AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.8123
RESEARCH ARTICLE

Microstructure control during cryogenic 3D printing to obtain biomimetic porous and tough cross-scale mineralized collagen bone scaffold

Wei Chang1 Zhiwei Huang1 Wei Huang1 Kai Ren2,3 Jing Ye1 Bing Ye4 Zheng Zhu1 Xianglin Zhang1 Bin Wu1*
Show Less
1 State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
2 State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
3 Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
4 Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
Submitted: 22 December 2024 | Accepted: 28 February 2025 | Published: 28 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Tissue engineering (TE) is a promising strategy to repair large bone defects by inducing endogenous bone regeneration. The ideal bone TE scaffold should possess high porosity (90%), suitable stiffness (1 MPa), and most importantly, a composition that mimics natural bone, including the same components (mineralized collagen) and cross-macro- and microscale structures. However, existing 3D-printed mineralized collagen bone TE scaffold hardly reproduces the cross-scale structure of natural bone, leading to low porosity (60%) and poor stiffness (100 kPa). To address this challenge, this study applied cryogenic 3D printing, also known as low-temperature field-assisted direct ink writing, to achieve 3D mineralized collagen scaffolds with cross-macro- and microscale structures. The inclusion of numerous micro-pores within the extruded fibers resulted in a porosity of 95%. In addition, through the control of scaffold microstructure and in situ mineralization, Young’s modulus of the cryogenic-printed collagen scaffold can be increased by 240% while maintaining the porosity at 95%, matching the properties of an ideal bone TE scaffold. In summary, this work provides new guidelines for technological innovation and application of cryogenic 3D printing, achieving a biomimetic mineralized collagen bone TE scaffold. In addition, the high porosity of the scaffolds produced by this technology enables these scaffolds to be used in various fields, including impact resistance, wave absorption, thermal insulation, flexible materials, and piezoelectric ceramics, among others.

Graphical abstract
Keywords
Bone-mimetic cross-scale structure
Cryogenic 3D printing
Mineralized collagen
Funding
This work was supported by the National Natural Science Foundation of China (Grant No. 52305359, 52305558, 82472440), National Medical Products Administration Key Laboratory for Dental Materials (PKUSS20240401), Hubei Provincial Natural Science Foundation of China (No. 2023AFB141), Key Research and Development Plan of Zhejiang Province (2023C01169), the startup funding, and the Cross-Research Support Program from the Huazhong University of Science and Technology (HUST).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Dixit K, Vishwakarma A, Kumar H, Kim K, Sinha N. Material extrusion additive manufacturing of graphene oxide reinforced 13–93B1 bioactive glass scaffolds for bone tissue engineering applications. Addit Manuf. 2024;94:104481. doi: 10.1016/j.addma.2024.104481
  2. Wang Y, Pereira RF, Peach C, Huang B, Vyas C, Bartolo P. Robotic in situ bioprinting for cartilage tissue engineering. Int J Extrem Manuf. 2023;5(3):032004. doi: 10.1088/2631-7990/acda67
  3. Chen A, Su J, Li Y, et al. 3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering. Int J Extrem Manuf. 2023;5(3):032007. doi: 10.1088/2631-7990/acd88f
  4. Zhou X, Zou B, Chen Q, et al. Polyelectrolyte multilayer coating on 3D printed PEGDA/TCP scaffold with improved cell proliferation. Addit Manuf Front. 2024;3(1):200114.
  5. Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014;10(9):3815-3826. doi: 10.1016/j.actbio.2014.05.024
  6. Reznikov N, Bilton M, Lari L, Stevens MM, Kroeger R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science. 2018;360(6388):eaao2189. doi: 10.1126/science.aao2189
  7. Mao A, Zhao N, Liang Y, Bai H. Mechanically efficient cellular materials inspired by cuttlebone. Adv Mater. 2021;33(15):e2007348. doi: 10.1002/adma.202007348
  8. Sengupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol. 2021;22(8): 529-547. doi: 10.1038/s41580-021-00366-6
  9. Zhang Y, Xing Y, Li J, et al. Osteogenesis-related behavior of MC3T3-E1 cells on substrates with tunable stiffness. Biomed Res Int. 2018;2018:4025083. doi: 10.1155/2018/4025083
  10. Xie J, Zhang D, Zhou C, Yuan Q, Ye L, Zhou X. Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through β-catenin transduction. Acta Biomater. 2018;79:83-95. doi: 10.1016/j.actbio.2018.08.018
  11. Guo Y, Qiao Y, Quan S, Yang C, Li J. Relationship of matrix stiffness and cell morphology in regulation of osteogenesis and adipogenesis of BMSCs. Mol Biol Rep. 2022;49(4):2677-2685. doi: 10.1007/s11033-021-07075-5
  12. Chen J-y, Wang Y-x, Ren K-f, Wang Y-b, Fu G-s, Ji J. The influence of substrate stiffness on osteogenesis of vascular smooth muscle cells. Colloids Surf B: Biointerfaces. 2021;197:111388. doi: 10.1016/j.colsurfb.2020.111388
  13. Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32(1-2):1-31. doi: 10.1016/j.progsolidstchem.2004.07.001
  14. Yang C, Li GY. A biomimetic mineralized collagen hydrogel containing uniformly distributed and highly abundant dopamine-modified hydroxyapatite particles for bone tissue engineering. J Appl Polymer Sci. 2024;141(26):e55567. doi: 10.1002/app.55567
  15. Silva CC, Thomazini D, Pinheiro AG, et al. Collagen-hydroxyapatite films: piezoelectric properties. Mater Sci Eng B. 2001;86(3): 210-218. doi: 10.1016/s0921-5107(01)00674-2
  16. Landis WJ, Jacquet R. Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif Tissue Int. 2013;93(4):329-337. doi: 10.1007/s00223-013-9725-7
  17. Olszta MJ, Cheng X, Jee SS, et al. Bone structure and formation: a new perspective. Mater Sci Eng R. 2007;58(3):77-116. doi: 10.1016/j.mser.2007.05.001
  18. Wang Q-q, Miao L, Zhang H, Wang SQ, Li Q, Sun W. A novel amphiphilic oligopeptide induced the intrafibrillar mineralisation via interacting with collagen and minerals. J Mater Chem B. 2020;8(11):2350-2362. doi: 10.1039/C9TB02928A
  19. Gilbert PUPA, Bergmann KD, Boekelheide N, et al. Biomineralization: integrating mechanism and evolutionary history. Sci Adv. 2022;8(10):eabl9653. doi: 10.1126/sciadv.abl9653
  20. Shen L, Bu H, Zhang Y, Tang P, Li G. Molecular weight and concentration of poly (acrylic acid) dual-responsive homogeneous and intrafibrillar collagen mineralization using an in situ co-organization strategy. Polymer Compos. 2021;42(9):4448-4460. doi: 10.1002/pc.26161
  21. Orgel JPRO, Miller A, Irving TC, et al. The in situ supermolecular structure of type i collagen. Structure. 2001;9(11):1061-1069. doi: 10.1016/S0969-2126(01)00669-4
  22. Landis WJ, Silver FH. The structure and function of normally mineralizing avian tendons. Compar Biochem Physiol A. 2002;133(4):1135-1157. doi: 10.1016/S1095-6433(02)00248-9
  23. Minardi S, Taraballi F, Cabrera FJ, et al. Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model. Mater Today Bio. 2019;2:100005. doi: 10.1016/j.mtbio.2019.100005
  24. Guo C, Wu J, Zeng Y, Li H. Construction of 3D bioprinting of HAP/collagen scaffold in gelation bath for bone tissue engineering. Regen Biomater. 2023;10:rbad067. doi: 10.1093/rb/rbad067
  25. Jiao Z, Luo B, Xiang S, Ma H, Yu Y, Yang W. 3D printing of HA/PCL composite tissue engineering scaffolds. Adv Ind Eng Polym Res. 2019;2(4):196-202. doi: 10.1016/j.aiepr.2019.09.003
  26. Hu Y, Wu B, Xiong Y, et al. Cryogenic 3D printed hydrogel scaffolds loading exosomes accelerate diabetic wound healing. Chem Eng J. 2021;426:130634. doi: 10.1016/j.cej.2021.130634
  27. Sun T, Meng C, Ding Q, et al. In situ bone regeneration with sequential delivery of aptamer and BMP2 from an ECM-based scaffold fabricated by cryogenic free-form extrusion. Bioact Mater. 2021;6(11):4163-4175. doi: 10.1016/j.bioactmat.2021.04.013
  28. Ye J, Zhou X, Huang Z, et al. Low-temperature-field-assisted fabrication of cross-scale tissue engineering scaffolds. Int J Extrem Manuf. 2025;7(2):022011. doi: 10.1088/2631-7990/ad996d
  29. Robin M, Mouloungui E, Castillo G, et al. Mineralized collagen plywood contributes to bone autograft performance. Nature. 2024;636(8041):100-107. doi: 10.1038/s41586-024-08208-z
  30. Liu T, Yang B, Tian W, Zhang X, Wu B. Cryogenic coaxial printing for 3D shell/core tissue engineering scaffold with polymeric shell and drug-loaded core. Polymers (Basel). 2022;14(9):1722. doi: 10.3390/polym14091722
  31. Juárez-Moreno JA, Ávila-Ortega A, Oliva AI, Avilés F, Cauich-Rodríguez JV. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Appl Surf Sci. 2015;349:763-773. doi: 10.1016/j.apsusc.2015.05.063
  32. Thrivikraman G, Athirasala A, Gordon R, et al. Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nat Commun. 2019;10(1):3520. doi: 10.1038/s41467-019-11455-8
  33. Deng B, Huang Z, Zhang X, et al. Durotaxis and topotaxis orchestrated guidance on cell migration in 3D printed scaffold/hydrogel composite. Add Manuf Front. 2024;3:200134. doi: 10.1016/j.amf.2024.200134
  34. Lee H, Yang GH, Kim M, Lee J, Huh J, Kim G. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Mater Sci Eng C. 2018;84:140-147. doi: 10.1016/j.msec.2017.11.013
  35. Shi L, Hu Y, Ullah MW, et al. Cryogenic free-form extrusion bioprinting of decellularized small intestinal submucosa for potential applications in skin tissue engineering. Biofabrication. 2019;11(3):035023. doi: 10.1088/1758-5090/ab15a9
  36. Ravanbakhsh H, Luo Z, Zhang X, et al. Freeform cell-laden cryobioprinting for shelf-ready tissue fabrication and storage. Matter. 2022;5(2):573-593. doi: 10.1016/j.matt.2021.11.020
  37. Lai J, Wang C, Liu J, et al. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with in situ delivery of osteogenic peptide and mesenchymal stem cells. Biofabrication. 2022;14(4):045006. doi: 10.1088/1758-5090/ac84b0
  38. Ping H, Wagermaier W, Horbelt N, et al. Mineralization generates megapascal contractile stresses in collagen fibrils. Science. 2022;376(6589):188-192. doi: 10.1126/science.abm2664

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing