AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025040029
RESEARCH ARTICLE

PLA-based bone tissue engineering scaffolds incorporating hydroxyapatite and bioactive glass using digital light processing

Engin Gepek1,2,3 Fateme Fayyazbakhsh2,4,5* Lev Suliandziga2 Vadym N. Mochalin6,7 Osman Iyibilgin8,9 Yue-Wern Huang5,10 Ming C. Leu2,4,5
Show Less
1 Institute of Natural Sciences, Sakarya University, Sakarya, Turkey
2 Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
3 Mechanical Engineering Department, Turkish-German University, Istanbul, Turkey
4 Intelligence System Center, Missouri University of Science and Technology, Rolla, Missouri, USA
5 Center for Biomedical Research, Missouri University of Science and Technology, Rolla, Missouri, USA
6 Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, USA
7 Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
8 Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOEAMS R&D Group), Sakarya University, Sakarya, Turkey
9 Mechanical Engineering Department, School/Faculty, Sakarya University, Sakarya, Turkey
10 Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, USA
Submitted: 21 January 2025 | Accepted: 26 February 2025 | Published: 26 February 2025
© 2025 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bone tissue engineering (BTE) aims to repair bone defects using biocompatible materials with tailored geometries and pore structures, providing appropriate mechanical support and control over biodegradation kinetics to promote bone growth. In this study, we utilized digital light processing (DLP) 3D printing to fabricate scaffolds with varying pore sizes using polymer–ceramic slurries composed of polylactic acid (PLA) as the main polymer matrix, incorporated with hydroxyapatite (HA) and bioactive borate glass (BBG) at various ratios. We studied the effect of composition on rheological behavior, printability, mechanical properties, bioactivity, degradation rate, and biocompatibility. While HA increased viscosity and reduced printing accuracy, it also improved mechanical properties and bioactivity. BBG increased the hydrophilicity and shape fidelity of the scaffold. Both HA and BBG enhanced the compressive mechanical properties by reinforcing the polymer matrix with ceramic particles. To study the scaffold’s bioactivity, samples were immersed in simulated body fluid for 4 weeks. Both ceramic additives enhanced the bioactivity of PLA scaffolds, evidenced by the formation of a secondary HA layer on the scaffold surface. Among the scaffolds studied, PLA-BBG exhibited the highest osteocyte viability, followed by PLA-HA and then plain PLA samples. Our findings highlight the potential of DLP 3D printing for the fabrication of tailored polymer–ceramic scaffolds for BTE and other biomedical applications.

Graphical abstract
Keywords
Bioactivity
Bioactive borate glass
Biodegradation
Bone tissue engineering
Digital light processing
Hydrophilicity
Hydroxyapatite
Polylactic acid
Funding
This work was supported by TÜBİTAK Directorate of Science Fellowships Grant 2214 Programmes (BİDEB) and a seed grant from the Missouri S&T Center for Biomedical Research.
Conflict of interest
Ming Leu serves as the Editorial Board Member of the journal, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Xue N, Ding X, Huang R, et al. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals. 2022; 15(7):879. doi: 10.3390/ph15070879
  2. Zhang W, Jiang Z, Chi J, et al. A novel porous butyryl chitin– animal derived hydroxyapatite composite scaffold for cranial bone defect repair. Int J Mol Sci. 2023;24(10):8519. doi: 10.3390/ijms24108519
  3. Wei H, Cui J, Lin K, Xie J, Wang X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022;10(1):17. doi: 10.1038/s41413-021-00180-y
  4. Omar O, Engstrand T, Linder LKB, et al. In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design. Proc Natl Acad Sci U S A. 2020;117(43):26660-26671. doi: 10.1073/pnas.2007635117
  5. Xu W, Pranovich A, Uppstu P, et al. Novel biorenewable composite of wood polysaccharide and polylactic acid for three dimensional printing. Carbohydr Polym. 2018;187(January):51-58. doi: 10.1016/j.carbpol.2018.01.069
  6. Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C. 2021;130(July):112466. doi: 10.1016/j.msec.2021.112466
  7. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224-247. doi: 10.1016/j.bioactmat.2017.05.007
  8. Fernandez de Grado G, Keller L, Idoux-Gillet Y, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018;9:2041731418776819. doi: 10.1177/2041731418776819
  9. Oryan A, Alidadi S, Moshiri A. Current concerns regarding healing of bone defects. Hard Tissue. 2013;2(2);13. doi: 10.13172/2050-2303-2-2-374
  10. Murphy CM. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr. 2010;4(3):377-381. doi: 10.4161/cam.4.3.11747
  11. Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL. Three-dimensional plotted scaffolds with controlled pore size gradients : Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 2011;7:1009-1018. doi: 10.1016/j.actbio.2010.11.003
  12. Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds for bone regeneration. J Sci: Adv Mater Devices. 2020;5(1):1-9. doi: 10.1016/j.jsamd.2020.01.007
  13. Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: fabrication, characterization, and in vivo study. Mater Sci Eng C. 2017;76:701-714. doi: 10.1016/j.msec.2017.02.172
  14. Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: an in vitro evaluation. Colloids Surf B Biointerfaces. 2017;158:697-708. doi: 10.1016/j.colsurfb.2017.07.004
  15. Chinnasami H, Dey MK, Devireddy R. Three-dimensional scaffolds for bone tissue engineering. Bioengineering (Basel). 2023;10(7):759. doi: 10.3390/bioengineering10070759
  16. Adel IM, Elmeligy MF, Elkasabgy NA. Conventional and recent trends of scaffolds fabrication: a superior mode for tissue engineering. Pharmaceutics. 2022;14(2):306. doi: 10.3390/pharmaceutics14020306
  17. Percival KM, Paul V, Husseini GA. Recent advancements in bone tissue engineering: integrating smart scaffold technologies and bio-responsive systems for enhanced regeneration. Int J Mol Sci. 2024;25(11):6012. doi: 10.3390/ijms25116012
  18. Nayak VV, Sanjairaj V, Behera RK, et al. Direct inkjet writing of polylactic acid/β‐tricalcium phosphate composites for bone tissue regeneration: a proof‐of‐concept study. J Biomed Mater Res B Appl Biomater. 2024;112(4):e35402. doi: 10.1002/jbm.b.35402
  19. Ait Said H, Mabroum H, Lahcini M, et al. Manufacturing methods, properties, and potential applications in bone tissue regeneration of hydroxyapatite-chitosan biocomposites: a review. Int J Biol Macromol. 2023;243:125150. doi: 10.1016/j.ijbiomac.2023.125150
  20. Aytac Z, Dubey N, Daghrery A, et al. Innovations in craniofacial bone and periodontal tissue engineering–from electrospinning to converged fabrication. Int Mater Rev. 2022;67(4):347-384. doi: 10.1080/09506608.2021.1946236
  21. Germaini MM, Belhabib S, Guessasma S, Deterre R, Corre P, Weiss P. Additive manufacturing of biomaterials for bone tissue engineering – a critical review of the state of the art and new concepts. Prog Mater Sci. 2022;130:100963. doi: 10.1016/j.pmatsci.2022.100963
  22. Mok SW, Nizak R, Fu SC, et al. From the printer: potential of three-dimensional printing for orthopaedic applications. J Orthop Translat. 2016;6:42-49. doi: 10.1016/j.jot.2016.04.003
  23. Zadpoor AA. Bone tissue regeneration: the role of scaffold geometry. Biomater Sci. 2015;3(2):231-245. doi: 10.1039/c4bm00291a
  24. Cheah CM, Chua CK, Leong KF, Cheong CH, Naing MW. Automatic algorithm for generating complex polyhedral scaffold structures for tissue engineering. Tissue Eng. 2004;10(3-4):595-610. doi: 10.1089/107632704323061951
  25. Chua CK, Leong KF, Cheah CM, Chua SW. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: investigation and classification. Int J Adv Manuf Technol. 2003;21(4):291-301. doi: 10.1007/s001700300034
  26. Jia Z, Xu X, Zhu D, Zheng Y. Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Prog Mater Sci. 2023;134:101072. doi: 10.1016/j.pmatsci.2023.101072
  27. Kadry H, Wadnap S, Xu C, Ahsan F. Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur J Pharm Sci. 2019;135:60-67. doi: 10.1016/j.ejps.2019.05.008
  28. Mohammed AA, Algahtani MS, Ahmad MZ, Ahmad J, Kotta S. 3D printing in medicine: technology overview and drug delivery applications. Ann 3D Printed Med. 2021;4:100037. doi: 10.1016/j.stlm.2021.100037
  29. Lv Y, Wang B, Liu G, et al. Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: a review. Front Bioeng Biotechnol. 2021;9:641130. doi: 10.3389/fbioe.2021.641130
  30. Zeng Y, Yan Y, Yan H, et al. 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing. J Mater Sci. 2018;53(9):6291-6301. doi: 10.1007/s10853-018-1992-2
  31. İyibilgin O, Gepek E. Additive manufacturing technologies and its future in industrial applications. Int J Integr Eng. 2021;13(5):245-257. doi: 10.30880/ijie.2021.13.07.028
  32. Arifin N, Sudin I, Ngadiman NHA, Ishak MSA. A comprehensive review of biopolymer fabrication in additive manufacturing processing for 3D-tissue-engineering scaffolds. Polymers (Basel). 2022;14(10):2119. doi: 10.3390/polym14102119
  33. Yao Q, Cosme JGL, Xu T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115-127. doi: 10.1016/j.biomaterials.2016.11.018
  34. Fayyazbakhsh F, Khayat MJ, Sadler C, Day D, Huang YW, Leu MC. 3D-printed hydrogels dressings with bioactive borate glass for continuous hydration and treatment of second-degree burns. Int J Bioprint. 2023;9(6):0118. doi: 10.36922/ijb.0118
  35. Caroline M, Kolan K, Li W, Semon J, Day D, Leu M. 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. Int J Bioprint. 2017;3(1):53-63. doi: 10.18063/IJB.2017.01.005
  36. Fayyazbakhsh F, Solati-Hashjin M, Shokrgozar MA, et al. Biological evaluation of a novel tissue engineering scaffold of Layered Double Hydroxides (LDHs). Key Eng Mater. 2012;493-494:902-908. doi: 10.4028/www.scientific.net/KEM.493-494.902
  37. Zhang Q, Mochalin VN, Neitzel I, et al. Mechanical properties and biomineralization of multifunctional nanodiamond- PLLA composites for bone tissue engineering. Biomaterials. 2012;33(20):5067-5075. doi: 10.1016/j.biomaterials.2012.03.063
  38. Zhang Q, Mochalin VN, Neitzel I, et al. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials. 2011;32(1):87-94. doi: 10.1016/j.biomaterials.2010.08.090
  39. Siavashani AZ, Nazarpak MH, Bakhsh FF, Toliyat T, Solati- Hashjin M. Preparation of mesoporous silica nanoparticles for insulin drug delivery. Adv Mat Res. 2014;829:251-257. doi: 10.4028/www.scientific.net/amr.829.251
  40. Azari Z, Kermani F, Mollazadeh S, et al. Fabrication and characterization of cobalt- and copper-doped mesoporous borate bioactive glasses for potential applications in tissue engineering. Ceram Int. 2023;49(23):38773-38788. doi: 10.1016/j.ceramint.2023.09.214
  41. Liang R, Gu Y, Wu Y, Bunpetch V, Zhang S. Lithography-based 3D bioprinting and bioinks for bone repair and regeneration. ACS Biomater Sci Eng. 2021;7(3):806-816. doi: 10.1021/acsbiomaterials.9b01818
  42. Zhang B, Xing F, Chen L, et al. DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration. Biomater Adv. 2023; 145:213261. doi: 10.1016/j.bioadv.2022.213261
  43. Wang Y, Chen S, Liang H, Liu Y, Bai J, Wang M. Digital light processing (DLP) of nano biphasic calcium phosphate bioceramic for making bone tissue engineering scaffolds. Ceram Int. 2022;48(19):27681-27692. doi: 10.1016/j.ceramint.2022.06.067
  44. Ghahri T, Salehi Z, Aghajanpour S, et al. Development of osteon-like scaffold-cell construct by quadruple coaxial extrusion-based 3D bioprinting of nanocomposite hydrogel. Biomater Adv. 2023;145:213254. doi: 10.1016/j.bioadv.2022.213254
  45. Alam F, Shukla VR, Varadarajan KM, Kumar S. Microarchitected 3D printed polylactic acid (PLA) nanocomposite scaffolds for biomedical applications. J Mech Behav Biomed Mater. 2020;103:103576. doi: 10.1016/j.jmbbm.2019.103576
  46. Li N, Li Y, Liu S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J Mater Process Technol. 2016;238:218-225. doi: 10.1016/j.jmatprotec.2016.07.025
  47. Bernardo MP, da Silva BCR, Hamouda AEI, et al. PLA/ Hydroxyapatite scaffolds exhibit in vitro immunological inertness and promote robust osteogenic differentiation of human mesenchymal stem cells without osteogenic stimuli. Sci Rep. 2022;12(1):1-15. doi: 10.1038/s41598-022-05207-w
  48. Horvat G, Rožanc J, Maver U, Finšgar M, Knez Ž, Novak Z. Reinforcing ethyl cellulose aerogels with poly(lactic acid) for enhanced bone regeneration. Cellulose. 2024;31:4421-4439. doi: 10.1007/s10570-024-05905-w
  49. Hassanajili S, Karami-Pour A, Oryan A, Talaei-Khozani T. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;104:109960. doi: 10.1016/j.msec.2019.109960
  50. Türk S, Altınsoy İ, ÇelebiEfe G, Ipek M, Özacar M, Bindal C. Microwave–assisted biomimetic synthesis of hydroxyapatite using different sources of calcium. Mater Sci Eng C. 2017;76:528-535. doi: 10.1016/j.msec.2017.03.116
  51. Rajendran AK, Anthraper MSJ, Hwang NS, Rangasamy J. Osteogenesis and angiogenesis promoting bioactive ceramics. Mater Sci Eng R: Rep. 2024;159:100801. doi: 10.1016/j.mser.2024.100801
  52. Abodunrin OD, El Mabrouk K, Bricha M. A review on borate bioactive glasses (BBG): effect of doping elements, degradation, and applications. J Mater Chem B. 2023;11(5):955-973. doi: 10.1039/d2tb02505a
  53. Mistry S, Kundu D, Datta S, Basu D. Comparison of bioactive glass coated and hydroxyapatite coated titanium dental implants in the human jaw bone. Aust Dent J. 2011;56(1):68-75. doi: 10.1111/j.1834-7819.2010.01305.x
  54. Aslam AA, Akram J, Mehmood RA, et al. Boron-based bioactive glasses: properties, processing, characterization and applications. Ceram Int. 2023;49(12):19595-19605. doi: 10.1016/j.ceramint.2023.03.164
  55. Han J, Wu J, Xiang X, et al. Biodegradable BBG/PCL composite scaffolds fabricated by selective laser sintering for directed regeneration of critical-sized bone defects. Mater Des. 2023;225:111543. doi: 10.1016/j.matdes.2022.111543
  56. Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3(3):278-314. doi: 10.1016/j.bioactmat.2017.10.001
  57. Ege D, Zheng K, Boccaccini AR. Borate bioactive glasses (BBG): bone regeneration, wound healing applications, and future directions. ACS Appl Bio Mater. 2022;5(8):3608-3622. doi: 10.1021/acsabm.2c00384
  58. Fayyazbakhsh F, Tusar HM, Huang YW, Leu CM. Effect of bioactive borate glass on printability and physical properties of hydrogels. Mater Sci Addit Manuf. 2024;3(1):2845. doi: 10.36922/msam.2845
  59. Lin YM, Chen H, Lin CH, Huang PJ, Lee SY. Development of polycaprolactone/hydroxyapatite composite resin for 405 nm digital light projection 3D printing. Rapid Prototyp J. 2020;26(5):951-958. doi: 10.1108/RPJ-06-2019-0166
  60. Song P, Li M, Zhang B, et al. DLP fabricating of precision GelMA/HAp porous composite scaffold for bone tissue engineering application. Compos B Eng. 2022; 244:110163. doi: 10.1016/j.compositesb.2022.110163
  61. Gepek E, Fayyazbakhsh F, Iyibilgin O, Suliandziga L, Leu M. PLA-HA/BBG composite scaffolds fabricated by digital-light-processing 3D printing for cranial bone regeneration. In: Proceedings of the 35th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference. University of Texas at Austin; 2024. doi: 10.26153/tsw/58069
  62. Vieira BM, Costa M de O, Thiré RM da S, Araujo AC. Comparison of the porosity of scaffolds manufactured by two additive manufacturing technologies: SLA and FDM. In: 24th ABCM International Congress of Mechanical Engineering; 2018.
  63. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15): 2907-2915. doi: 10.1016/j.biomaterials.2006.01.017
  64. Zhang J, Huang D, Liu S, et al. Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Mater Sci Eng C. 2019;105:110054. doi: 10.1016/j.msec.2019.110054
  65. Xu X, Zhou S, Wu J, Zhang C, Liu X. Inter-particle interactions of alumina powders in UV-curable suspensions for DLP stereolithography and its effect on rheology, solid loading, and self-leveling behavior. J Eur Ceram Soc. 2021;41(4):2763-2774. doi: 10.1016/j.jeurceramsoc.2020.12.004
  66. Wu D, Spanou A, Diez-Escudero A, Persson C. 3D-printed PLA/HA composite structures as synthetic trabecular bone: a feasibility study using fused deposition modeling. J Mech Behav Biomed Mater. 2020;103:103608. doi: 10.1016/j.jmbbm.2019.103608
  67. Tanase-Opedal M, Espinosa E, Rodríguez A, Chinga- Carrasco G. Lignin: a biopolymer from forestry biomass for biocomposites and 3D printing. Materials. 2019; 12(18):3006. doi: 10.3390/ma12183006
  68. Nim B, Rahayu SS, Thananukul K, et al. Sizing down and functionalizing polylactide (PLA) resin for synthesis of PLA ‑based polyurethanes for use in biomedical applications. Sci Rep. 2023;13(1):2284. doi: 10.1038/s41598-023-29496-x
  69. Liu S, Zheng Y. Preparation and characterization of a novel polylactic acid / hydroxyapatite composite scaffold with biomimetic micro-nano fi brous porous structure. J Mater Sci Mater Med. 2020;31(8):74. doi: 10.1007/s10856-020-06415-4
  70. Mofokeng JP, Luyt AS, Tábi T, Kovács J. Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. J Thermoplastic Compos Mater. 2012;25(8):927-948. doi: 10.1177/0892705711423291
  71. González-Benito J, Zuñiga-Prado S, Najera J, Olmos D. Non-woven fibrous polylactic acid/hydroxyapatite nanocomposites obtained via solution blow spinning: morphology, thermal and mechanical behavior. Nanomaterials. 2024;14(2):196. doi: 10.3390/nano14020196
  72. Alam K, Gafur MA, Md. Hasan Mahmud KAS. Chemical characteristics of hydroxyapatite from oyster shell by thermo-chemical process. Int J Innov Res Sci Eng Technol. 2015;04(07):5039-5047. doi: 10.15680/IJIRSET.2015.0407002
  73. Umapathi R, Lim JH. Effect of infill pattern and lattice structure on the mechanical properties of 3d printed metal polylactide filament. J Phys Conf Ser. 2021;2120(1):012019. doi: 10.1088/1742-6596/2120/1/012019
  74. Vu MC, Jeong T, Kim J, Choi WK, Kim DH, Kim S. 3D printing of copper particles and poly(methyl methacrylate) beads containing poly(lactic acid) composites for enhancing thermomechanical properties. J Appl Polym Sci. 2021;138(5):1-10. doi: 10.1002/app.49776
  75. Ruz-Cruz MA, Herrera-Franco PJ, Flores-Johnson EA, Moreno-Chulim MV, Galera-Manzano LM, Valadez- González A. Thermal and mechanical properties of PLA-based multiscale cellulosic biocomposites. J Mater Res Technol. 2022;18:485-495. doi: 10.1016/j.jmrt.2022.02.072
  76. Inkinen S, Hakkarainen M, Albertsson AC, Södergård A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules. 2011;12(3):523-532. doi: 10.1021/bm101302t
  77. Akindoyo JO, Beg MDH, Ghazali S, Heim HP, Feldmann M. Impact modified PLA-hydroxyapatite composites – thermo-mechanical properties. Compos Part A Appl Sci Manuf. 2018;107:326-333. doi: 10.1016/j.compositesa.2018.01.017
  78. El-Hajje A, Kolos EC, Wang JK, et al. Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications. J Mater Sci Mater Med. 2014;25(11):2471-2480. doi: 10.1007/s10856-014-5277-2
  79. Koushik TM, Miller CM, Antunes E. Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds. Adv Healthc Mater. 2023;12(9):e2202766. doi: 10.1002/adhm.202202766
  80. Liu K, Zhou C, Hu J, et al. Fabrication of barium titanate ceramics via digital light processing 3D printing by using high refractive index monomer. J Eur Ceram Soc. 2021;41(12):5909-5917. doi: 10.1016/j.jeurceramsoc.2021.04.044
  81. Liang H, Wang Y, Chen S, Liu Y, Liu Z, Bai J. Nano-hydroxyapatite bone scaffolds with different porous structures processed by digital light processing 3D printing. Int J Bioprint. 2022;8(1):198-210. doi: 10.18063/IJB.V8I1.502
  82. Zhang Q, Weng S, Hamel CM, et al. Design for the reduction of volume shrinkage-induced distortion in digital light processing 3D printing. Extreme Mech Lett. 2021;48:101403. doi: doi: 10.1016/j.eml.2021.101403
  83. Jian Y, He Y, Jiang T, Li C, Yang W, Nie J. Polymerization shrinkage of (Meth) acrylate determined by reflective laser beam scanning. J Polym Sci B Polym Phys. 2012;50:923-928. doi: 10.1002/polb.23086
  84. Jaidev LR, Chatterjee K. Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Mater Des. 2019;161:44-54. doi: 10.1016/j.matdes.2018.11.018
  85. Mu M, Liu S, DeFlorio W, et al. Influence of surface roughness, nanostructure, and wetting on bacterial adhesion. Langmuir. 2023;39(15):5426-5439. doi: 10.1021/acs.langmuir.3c00091
  86. Subramaniyan M, Karuppan S, Helaili S, Ahmad I. Structural, mechanical, and in-vitro characterization of hydroxyapatite loaded PLA composites. J Mol Struct. 2024;1306:137862. doi: 10.1016/j.molstruc.2024.137862
  87. Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010;3(7):3867-3910. doi: 10.3390/ma3073867
  88. Darghiasi SF, Farazin A, Ghazali HS. Design of bone scaffolds with calcium phosphate and its derivatives by 3D printing: a review. J Mech Behav Biomed Mater. 2024;151:106391. doi: 10.1016/j.jmbbm.2024.106391
  89. Abushahba F, Tuukkanen J, Aalto-Setälä L, Miinalainen I, Hupa L, Närhi TO. Effect of bioactive glass air-abrasion on the wettability and osteoblast proliferation on sandblasted and acid-etched titanium surfaces. Eur J Oral Sci. 2020;128(2):160-169. doi: 10.1111/eos.12683
  90. Nazeer MA, Onder OC, Sevgili I, Yilgor E, Kavakli IH, Yilgor I. 3D printed poly(lactic acid) scaffolds modified with chitosan and hydroxyapatite for bone repair applications. Mater Today Commun. 2020;25:101515. doi: 10.1016/j.mtcomm.2020.101515
  91. Donate R, Monzón M, Alemán-Domínguez ME. Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-Polymers. 2020;20(1):571-599. doi: 10.1515/epoly-2020-0046
  92. Manzoor F, Golbang A, Jindal S, et al. 3D printed PEEK/ HA composites for bone tissue engineering applications: effect of material formulation on mechanical performance and bioactive potential. J Mech Behav Biomed Mater. 2021;121:104601. doi: 10.1016/j.jmbbm.2021.104601
  93. Amaravathy P, Kumar TSSS. Bioactivity enhancement by Sr doped Zn-Ca-P coatings on biomedical magnesium alloy. J Mag Alloys. 2019;7(4):584-596. doi: 10.1016/j.jma.2019.05.014
  94. Hadjittofis E, Vargas SM, Litster JD, Campbell KLS. Exploring the role of crystal habit in the Ostwald rule of stages. Proc Math Phys Eng Sci. 2022;478(2258):20210601. doi: 10.1098/rspa.2021.0601
  95. Guo X, Liu L, Wang W, Zhang J, Wang Y, Yu SH. Controlled crystallization of hierarchical and porous calcium carbonate crystals using polypeptide type block copolymer as crystal growth modifier in a mixed solution. CrystEngComm. 2011;13(6):2054-2061. doi: 10.1039/c0ce00202j
  96. Cheng H, Zhang X, Song H. Morphological investigation of calcium carbonate during ammonification-carbonization process of low concentration calcium solution. J Nanomater. 2014;503696:1-7. doi: 10.1155/2014/503696
  97. Liu H, Yazici H, Ergun C, Webster TJ, Bermek H. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater. 2008;4(5):1472-1479. doi: 10.1016/j.actbio.2008.02.025
  98. He YH, Zhang YQ, Jiang YH, Zhou R. Microstructure evolution and enhanced bioactivity of Ti-Nb-Zr alloy by bioactive hydroxyapatite fabricated: via spark plasma sintering. RSC Adv. 2016;6(103):100939-100953. doi: 10.1039/c6ra22986g
  99. Fiume E, Tulyaganov D, Ubertalli G, Verné E, Baino F. Dolomite-foamed bioactive silicate scaffolds for bone tissue repair. Materials. 2020;13(3):1-13. doi: 10.3390/ma13030628
  100. Ma P, Wu W, Wei Y, Ren L, Lin S, Wu J. Biomimetic gelatin/chitosan/polyvinyl alcohol/nano-hydroxyapatite scaffolds for bone tissue engineering. Mater Des. 2021; 207:109865. doi: 10.1016/j.matdes.2021.109865
  101. Wang Q, Wang Q, Wan C. Preparation and evaluation of a biomimetic scaffold with porosity gradients in vitro. An Acad Bras Cienc. 2012;84(1):9-16. doi: 10.1590/S0001-37652012005000003
  102. Mohammadkhah M, Marinkovic D, Zehn M, Checa S. A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration. Bone. 2019;127:544-555. doi: 10.1016/j.bone.2019.07.024
  103. Zhang K, Alaohali A, Sawangboon N, Sharpe PT, Brauer DS, Gentleman E. A comparison of lithium-substituted phosphate and borate bioactive glasses for mineralised tissue repair. Dent Mater. 2019;35(6):919-927. doi: 10.1016/j.dental.2019.03.008
  104. Marquardt LM, Day D, Sakiyama-Elbert SE, Harkins AB. Effects of borate-based bioactive glass on neuron viability and neurite extension. J Biomed Mater Res A. 2014;102(8):2767-2775. doi: 10.1002/jbm.a.34944
  105. Haro Durand LA, Vargas GE, Romero NM, et al. Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J Mater Chem B. 2015;3(6):1142-1148. doi: 10.1039/c4tb01840k
  106. Shafaghi R, Rodriguez O, Phull S, et al. Effect of TiO2 doping on degradation rate, microstructure and strength of borate bioactive glass scaffolds. Mater Sci Eng C. 2020;107:110351. doi: 10.1016/j.msec.2019.110351
  107. Decker S, Arango-Ospina M, Rehder F, et al. In vitro and in vivo impact of the ionic dissolution products of boron-doped bioactive silicate glasses on cell viability, osteogenesis and angiogenesis. Sci Rep. 2022;12(1):8510. doi: 10.1038/s41598-022-12430-y
  108. Luo SH, Xiao W, Wei XJ, et al. In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass. J Biomed Mater Res B Appl Biomater. 2010;95B(2):441-448. doi: 10.1002/jbm.b.31735

 

 

 

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing