications for rheumatoid arthritis therapy. Int J Biol Sci. 2023;19:281-293. doi: 10.7150/ijbs.77987
- Cheng Y, Zhong X, Nie X, et al. Glycyrrhetinic acid suppresses breast cancer metastasis by inhibiting M2-like macrophage polarization via activating JNK1/2 signaling. Phytomedicine. 2023;114:154757. doi: 10.1016/j.phymed.2023.154757
- Song Y, Lin K, He S, et al. Nano-biphasic calcium phosphate/ polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin. Int J Nanomedicine. 2018;13:505-523. doi: 10.2147/IJN.S152105
- Rossi N, Hadad H, Bejar-Chapa M, et al. Bone marrow stem cells with tissue-engineered scaffolds for large bone segmental defects: a systematic review. Tissue Eng Part B Rev. 2023;29:457-472. doi: 10.1089/ten.teb.2022.0213
- Kotta S, Nair A, Alsabeelah N. 3D printing technology in drug delivery: recent progress and application. Curr Pharm Des. 2019;24:5039-5048. doi: 10.2174/1381612825666181206123828
- Wang B, Feng C, Pan J, et al. The effect of 3D printing metal materials on osteoporosis treatment. BioMed Res Int. 2021;2021:1-7. doi: 10.1155/2021/9972867
- Qian H, Lei T, Lei P, Hu Y. Additively manufactured tantalum implants for repairing bone defects: a systematic review. Tissue Eng Part B Rev. 2021;27:166-180. doi: 10.1089/ten.teb.2020.0134
- Liang D, Zhong C, Jiang F, Liao J, Ye H, Ren F. Fabrication of porous tantalum with low elastic modulus and tunable pore size for bone repair. ACS Biomater Sci Eng. 2023;9:1720-1728. doi: 10.1021/acsbiomaterials.2c01239
- Zheng S, Zhou C, Yang H, et al. Melatonin accelerates osteoporotic bone defect repair by promoting osteogenesis-angiogenesis coupling. Front Endocrinol (Lausanne). 2022;13:826660. doi: 10.3389/fendo.2022.826660
- Ding S, Lin N, Sheng X, et al. Melatonin stabilizes rupture-prone vulnerable plaques via regulating macrophage polarization in a nuclear circadian receptor RORα- dependent manner. J Pineal Res. 2019;67:e12581. doi: 10.1111/jpi.12581
- AlNeyadi SS, Amir N, Ghattas MA, et al. Controlled release of pyrimidine compound using polymeric coated ZIF- 8 metal-organic framework as glucagon-like peptide-1 receptor agonist carrier. Molecules 2020;25:4313. doi: 10.3390/molecules25184313
- Wang X, Chen X-Z, Alcântara CCJ, et al. MOFBOTS: metal-organic-framework-based biomedical microrobots. Adv Mater. 2019;13:e1901592. doi: 10.1002/adma.201901592
- Zou F, Jiang J, Lv F, Xia X, Ma X. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF- 8 nanocomposite scaffolds for infected bone repair. J Nanobiotechnol. 2020;18:39. doi: 10.1186/s12951-020-00594-6
- Niu X, Xiao S, Huang R, et al. ZIF-8-modified hydrogel sequentially delivers angiogenic and osteogenic growth factors to accelerate vascularized bone regeneration. J Control Release. 2024;374:154-170. doi: 10.1016/j.jconrel.2024.08.011
- Zhang C, Zhou Z, Liu N, et al. Osteogenic differentiation of 3D-printed porous tantalum with nano-topographic modification for repairing craniofacial bone defects. Front Bioeng Biotechnol. 2023;11:1258030. doi: 10.3389/fbioe.2023.1258030
- Karimi A, Khataee A, Vatanpour V, Safarpour M. High-flux PVDF mixed matrix membranes embedded with size-controlled ZIF-8 nanoparticles. Sep Purif Technol. 2019;229:115838. doi: 10.1016/j.seppur.2019.115838
- Liu Z, Tan L, Liu X, et al. Zn2+-assisted photothermal therapy for rapid bacteria-killing using biodegradable humic acid encapsulated MOFs. Colloids Surf B Biointerfaces. 2020;188:110781. doi: 10.1016/j.colsurfb.2020.110781
- Tan DX, Manchester LC, Reiter RJ, et al. Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radic Biol Med. 2000;29:1177-1185. doi: 10.1016/s0891-5849(00)00435-4
- Sun Y, Li Y, Zhang Y, Wang T, Lin K, Liu J. A polydopamine-assisted strontium-substituted apatite coating for titanium promotes osteogenesis and angiogenesis via FAK/MAPK and PI3K/AKT signaling pathways. Mater Sci Eng C. 2021;131:112482. doi: 10.1016/j.msec.2021.112482
- Lai M, Chen X, Feng J, Ruan Z, Lin J. Morinda officinalis polysaccharide boosts osteogenic differentiation of bone marrow mesenchymal stem cells by Wnt/β-catenin signaling. Am J Transl Res. 2024;16:4492-4503. doi: 10.62347/WMLI2601
- Tian S, Li Y-L, Wang J, et al. Chinese ecliptae herba (Eclipta prostrata (L.) L.) extract and its component wedelolactone enhances osteoblastogenesis of bone marrow mesenchymal stem cells via targeting METTL3-mediated m6A RNA methylation. J Ethnopharmacol. 2023;312: 116433. doi: 10.1016/j.jep.2023.116433
- Xiao K, Yang L, Xie W, Gao X, Huang R, Xie M. Bcl-xL mutant promotes cartilage differentiation of BMSCs by upregulating TGF-β/BMP expression levels. Exp Ther Med. 2021;22:736. doi: 10.3892/etm.2021.10168
- Kim JM, Yang YS, Park KH, Oh H, Greenblatt MB, Shim JH. The ERK MAPK pathway is essential for skeletal development and homeostasis. Int J Mol Sci. 2019;20(8):1803. doi: 10.3390/ijms20081803
- Wang K, Jian M, Chen Y, et al. Soy peptide ameliorate TGF-β1-mediated osteoblast differentiation through Smad and MAPK signaling pathways. J Agric Food Chem. 2024;72:23246-23257. doi: 10.1021/acs.jafc.4c04882
- Li X, Gao C, Zhou K, et al. Dendrobine ameliorates glucocorticoid-induced osteoporosis by promoting osteogenesis through JNK/p38 MAPK pathway activation and GR nuclear translocation inhibition. J Agric Food Chem. 2024;72:16739-16748. doi: 10.1021/acs.jafc.4c02798