AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.8115
RESEARCH ARTICLE
Early Access

Enhancing bone ingrowth and mechanical bonding in 3D-printed titanium alloy implants via lattice design and growth factors

Yu-San Chen1 Po-Kuei Wu2,3 Wei-Che Tsai1 Chun-Li Lin1,4*
Show Less
1 Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
2 Department of Orthopedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
3 Orthopedic Department, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
4 Medical Device Innovation & Translation Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
Submitted: 21 December 2024 | Accepted: 6 February 2025 | Published: 6 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Patient-specific three-dimensional (3D)-printed titanium alloy implants often face challenges such as stress shielding and inadequate osseointegration. This study investigated the effects of lattice designs and growth factor-enriched sticky bone on bone ingrowth and mechanical bond strength at the implant–bone interface of large-scale bone defects at the distal femur condyle in a New Zealand rabbit model. Hollow cylindrical implants (length: 12 mm; diameter: 6 mm [outer], 2 mm [inner]) with diamond (DU) and randomly deformed spherical (YMR) lattices were designed and implanted into rabbit femoral condyles. Platelet-rich fibrin (PRF) was prepared using a novel negative pressure centrifuge and mixed with synthetic bone graft material to form sticky bone, which was used to fill the implant cavities. Micro-computed tomography (CT) imaging assessed bone ingrowth volume across zones, while mechanical testing evaluated shear bond strength. The results demonstrated that growth factors are the primary driver of bone ingrowth and mechanical strength. Bone growth volume increased significantly in zone A (implant cavity), with sticky bone yielding a 6.9-fold increase for DU (6.66 mm³ vs. 45.89 mm³) and a 3.5-fold increase for YMR (14.68 mm³ vs. 51.95 mm³). Across zones B and C (lattice layers), YMR lattices consistently outperformed DU in promoting bone growth and stability. Push-out tests demonstrated shear bond strengths of 2.78 MPa for DU and 2.83 MPa for YMR with growth factors, compared to 1.71 MPa for controls. This study highlights the critical role of growth factors in enhancing bone integration and demonstrates the complementary benefits of optimized lattice designs, particularly YMR, in improving osseointegration and mechanical stability. The findings provide a promising strategy for using 3D-printed titanium alloy implants with sticky bone systems to address large bone defects in clinical applications.

Graphical abstract
Keywords
3D printing
Bone defect
Growth factor
Lattice
Platelet-rich fibrin
Funding
This study was supported in part by the NSTC project (112-2221-E-A49-009-MY3; 113-2811-B-A49A-061), Taiwan.
Conflict of interest
No potential conflict of interest was reported by the author(s).
References
  1. Aung L, Tin AS, Quah TC, Pho RW. Osteogenic sarcoma in children and young adults. Ann Acad Med Singap. 2014;43(6):305-313.
  2. Wu PK, Chen CF, Chen CM, et al. Intraoperative extracorporeal irradiation and frozen treatment on tumor-bearing autografts show equivalent outcomes for biologic reconstruction. Clin Orthop Relat Res. 2018;476(4):877-889. doi: 10.1007/s11999.0000000000000022
  3. Li CH, Wu CH, Lin CL. Design of a patient-specific mandible reconstruction implant with dental prosthesis for metal 3D printing using integrated weighted topology optimization and finite element analysis. J Mech Behav Biomed Mater. 2020;105:103700. doi: 10.1016/j.jmbbm.2020.103700
  4. Omar O, Engstrand T, Kihlstrom Burenstam Linder L, et al. In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design. Proc Natl Acad Sci U S A. 2020;117(43): 26660-26671. doi: 10.1073/pnas.2007635117
  5. Wu PK, Lee CW, Sun WH, Lin CL. Biomechanical analysis and design method for patient-specific reconstructive implants for large bone defects of the distal lateral femur. Biosensors (Basel). 2021;12(1):4. doi: 10.3390/bios12010004
  6. Wong KW, Wu CD, Chien C-S, Lee C-W, Yang T-H, Lin C-L. Patient-specific 3-dimensional printing titanium implant biomechanical evaluation for complex distal femoral open fracture reconstruction with segmental large bone defect: a nonlinear finite element analysis. Appl Sci. 2020; 10(12):4098. doi: 10.3390/app10124098
  7. Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: methods, applications and future prospects. J Orthop Translat. 2023;42:94-112. doi: 10.1016/j.jot.2023.08.004
  8. Park JW, Seo E, Park H, et al. Hybrid solid mesh structure for electron beam melting customized implant to treat bone cancer. Int J Bioprint. 2023;9(4):716. doi: 10.18063/ijb.716
  9. Wu Y, Liu J, Kang L, et al. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon. 2023;9(7):e17718. doi: 10.1016/j.heliyon.2023.e17718
  10. Marin E, Lanzutti A. Biomedical applications of titanium alloys: a comprehensive review. Materials (Basel). 2023;17(1):114. doi: 10.3390/ma17010114
  11. Wu N, Li S, Zhang B, et al. The advances of topology optimization techniques in orthopedic implants: a review. Med Biol Eng Comput. 2021;59(9):1673-1689. doi: 10.1007/s11517-021-02361-7
  12. Al-Barqawi MO, Church B, Thevamaran M, Thoma DJ, Rahman A. Design and validation of additively manufactured metallic cellular scaffold structures for bone tissue engineering. Materials (Basel). 2022;15(9):3310. doi: 10.3390/ma15093310
  13. Al-Barqawi MO, Church B, Thevamaran M, Thoma DJ, Rahman A. Experimental validation and evaluation of the bending properties of additively manufactured metallic cellular scaffold structures for bone tissue engineering. Materials (Basel). 2022;15(10):3447. doi: 10.3390/ma15103447
  14. Smit T, Koppen S, Ferguson SJ, Helgason B. Conceptual design of compliant bone scaffolds by full-scale topology optimization. J Mech Behav Biomed Mater. 2023; 143:105886. doi: 10.1016/j.jmbbm.2023.105886
  15. Luo W, Wang Y, Wang Z, et al. Advanced topology of triply periodic minimal surface structure for osteogenic improvement within orthopedic metallic screw. Mater Today Bio. 2024;27:101118. doi: 10.1016/j.mtbio.2024.101118
  16. Van Bael S, Chai YC, Truscello S, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012; 8(7):2824-2834. doi: 10.1016/j.actbio.2012.04.001
  17. Wang H, Su K, Su L, Liang P, Ji P, Wang C. The effect of 3D-printed Ti(6)Al(4)V scaffolds with various macropore structures on osteointegration and osteogenesis: a biomechanical evaluation. J Mech Behav Biomed Mater. 2018;88:488-496. doi: 10.1016/j.jmbbm.2018.08.049
  18. Deering J, Grandfield K. Current interpretations on the in vivo response of bone to additively manufactured metallic porous scaffolds: a review. Biomater Biosyst. 2021; 2:100013. doi: 10.1016/j.bbiosy.2021.100013
  19. Kiselevskiy MV, Anisimova NY, Kapustin AV, et al. Development of bioactive scaffolds for orthopedic applications by designing additively manufactured titanium porous structures: a critical review. Biomimetics (Basel). 2023;8(7):546. doi: 10.3390/biomimetics8070546
  20. Bolukbasi N, Yeniyol S, Tekkesin MS, Altunatmaz K. The use of platelet-rich fibrin in combination with biphasic calcium phosphate in the treatment of bone defects: a histologic and histomorphometric study. Curr Ther Res Clin Exp. 2013;75:15-21. doi: 10.1016/j.curtheres.2013.05.002
  21. Masuki H, Okudera T, Watanebe T, et al. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF). Int J Implant Dent. 2016;2(1):19. doi: 10.1186/s40729-016-0052-4
  22. Agrawal AA. Evolution, current status and advances in application of platelet concentrate in periodontics and implantology. World J Clin Cases. 2017;5(5):159-171. doi: 10.12998/wjcc.v5.i5.159
  23. Miron RJ, Zucchelli G, Pikos MA, et al. Use of platelet-rich fibrin in regenerative dentistry: a systematic review. Clin Oral Investig. 2017;21(6):1913-1927. doi: 10.1007/s00784-017-2133-z
  24. Lee YK, Wadhwa P, Cai H, et al. Micro-CT and histomorphometric study of bone regeneration effect with autogenous tooth biomaterial enriched with platelet-rich fibrin in an animal model. Scanning. 2021; 2021:6656791. doi: 10.1155/2021/6656791
  25. Wong KW, Chen YS, Lin CL. Evaluation optimum ratio of synthetic bone graft material and platelet rich fibrin mixture in a metal 3D printed implant to enhance bone regeneration. J Orthop Surg Res. 2024;19(1):299. doi: 10.1186/s13018-024-04784-y
  26. Wang YT, Chang CM, Liu PS, Lin CL. Feasibility evaluation of a new lattice for porous surface design in additive manufacturing medical implants under interfacial tensile bonded testing. Additive Manuf. 2023;66:103455. doi: 10.1016/j.addma.2023.103455
  27. Geng H, Todd NM, Devlin-Mullin A, et al. A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants. J Mater Sci Mater Med. 2016;27(6):112. doi: 10.1007/s10856-016-5721-6
  28. Palmquist A, Shah FA, Emanuelsson L, Omar O, Suska F. A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry. Micron. 2017;94:1-8. doi: 10.1016/j.micron.2016.11.009
  29. Salamanca E, Hsu CC, Huang HM, et al. Bone regeneration using a porcine bone substitute collagen composite in vitro and in vivo. Sci Rep. 2018;8(1):984. doi: 10.1038/s41598-018-19629-y
  30. Tsujino T, Takahashi A, Yamaguchi S, et al. Evidence for contamination of silica microparticles in advanced platelet-rich fibrin matrices prepared using silica-coated plastic tubes. Biomedicines. 2019;7(2):45. doi: 10.3390/biomedicines7020045
  31. Kusaka T, Nakayama M, Nakamura K, Ishimiya M, Furusawa E, Ogasawara K. Effect of silica particle size on macrophage inflammatory responses. PLoS One. 2014;9(3):e92634. doi: 10.1371/journal.pone.0092634
  32. Miron RJ, Chai J, Fujioka-Kobayashi M, Sculean A, Zhang Y. Evaluation of 24 protocols for the production of platelet-rich fibrin. BMC Oral Health. 2020;20(1):310. doi: 10.1186/s12903-020-01299-w
  33. Frosch S, Nusse V, Frosch KH, Lehmann W, Buchhorn G. Osseointegration of 3D porous and solid Ti-6Al-4V implants - narrow gap push-out testing and experimental setup considerations. J Mech Behav Biomed Mater. 2021;115:104282. doi: 10.1016/j.jmbbm.2020.104282
  34. Sun C, Dong E, Chen J, et al. The promotion of mechanical properties by bone ingrowth in additive-manufactured titanium scaffolds. J Funct Biomater. 2022;13(3):127. doi: 10.3390/jfb13030127
  35. Egle K, Salma I, Dubnika A. From blood to regenerative tissue: how autologous platelet-rich fibrin can be combined with other materials to ensure controlled drug and growth factor release. Int J Mol Sci. 2021;22(21):11553. doi: 10.3390/ijms222111553
  36. Son HJ, Lee MN, Kim Y, et al. Bone generation following repeated administration of recombinant bone morphogenetic protein 2. Tissue Eng Regen Med. 2021;18(1):155-164. doi: 10.1007/s13770-020-00290-4
  37. Hwang JW, Han YH. Novel bone morphogenetic protein (BMP)-2/4 consensus peptide (BCP) for the osteogenic differentiation of c2C12 cells. Curr Protein Pept Sci. 2023;24(7):610-619. doi: 10.2174/1389203724666230614112027
  38. Wang M, Fan J, Wang A, et al. Effect of local application of bone morphogenetic protein -2 on experimental tooth movement and biological remodeling in rats. Front Physiol. 2023;14:1111857. doi: 10.3389/fphys.2023.1111857
  39. Clark DP, Badea CT. Micro-CT of rodents: state-of-the-art and future perspectives. Phys Med. 2014;30(6):619-634. doi: 10.1016/j.ejmp.2014.05.011
  40. Buie HR, Bosma NA, Downey CM, Jirik FR, Boyd SK. Micro-CT evaluation of bone defects: applications to osteolytic bone metastases, bone cysts, and fracture. Med Eng Phys. 2013;35(11):1645-1650. doi: 10.1016/j.medengphy.2013.05.016
  41. Hutton BF, Thomas BA, Erlandsson K, et al. What approach to brain partial volume correction is best for PET/MRI? Nucl Instrum Methods Phys Res A: Accelerat Spectrom Detect Assoc Equip. 2013;702:29-33. doi: 10.1016/j.nima.2012.07.059
  42. Vandeweghe S, Coelho PG, Vanhove C, Wennerberg A, Jimbo R. Utilizing micro-computed tomography to evaluate bone structure surrounding dental implants: a comparison with histomorphometry. J Biomed Mater Res B Appl Biomater. 2013;101(7):1259-1266. doi: 10.1002/jbm.b.32938
  43. Gabler C, Zietz C, Bieck R, et al. Quantification of osseointegration of plasma-polymer coated titanium alloyed implants by means of microcomputed tomography versus histomorphometry. Biomed Res Int. 2015; 2015:103137. doi: 10.1155/2015/103137
  44. Li F, Li J, Xu G, Liu G, Kou H, Zhou L. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications. J Mech Behav Biomed Mater. 2015;46:104-114. doi: 10.1016/j.jmbbm.2015.02.023
  45. Chang B, Song W, Han T, et al. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater. 2016;33:311-321. doi: 10.1016/j.actbio.2016.01.022
  46. Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl. 2016;59:690-701. doi: 10.1016/j.msec.2015.10.069
  47. Alaña M, Cutolo A, Probst G, Ruiz de Galarreta S, Van Hooreweder B. Understanding elastic anisotropy in diamond-based lattice structures produced by laser powder bed fusion: Effect of manufacturing deviations. Mater Design. 2020;195:108971. doi: 10.1016/j.matdes.2020.108971

 

 

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing