AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.7806
RESEARCH ARTICLE

Effect of PCL/HA material characteristics on the degradation and mechanical properties of interbody fusion cages

Zhiwei Jiao1,2 Haozheng Yang1 Hanlin Zou3,4 Yuan Yu1 Weimin Yang1,2 Hao Liu1 Tianyu Liu3,4 Dong Chen3 Haibo Zou3*
Show Less
1 College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China
2 State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
3 Spine Division of Orthopaedic Department, China-Japan Friendship Hospital, Beijing, China
4 Department of Orthopedics, Capital Medical University, Beijing, China
Submitted: 17 December 2024 | Accepted: 10 February 2025 | Published: 10 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Interbody fusion cages are key implants in spinal interbody fusion surgeries. For the novel biodegradable interbody fusion cages that can be gradually absorbed and replaced in the body, the formulation system of the materials plays a crucial role in their long-term biocompatibility and mechanical stability. In this study, PCL/ HA composites with high hydroxyapatite (HA) mass fractions (25, 30, 35, 40%) and different polycaprolactone (PCL) molecular weights (50 and 80 kDa) were fabricated. Biodegradable PCL/HA interbody fusion cages of different material systems were printed by polymer melt differential three-dimensional (3D) printing technology. In vitro degradation tests were conducted in a simulated in vivo environment to quantitatively analyze the stability and degradation behavior of PCL/HA interbody fusion cages with different material compositions and molecular weights in an artificially simulated body fluid environment, and their mechanical properties under loads. The cytotoxicity assays of the material were also conducted. The findings revealed that the degradation rate of the interbody fusion cage accelerated as the HA content increased. The strength and stiffness of each material system exceeded the minimum requirement for human cancellous bone. When the HA content was the same, the degradation rate of the high molecular weight (80 kDa) interbody fusion cage was faster compared to that of the 50 kDa molecular weight cage. When the HA mass fraction was below 30wt%, the compressive strength and compressive modulus of the fusion cage increased with increasing HA content. However, when the HA mass fraction exceeded 30wt%, the mechanical properties of the fusion cage worsened with higher HA content. A comparative analysis of material properties indicated that when the HA content was 30wt%, the fusion cage exhibited a moderate degradation rate, high compressive strength and modulus, and excellent 3D printing performance, making it the formulation system with the best overall performance. In addition, the PCL material, which was also used in most literature, exhibited varying levels of cytotoxicity depending on the cytotoxicity testing method. Further animal implantation experiments of spinal fusion cages require the selection of medical-grade implant materials.

 

Graphical abstract
Keywords
Interbody fusion cage
Polycaprolactone
Hydroxyapatite
Biocompatibility
Biodegradable
Mechanical property
Funding
This work is supported by the Beijing Natural Science Foundation (L212047) and the National Natural Science Foundation of China (52171149), under the “Research on the Mechanism of 3D Printing Degradable Spinal Interbody Fusion Cage’s Osteogenic Activity” and “Basic research on amorphous nanocrystalline magnetic powder 3D direct printing technology based on polymer bonding and its application” projects, respectively.
Conflict of interest
All authors declare that they have no competing interests.
References
  1. Wei X, Han T, Qi B, et al. Thinking and practice of integrated Chinese and Western medicine for the treatment of degenerative diseases of the spine. China J Orthop Traumatol. 2023;36(04):345-347. doi: 10.12200/j.issn.1003-0034.2023.04.009
  2. Verma R, Virk S, Qureshi S. Interbody fusions in the lumbar spine: a review. HSS J. 2020;16(2):162-167. doi: 10.1007/s11420-019-09737-4
  3. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):2-18. doi: 10.3978/j.issn.2414-469X.2015.10.05
  4. Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: current concepts and future directions. Biomaterials. 2022;288:121699. doi: 10.1016/j.biomaterials.2022.121699
  5. Koutserimpas C, Alpantaki K, Chatzinikolaidou M, Chlouverakis G, Dohm M, Hadjipavlou AG. The effectiveness of biodegradable instrumentation in the treatment of spinal fractures. Injury. 2018;49(12):2111-2120. doi: 10.1016/j.injury.2018.11.008
  6. Daskalakis E, Liu F, Huang B, et al. Investigating the influence of architecture and material composition of 3D printed anatomical design scaffolds for large bone defects. Int J Bioprint. 2021;7(2):268. doi: 10.18063/ij;b.v7i2.268
  7. Han X, Gao Y, Ding Y, et al. In vitro performance of 3D printed PCL −β -TCP degradable spinal fusion cage. J Biomater Appl. 2021;35(10):1304-1314. doi: 10.1177/0885328220978492
  8. Lewandrowski KU, Vira S, Elfar JC, Lorio MP. Advancements in custom 3D-printed titanium interbody spinal fusion cages and their relevance in personalized spine care. J Pers Med. 2024;14(8):809. doi: 10.3390/jpm14080809
  9. Donaldson C, Santro T, Awad M, Morokoff A. 3D-printed titanium alloy cage in anterior and lateral lumbar interbody fusion for degenerative lumbar spine disease. J Spine Surg. 2024;10(1):22-29. doi: 10.21037/jss-23-120
  10. Takeuchi S, Inoue T, Takahashi T, Kanematsu R, Minami M, Hanakita J. The effectiveness of tritanium cages in preventing osteolytic vertebral endplate cysts after lumbar interbody fusion. World Neurosurg. 2024;184: e803-e808. doi: 10.1016/j.wneu.2024.02.055
  11. Kersten RF, van Gaalen SM, de Gast A, Öner FC. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J. 2015;15(6):1446-1460. doi: 10.1016/j.spinee.2013.08.030
  12. Tan JH, Cheong CK, Hey HWD. Titanium (Ti) cages may be superior to polyetheretherketone (PEEK) cages in lumbar interbody fusion: a systematic review and meta-analysis of clinical and radiological outcomes of spinal interbody fusions using Ti versus PEEK cages. Eur Spine J. 2021;30(5):1285-1295. doi: 10.1007/s00586-021-06748-w
  13. Adl Amini D, Okano I, Oezel L, et al. Evaluation of cage subsidence in standalone lateral lumbar interbody fusion: novel 3D-printed titanium versus polyetheretherketone (PEEK) cage. Eur Spine J. 2021;30(8):2377-2384. doi: 10.1007/s00586-021-06912-2
  14. Chou YC, Chen DC, Hsieh WA, et al. Efficacy of anterior cervical fusion: comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts. J Clin Neurosci. 2008;15(11): 1240-1245. doi: 10.1016/j.jocn.2007.05.016
  15. Phan K, Pelletier MH, Rao PJ, Choy WJ, Walsh WR, Mobbs RJ. Integral fixation titanium/polyetheretherketone cages for cervical arthrodesis: evolution of cage design and early radiological outcomes and fusion rates. Orthop Surg. 2019;11(1):52-59. doi: 10.1111/os.12413
  16. Karikari IO, Jain D, Owens TR, et al. Impact of subsidence on clinical outcomes and radiographic fusion rates in anterior cervical discectomy and fusion: a systematic review. J Spinal Disord Tech. 2014;27(1):1-10. doi: 10.1097/BSD.0b013e31825bd26d
  17. Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW. Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. J Clin Neurosci. 2017;44:23-29. doi: 10.1016/j.jocn.2017.06.062
  18. Williams D F. Assessing the triad of biocompatibility, medical device functionality and biological safety. Med Devices Sens. 2021;4(1):e10150. doi: 10.1002/mds3.10150
  19. Zhu L, Liu J, Bao X, Xu G, Liu Z, Zhao Y. Research advances in biodegradable intervertebral fusion cage for spine. J Reg Anat Oper Surg. 2019;28(1):71-75. doi: 10.11659/jjssx.08E018050
  20. Senaysoy S, Ilhan R, Lekesiz H. Mechanical deviation in 3D-printed PLA bone scaffolds during biodegradation. Comput Biol Med. 2024;183:109227. doi: 10.1016/j.compbiomed.2024.109227
  21. Kundak H, Bilisik K. Development of three-dimensional (3D) biodegradable polyglycolic acid fiber (PGA) preforms for scaffold applications: experimental patterning and fiber volume fraction-porosity modeling study. Polymers (Basel). 2023;15(9):2083. doi: 10.3390/polym15092083
  22. Mirzavandi Z, Poursamar SA, Amiri F, Bigham A, Rafienia M. 3D printed polycaprolactone/gelatin/ordered mesoporous calcium magnesium silicate nanocomposite scaffold for bone tissue regeneration. J Mater Sci Mater Med. 2024;35(1):58. doi: 10.1007/s10856-024-06828-5
  23. Yu X, Li X, Xue D, et al. In vitro degradation and biomechanical study of 3D printed PCL/β-TCP degradable intervertebral fusion cage. Progress in Modern Biomedicine. 2021;21(06):1001-1007. doi: 10.13241/j.cnki.pmb.2021.06.001
  24. Cao L, Chen Q, Jiang L, et al. Bioabsorbable self-retaining PLA/nano-sized β-TCP cervical spine interbody fusion cage in goat models: an in vivo study. Int J Nanomedicine. 2017;12:7197-7205. doi: 10.2147/IJN.S132041
  25. Pant S, Vijayaraghavan R, Loganathan S, Valapa RB. 3D-bioprinted poly (lactic acid)/β-TCP/mesoporous silica scaffolds: an investigation on in-vitro bioactivity and osteogenesis characteristics. Mater Today Chem. 2024;40:102246. doi: 10.1016/j.mtchem.2024.102246
  26. Rezania N, Asadi-Eydivand M, Abolfathi N, Bonakdar S, Mehrjoo M, Solati-Hashjin M. Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior. J Mater Sci Mater Med. 2022;33(3):31. doi: 10.1007/s10856-022-06653-8
  27. Backes EH, Beatrice CAG, Shimomura KMB, et al. Development of poly (ε-polycaprolactone)/hydroxyapatite composites for bone tissue regeneration. J Mater Res. 2021;36:3050-3062. doi: 10.1557/s43578-021-00316-0
  28. Liu F, Kang H, Liu Z, et al. 3D printed multi-functional scaffolds based on poly(ε-caprolactone) and hydroxyapatite composites. Nanomaterials (Basel). 2021;11(9):2456. doi: 10.3390/nano11092456
  29. Wang F, Tankus EB, Santarella F, et al. Fabrication and characterization of PCL/HA filament as a 3D printing material using thermal extrusion technology for bone tissue engineering. Polymers (Basel). 2022;14(4):669. doi: 10.3390/polym14040669
  30. Zhou Y, Hutmacher DW, Varawan SL, Lim TM. In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium phosphate composites. Polym Int. 2007;56(3):333-342. doi: 10.1002/pi.2138
  31. Huang L. Comparative Study of HA, BCP and TCP Three- Dimensional Scaffolds on Osteogenesis. Guangxi Medical University, Nanning, CN. 2017. doi: 10.7666/d.D00999914
  32. Li X, Yuan Y, Liu L, et al. 3D printing of hydroxyapatite/ tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-Des Manuf. 2020;3:15-29. doi: 10.1007/s42242-019-00056-5
  33. Venugopal J, Rajeswari R, Shayanti M. et al. Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis. Biomater Sci. Polymer Edition 2013;24(2):170-184. doi: 10.1163/156856212X629845
  34. Choi WY, Kim HE, Koh YH. Production, mechanical properties and in vitro biocompatibility of highly aligned porous poly (ε-caprolactone)(PCL)/hydroxyapatite (HA) scaffolds. J Porous Mater. 2013;20:701-708. doi: 10.1007/s10934-012-9644-4
  35. Xu N, Ye X, Wei D, et al. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Appl Mater Inter. 2014;6(17):14952-14963. doi: 10.1021/am502716t
  36. Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials. 2007;28(35):5291-5297. doi: 10.1016/j.biomaterials.2007.08.018
  37. Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127-141. doi: 10.1016/j.biomaterials.2016.01.012
  38. Chi P. Preparation and Performance Study of PCL/HA Spinal Interbody Fusion Cage Based on 3D Printing Technology. Beijing University of Chemical Technology, Beijing, CN. 2024. doi: 10.26939/d.cnki.gbhgu.2024.000660
  39. Fornes TD, Paul DR. Crystallization behavior of nylon 6 nanocomposites. Polymer. 2003;44(14):3945-3961. doi: 10.1016/s0032-3861(03)00344-6
  40. Chen DZ, Tang CY, Chan KC. et al. Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite. Compos Sci Technol. 2007;67(7-8):1617-1626. doi: 10.1016/j.compscitech.2006.07.034
  41. Haq RHA, Rahman MNA, Arifin AMT, Hassan MF, Taib I, Wahit MU. Thermal properties of polycaprolactone (PCL) reinforced montmorillonite (MMT) and hydroxyapatite (HA) as an alternate of FDM composite filament. J Adv Res Fluid Mech Therm Sci. 2019;62(1), 112-121.
  42. Xiang S. 3D Printing Process and Performance Research of HA/PCL Bone Tissue Engineering Scaffold. Beijing University of Chemical Technology, Beijing, CN. 2020. doi: 10.26939/d.cnki.gbhgu.2019.000930
  43. Doyle SE, Henry L, McGennisken E. et al. Characterization of polycaprolactone nanohydroxyapatite composites with tunable degradability suitable for indirect printing. Polymers (Basel). 2021;13(2):295. doi: 10.3390/polym13020295
  44. Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci. 2017;249:321-330. doi: 10.1016/j.cis.2017.04.007
  45. Gao J, Yu X, Wang X, He Y, Ding J. Biomaterial–related cell microenvironment in tissue engineering and regenerative medicine. Engineering. 2022;13:31-45. doi: 10.1016/j.eng.2021.11.025
  46. Díaz E, Sandonis I, Valle MB. In Vitro degradation of poly(caprolactone)/nHA composites. J Nanomater. 2014;2014:1-8. doi: 10.1155/2014/802435
  47. Díaz E, Sandonis I, Puerto I, Ibáñez M. In vitro degradation of PLLA/nHA composite scaffolds. Polym Eng Sci. 2014;54(11):2571-2578. doi: 10.1002/pen.23806
  48. Bartnikowski M, Dargaville TR, Ivanovski S, Hutmacher DW. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog Polym Sci. 2019;96:1-20. doi: 10.1016/j.progpolymsci.2019.05.004
  49. Casarin SA, Malmonge SM, Kobayashi M, Agnelli JM. Study on in vitro degradation of bioabsorbable polymers poly (hydroxybutyrate-co-valerate)-(PHBV) and poly (caprolactone)-(PCL). J Nanobiotechnol. 2011;2(3): 207-215. doi: 10.4236/jbnb.2011.23026
  50. Cho SJ, Jung SM, Kang M, Shin HS, Youk JH. Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell biocompatibility. Polymer (Basel). 2015;69:95-102. doi: 10.1016/j.polymer.2015.05.037
  51. Jeong H, Rho J, Shin JY, Lee DY, Hwang T, Kim KJ. Mechanical properties and cytotoxicity of PLA/PCL films. Biomed Eng Lett. 2018;8(3):267-272. doi: 10.1007/s13534-018-0065-4

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing