AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.8577
RESEARCH ARTICLE

Computational investigation of a 3D-printed osteochondral interface scaffold with comprehensive interfacial mechanical properties

Kaicheng Yu1,2 Qiang Gao1,2* Yanling Mi1,2 Yifeng Yao1,2 Zexue Lin1,2 Min Zhu2,3 Peng Zhang1,2 Swee Leong Sing4* Lihua Lu1,2*
Show Less
1 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
2 Chongqing Research Institute of HIT, Chongqing, China
3 School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China
4 Department of Mechanical Engineering, National University of Singapore, Singapore
Submitted: 17 January 2025 | Accepted: 12 February 2025 | Published: 12 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Osteoarthritis is a highly prevalent rheumatic musculoskeletal disorder that often results in both physiological dysfunction and psychological distress. Although many tissue engineering approaches have been proposed for tissue regeneration, the mechanical properties of many scaffolds remain insufficient to fully meet the mechanical demands within the joint. This paper presents a computational investigation and structural design for creating an osteochondral interface scaffold using extrusion-based 3D printing. A finite element method-based mechanics simulation model was employed to evaluate the effects of load-bearing forces on various scaffold designs, enabling the analysis of stress distribution within the biomimetic osteochondral interface. Several structures of osteochondral interface scaffolds were fabricated, demonstrating controllable mechanical properties. The proposed biomimetic osteochondral interface manifested comprehensive mechanical performance, with bonding strength, compressive strength, and shear strength reaching 128, 277, and 276 kPa, respectively. Our research can benefit the future development in tissue engineering and regenerative medicine.

Graphical abstract
Keywords
Computational modeling
Extrusion-based 3D printing
Mechanical properties
Osteochondral interface
Funding
The authors deeply acknowledge the financial support from the Key Research and Development Plan Project of Heilongjiang Province [Grant No. 2022ZX02C22]; the Science and Technology Innovation Talent Project on Manufacturing Industry of Harbin [Grant No. 2023HBRCGD011 and 2022CXRCGD029]; the Interdisciplinary Research Foundation of HIT [Grant No. IR2021223]; and the Natural Science Foundation of Chongqing [Grant No. CSTB2023NSCQ-MSX0822].
Conflict of interest
Swee Leong Sing is the Editorial Board Member of the journal, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. The authors declare they have no competing interests.
References
  1. Nukavarapu SP, Dorcemus DL. Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv. 2013;31(5):706-721. doi: 10.1016/j.biotechadv.2012.11.004
  2. Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part II. Arthritis Rheum. 2008;58(1):26-35. doi: 10.1002/art.23176
  3. James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789-1858. doi: 10.1016/S0140-6736(18)32279-7
  4. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med. 2010;26(3):355-369. doi: 10.1016/j.cger.2010.03.001
  5. Safiri S, Kolahi A, Smith E, et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis. 2020;79(6):819-828. doi: 10.1136/annrheumdis-2019-216515
  6. Hasegawa Y, Iwata H, Mizuno M, Genda E, Sato S, Miura T. The natural course of osteoarthritis of the hip due to subluxation or acetabular dysplasia. Arch Orthop Traum Surg. 1992;111(4):187-191. doi: 10.1007/BF00571474
  7. Jeon OH, David N, Campisi J, Elisseeff JH. Senescent cells and osteoarthritis: a painful connection. J Clin Invest. 2018;128(4):1229-1237. doi: 10.1172/JCI95147
  8. Wang Z, Le H, Wang Y, et al. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater. 2022;11:317-338. doi: 10.1016/j.bioactmat.2021.10.002
  9. Nguyen D, Hägg DA, Forsman A, et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep. 2017;7(1):658. doi: 10.1038/s41598-017-00690-y
  10. Walter H, Kawashima A, Nebelung W, Neumann W, Roessner A. Immunohistochemical analysis of several proteolytic enzymes as parameters of cartilage degradation. Pathol Res Pract. 1998;194(2):73-81. doi: 10.1016/S0344-0338(98)80073-3
  11. Hu Y, Chen X, Wang S, Jing Y, Su J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 2021;9(1):20. doi: 10.1038/s41413-021-00147-z
  12. Li G, Yin J, Gao J, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther. 2013;15(6):223. doi: 10.1186/ar4405
  13. Mandl LA. Osteoarthritis year in review 2018: clinical. Osteoarthr Cartilage. 2019;27(3):359-364. doi: 10.1016/j.joca.2018.11.001
  14. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;391(391 Suppl):S362-S369. doi: 10.1097/00003086-200110001-00033
  15. Chimutengwende-Gordon M, Donaldson J, Bentley G. Current solutions for the treatment of chronic articular cartilage defects in the knee. EFORT Open Rev. 2020;5(3):156-163. doi: 10.1302/2058-5241.5.190031
  16. Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Brit Med Bull. 2008;87(1):77-95. doi: 10.1093/bmb/ldn025
  17. Di Luca A, Lorenzo Moldero I, Mota C, et al. Tuning cell differentiation into a 3D scaffold presenting a pore shape gradient for osteochondral regeneration. Adv Healthc Mater. 2016;5(14):1753-1763. doi: 10.1002/adhm.201600083
  18. Di Luca A, Longoni A, Criscenti G, et al. Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration. Biofabrication. 2016;8(1):015014. doi: 10.1088/1758-5090/8/1/015014
  19. Martin I, Miot S, Barbero A, Jakob M, Wendt D. Osteochondral tissue engineering. J Biomech. 2007;40(4): 750-765. doi: 10.1016/j.jbiomech.2006.03.008
  20. Zhang X, Li Z, Yang P, et al. Polyphenol scaffolds in tissue engineering. Mater Horiz. 2021;8(1):145-167. doi: 10.1039/D0MH01317J
  21. Gao Q, Yu K, Chen F, Lu L, Zhang P. Investigation on the temperature distribution uniformity of an extrusion-based 3D print head and its temperature control strategy. Pharmaceutics. 2022;14(10):2108. doi: 10.3390/pharmaceutics14102108
  22. Yu K, Gao Q, Lu L, Zhang P. A process parameter design method for improving the filament diameter accuracy of extrusion 3D printing. Materials. 2022;15(7):2454. doi: 10.3390/ma15072454
  23. Galarraga JH, Kwon MY, Burdick JA. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Sci Rep. 2019;9(1):19987. doi: 10.1038/s41598-019-56117-3
  24. Choe R, Devoy E, Jabari E, Packer JD, Fisher JP. Biomechanical aspects of osteochondral regeneration: implications and strategies for three-dimensional bioprinting. Tissue Eng Part B Rev. 2022;28(4):766-788. doi: 10.1089/ten.teb.2021.0101
  25. Chen L, Deng C, Li J, et al. 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials. 2019;196:138-150. doi: 10.1016/j.biomaterials.2018.04.005
  26. Akizuki S, Mow VC, Muller F, Pita JC, Howell DS, Manicourt DH. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res. 1986; 4(4):379-392. doi: 10.1002/jor.1100040401
  27. Poole A, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage - a template for tissue repair. Clin Orthop Relat Res. 2001;(391 Suppl):S26-S33 doi: 10.1097/00003086-200110001-00004
  28. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461-468. doi: 10.1177/1941738109350438
  29. Smith MR, Kawcak CE, McIlwraith CW. Science in brief: report on the Havemeyer Foundation workshop on subchondral bone problems in the equine athlete. Equine Vet J. 2016;48(1):6-8. doi: 10.1111/evj.12518
  30. Kazemi M, Williams JL. Properties of cartilage–subchondral bone junctions: a narrative review with specific focus on the growth plate. Cartilage. 2021;13(2_suppl): 16S-33S. doi: 10.1177/1947603520924776
  31. Chen Y, Hu Y, Yu YE, et al. Subchondral trabecular rod loss and plate thickening in the development of osteoarthritis. J Bone Miner Res. 2018;33(2):316-327. doi: 10.1002/jbmr.3313
  32. Yang PJ, Temenoff JS. Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev. 2009; 15(2):127-141. doi: 10.1089/ten.teb.2008.0371
  33. Oegema T, Carpenter R, Hofmeister F, Thompson R. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech. 1997;37(4):324-332. doi: 10.1002/(SICI)1097-0029(19970515)37:4<324::AID-JEMT7>3.0.CO;2-K
  34. Scotti C, Wirz D, Wolf F, et al. Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds. Biomaterials. 2010;31(8):2252-2259. doi: 10.1016/j.biomaterials.2009.11.110
  35. Mekhileri NV, Lim KS, Brown G, et al. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication. 2018;10(2):024103. doi: 10.1088/1758-5090/aa9ef1
  36. Bittner SM, Smith BT, Diaz-Gomez L, et al. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater. 2019;90:37-48. doi: 10.1016/j.actbio.2019.03.041
  37. Choe R, Devoy E, Kuzemchak B, et al. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering. Biofabrication. 2022;14(2):10.1088/1758-5090/ac5220. doi: 10.1088/1758-5090/ac5220
  38. Zhang W, Lian Q, Li D, et al. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing. Mater Sci Eng C. 2015;46:10-15. doi: 10.1016/j.msec.2014.09.042
  39. Schaefer D, Martin I, Jundt G, et al. Tissue‐engineered composites for the repair of large osteochondral defects. Arthritis Rheum. 2002;46(9):2524-2534. doi: 10.1002/art.10493
  40. Bertassoni LE, Coelho PG. Preface: engineering mineralized and load-bearing tissues: progress and challenges. Adv Exp Med Biol. 2015;881:v-vii. doi: 10.1007/978-3-319-22345-2
  41. Zhou L, GJVM VO, Malda J, et al. Innovative tissue‐engineered strategies for osteochondral defect repair and regeneration: current progress and challenges. Adv Healthc Mater. 2020;9(23):e2001008. doi: 10.1002/adhm.202001008
  42. Richbourg NR, Wancura M, Gilchrist AE, et al. Precise control of synthetic hydrogel network structure via linear, independent synthesis-swelling relationships. Sci Adv. 2021;7(7):eabe3245. doi: 10.1126/sciadv.abe3245
  43. Yang Z, Wu Y, Li C, et al. Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold. Tissue Eng Part A. 2012;18(3-4):242-251. doi: 10.1089/ten.TEA.2011.0315
  44. Duan R, Wang Y, Zhang Y, et al. Blending with poly(l-lactic acid) improves the printability of poly(l-lactide-co-caprolactone) and enhances the potential application in cartilage tissue engineering. ACS Omega. 2021;6(28):18300-18313. doi: 10.1021/acsomega.1c02190
  45. Qiao Z, Zhang W, Jiang H, Li X, An W, Yang H. 3D-printed composite scaffold with anti-infection and osteogenesis potential against infected bone defects. RSC Adv. 2022;12(18):11008-11020. doi: 10.1039/d2ra00214k
  46. Sta Agueda JRH, Chen Q, Maalihan RD, et al. 3D printing of biomedically relevant polymer materials and biocompatibility. MRS Commun. 2021;11(2):197-212. doi: 10.1557/s43579-021-00038-8

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing