AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.8100
REVIEW

Bioprinting in tumor model construction for head and neck squamous cell carcinoma: A review

Yanyan Ding1 Jinwu Chen2 Wenqi Zhong3 Taochen Gu4* Ying Xiao1* Zhenyu Zhao4
Show Less
1 Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
2 Department of Trauma Surgery, CR&WISCO General Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
3 School of Automation, Northwestern Polytechnical University, Xi’an, Shaanxi, China
4 Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, Singapore
Submitted: 20 December 2024 | Accepted: 21 January 2025 | Published: 22 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Head and neck squamous cell carcinoma (HNSCC) is a malignancy with increasing incidence worldwide, causing a severe impact on the quality of life and survival rate of affected patients. Traditional tumor models have significant limitations in studying biological properties, tumor microenvironment, and treatment response, and the difficulty in obtaining HNSCC specimens has hampered our understanding and the development of treatment for the disease. Recent rapid development in bioprinting has provided new possibilities for tumor model construction, enabling precise control of cell arrangement and tissue structure to be more realistically simulated tumor biological properties. This review summarizes the latest progress of bioprinting in HNSCC tumor model construction, explores the application of different bioprinting technologies, the properties of constructed tumor models, and the potential applications of these models in drug screening and individualized treatment, aiming to provide reference and inspiration for future research and treatment of HNSCC.

Graphical abstract
Keywords
3D microenvironment
Bioprinting
Head and neck squamous cell carcinoma
Tumor model construction
Funding
This work was supported with grants from the National Natural Science Foundation of China, the Joint Fund of Hubei Provincial Health and Family Planning Commission (WJ2018H0110), and the National University of Singapore.
Conflict of interest
The authors declare no conflict of interest.
References
  1. Lang Y, Dong D. Cetuximab plus chemotherapy versus chemotherapy alone in recurrent or metastatic head and neck squamous cell carcinoma: a cost-effectiveness analysis. Cancer Manag Res. 2020;12:11383-11390. doi: 10.2147/CMAR.S272149
  2. Liu WH, Lu YN, Sun MT, Nie DH, Han FJ. Trends of ten leading causes of death in head and neck squamous cell carcinoma. Curr Med Sci. 2022;42(1):118-128. doi: 10.1007/s11596-021-2427-x
  3. Stribbling SM, Ryan AJ. The cell-line-derived subcutaneous tumor model in preclinical cancer research. Nat Protoc. 2022;17(9):2108-2128. doi: 10.1038/s41596-022-00709-3
  4. Buque A, Galluzzi L. Modeling tumor immunology and immunotherapy in mice. Trends Cancer. 2018;4(9): 599-601. doi: 10.1016/j.trecan.2018.07.003
  5. Shapiro DD, Virumbrales-Munoz M, Beebe DJ, Abel EJ. Models of renal cell carcinoma used to investigate molecular mechanisms and develop new therapeutics. Front Oncol. 2022;12:871252. doi: 10.3389/fonc.2022.871252
  6. Tentler JJ, Tan AC, Weekes CD, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338-350. doi: 10.1038/nrclinonc.2012.61
  7. Lambert PF. Transgenic mouse models of tumor virus action. Annu Rev Virol. 2016;3(1):473-489. doi: 10.1146/annurev-virology-100114-054908
  8. Zitvogel L, Pitt JM, Daillere R, Smyth MJ, Kroemer G. Mouse models in oncoimmunology. Nat Rev Cancer. 2016;16(12):759-773. doi: 10.1038/nrc.2016.91
  9. Olson B, Li Y, Lin Y, Liu ET, Patnaik A. Mouse models for cancer immunotherapy research. Cancer Discov. 2018;8(11):1358-1365. doi: 10.1158/2159-8290.CD-18-0044
  10. Nitschinsk K, Idris A, McMillan N. Patient derived xenografts as models for head and neck cancer. Cancer Lett. 2018;434:114-119. doi: 10.1016/j.canlet.2018.07.023
  11. Karamboulas C, Bruce JP, Hope AJ, et al. Patient-derived xenografts for prognostication and personalized treatment for head and neck squamous cell carcinoma. Cell Rep. 2018;25(5):1318-1331 e4. doi: 10.1016/j.celrep.2018.10.004
  12. Cox MC, Reese LM, Bickford LR, Verbridge SS. Toward the broad adoption of 3D tumor models in the cancer drug pipeline. ACS Biomater Sci Eng. 2015;1(10): 877-894. doi: 10.1021/acsbiomaterials.5b00172
  13. Jung AR, Jung CH, Noh JK, Lee YC, Eun YG. Epithelial-mesenchymal transition gene signature is associated with prognosis and tumor microenvironment in head and neck squamous cell carcinoma. Sci Rep. 2020;10(1):3652. doi: 10.1038/s41598-020-60707-x
  14. He Y, Deng P, Yan Y, et al. Matrisome provides a supportive microenvironment for oral squamous cell carcinoma progression. J Proteomics. 2022;253:104454. doi: 10.1016/j.jprot.2021.104454
  15. Kimlin LC, Casagrande G, Virador VM. In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog. 2013;52(3):167-182. doi: 10.1002/mc.21844
  16. Fonseca AC, Melchels FPW, Ferreira MJS, et al. Emulating human tissues and organs: a bioprinting perspective toward personalized medicine. Chem Rev. 2020;120(19): 11128-11174. doi: 10.1021/acs.chemrev.0c00342
  17. Datta P, Barui A, Wu Y, Ozbolat V, Moncal KK, Ozbolat IT. Essential steps in bioprinting: from pre- to post-bioprinting. Biotechnol Adv. 2018;36(5):1481-1504. doi: 10.1016/j.biotechadv.2018.06.003
  18. Bone JM, Childs CM, Menon A, et al. Hierarchical machine learning for high-fidelity 3D printed biopolymers. ACS Biomater Sci Eng. 2020;6(12):7021-7031. doi: 10.1021/acsbiomaterials.0c00755
  19. Xie M, Su J, Zhou S, Li J, Zhang K. Application of hydrogels as three-dimensional bioprinting ink for tissue engineering. Gels. 2023;9(2):88. doi: 10.3390/gels9020088
  20. Kravchenko SV, Sakhnov SN, Myasnikova VV, Trofimenko AI, Buzko VY. Bioprinting technologies in ophthalmology. Vestn Oftalmol. 2023;139(5):105-112. doi: 10.17116/oftalma2023139051105
  21. Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, Juncker D, Zhang YS. Emerging technologies in multi-material bioprinting. Adv Mater. 2021;33(49):e2104730. doi: 10.1002/adma.202104730
  22. Meng F, Meyer CM, Joung D, Vallera DA, McAlpine MC, Panoskaltsis-Mortari A. 3D bioprinted in vitro metastatic models via reconstruction of tumor microenvironments. Adv Mater. 2019;31(10):e1806899. doi: 10.1002/adma.201806899
  23. Li J, Parra-Cantu C, Wang Z, Zhang YS. Improving bioprinted volumetric tumor microenvironments in vitro. Trends Cancer. 2020;6(9):745-756. doi: 10.1016/j.trecan.2020.06.002
  24. Shukla P, Yeleswarapu S, Heinrich MA, Prakash J, Pati F. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling. Biofabrication. 2022;14(3):032002. doi: 10.1088/1758-5090/ac6d11
  25. Hynes WF, Pepona M, Robertson C, et al. Examining metastatic behavior within 3D bioprinted vasculature for the validation of a 3D computational flow model. Sci Adv. 2020;6(35):eabb3308. doi: 10.1126/sciadv.abb3308
  26. Ma X, Liu J, Zhu W, et al. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev. 2018;132:235-251. doi: 10.1016/j.addr.2018.06.011
  27. Shukla P, Bera AK, Ghosh A, Kiranmai G, Pati F. Assessment and process optimization of high throughput biofabrication of immunocompetent breast cancer model for drug screening applications. Biofabrication. 2024;16(3):035030. doi: 10.1088/1758-5090/ad586b
  28. Jung M, Ghamrawi S, Du EY, Gooding JJ, Kavallaris M. Advances in 3D bioprinting for cancer biology and precision medicine: from matrix design to application. Adv Healthc Mater. 2022;11(24):e2200690. doi: 10.1002/adhm.202200690
  29. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4): 422-434. doi: 10.1016/j.biotechadv.2015.12.011
  30. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  31. Daly AC, Prendergast ME, Hughes AJ, Burdick JA. Bioprinting for the Biologist. Cell. 2021;184(1):18-32. doi: 10.1016/j.cell.2020.12.002
  32. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
  33. Ji S, Guvendiren M. Complex 3D bioprinting methods. APL Bioeng. 2021;5(1):011508. doi: 10.1063/5.0034901
  34. Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks. Adv Healthc Mater. 2020;9(15):e1901648. doi: 10.1002/adhm.201901648
  35. Fu Z, Naghieh S, Xu C, Wang C, Sun W, Chen X. Printability in extrusion bioprinting. Biofabrication. 2021;13(3):033001. doi: 10.1088/1758-5090/abe7ab
  36. Kacarevic ZP, Rider PM, Alkildani S, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials (Basel). 2018;11(11):2199. doi: 10.3390/ma11112199
  37. Salih T, Caputo M, Ghorbel MT. Recent advances in hydrogel-based 3D bioprinting and its potential application in the treatment of congenital heart disease. Biomolecules. 2024;14(7):861. doi: 10.3390/biom14070861
  38. Castilho M, de Ruijter M, Beirne S, et al. Multitechnology biofabrication: a new approach for the manufacturing of functional tissue structures? Trends Biotechnol. 2020;38(12):1316-1328. doi: 10.1016/j.tibtech.2020.04.014
  39. De Santis MM, Alsafadi HN, Tas S, et al. Extracellular-matrix-reinforced bioinks for 3D bioprinting human tissue. Adv Mater. 2021;33(3):e2005476. doi: 10.1002/adma.202005476
  40. Faramarzi N, Yazdi IK, Nabavinia M, et al. Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds. Adv Healthc Mater. 2018;7(11):e1701347. doi: 10.1002/adhm.201701347
  41. Wendt D, Riboldi SA, Cioffi M, Martin I. Potential and bottlenecks of bioreactors in 3D cell culture and tissue manufacturing. Adv Mater. 2009;21(32–33):3352-3367. doi: 10.1002/adma.200802748
  42. Jiang B, Elkashif A, Coulter JA, Dunne NJ, McCarthy HO. Immunotherapy for HPV negative head and neck squamous cell carcinoma. Biochim Biophys Acta Rev Cancer. 2024;1879(5):189138. doi: 10.1016/j.bbcan.2024.189138
  43. Liu L, Xiang Z, Li Y, et al. The immune checkpoint inhibitors treatment of head and neck squamous cell carcinoma: an expert consensus. Hua Xi Kou Qiang Yi Xue Za Zhi. 2022;40(6):619-628. doi: 10.7518/hxkq.2022.06.001
  44. Barlak N, Kusdemir G, Gumus R, et al. Overexpression of POFUT1 promotes malignant phenotype and mediates perineural invasion in head and neck squamous cell carcinoma. Cell Biol Int. 2023;47(12):1950-1963. doi: 10.1002/cbin.12085
  45. Santi M, Mapanao AK, Cappello V, Voliani V. Production of 3D tumor models of head and neck squamous cell carcinomas for nanotheranostics assessment. ACS Biomater Sci Eng. 2020;6(9):4862-4869. doi: 10.1021/acsbiomaterials.0c00617
  46. Xu JH, Guan YJ, Qiu ZD, et al. System analysis of ROS-related genes in the prognosis, immune infiltration, and drug sensitivity in hepatocellular carcinoma. Oxid Med Cell Longev. 2021;2021:6485871. doi: 10.1155/2021/6485871
  47. Nie Q, Cao H, Yang J, Liu T, Wang B. Integration RNA bulk and single cell RNA sequencing to explore the change of glycolysis-related immune microenvironment and construct prognostic signature in head and neck squamous cell carcinoma. Transl Oncol. 2024;46:102021. doi: 10.1016/j.tranon.2024.102021
  48. Bancu A, Cowan R, Chaturvedi A. PD-L1 testing and immunotherapy selection - early laboratory experience and its potential role in head and neck cancer management. Arch Clin Cases. 2021;8(1):14-18. doi: 10.22551/2021.30.0801.10179
  49. Businello G, Fassan M, Degasperi S, et al. Esophageal squamous cell carcinoma metachronous to head and neck cancers. Pathol Res Pract. 2021;219:153346. doi: 10.1016/j.prp.2021.153346
  50. Noro J, Vilaca-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: a journey from isolation to characterization and application. Bioact Mater. 2024;34: 494-519. doi: 10.1016/j.bioactmat.2024.01.004
  51. Kort-Mascort J, Bao G, Elkashty O, et al. Decellularized extracellular matrix composite hydrogel bioinks for the development of 3D bioprinted head and neck in vitro tumor models. ACS Biomater Sci Eng. 2021;7(11): 5288-5300. doi: 10.1021/acsbiomaterials.1c00812
  52. Kort-Mascort J, Shen ML, Martin E, et al. Bioprinted cancer-stromalin-vitromodels in a decellularized ECM-based bioink exhibit progressive remodeling and maturation. Biomed Mater. 2023;18(4):045022. doi: 10.1088/1748-605X/acd830
  53. Mapanao AK, Santi M, Voliani V. Combined chemo-photothermal treatment of three-dimensional head and neck squamous cell carcinomas by gold nano-architectures. J Colloid Interface Sci. 2021;582(Pt B):1003-1011. doi: 10.1016/j.jcis.2020.08.059
  54. McGarry K, Sefat E, Suh TC, Ali KM, Gluck JM. Comparison of NIH 3T3 cellular adhesion on fibrous scaffolds constructed from natural and synthetic polymers. Biomimetics (Basel). 2023;8(1):99. doi: 10.3390/biomimetics8010099
  55. Zhou R, Wu Y, Chen K, et al. A polymeric strategy empowering vascular cell selectivity and potential application superior to extracellular matrix peptides. Adv Mater. 2022;34(42):e2200464. doi: 10.1002/adma.202200464
  56. Lauren I, Farzan A, Teotia A, Lindfors NC, Seppala J. Direct ink writing of biocompatible chitosan/non-isocyanate polyurethane/cellulose nanofiber hydrogels for wound-healing applications. Int J Biol Macromol. 2024; 259(Pt 2):129321. doi: 10.1016/j.ijbiomac.2024.129321
  57. Kim SB, Kim CH, Lee SY, Park SJ. Carbon materials and their metal composites for biomedical applications: a short review. Nanoscale. 2024;16(35):16313-16328. doi: 10.1039/d4nr02059f
  58. Kost B, Brzezinski M, Socka M, Basko M, Biela T. Biocompatible polymers combined with cyclodextrins: fascinating materials for drug delivery applications. Molecules. 2020;25(15):3404. doi: 10.3390/molecules25153404
  59. Rivero RE, Capella V, Cecilia Liaudat A, et al. Mechanical and physicochemical behavior of a 3D hydrogel scaffold during cell growth and proliferation. RSC Adv. 2020;10(10): 5827-5837. doi: 10.1039/c9ra08162c
  60. Xu Y, Bei Z, Li M, et al. Biomedical application of materials for external auditory canal: history, challenges, and clinical prospects. Bioact Mater. 2024;39:317-335. doi: 10.1016/j.bioactmat.2024.05.035
  61. Battigelli A, Almeida B, Shukla A. Recent advances in bioorthogonal click chemistry for biomedical applications. Bioconjug Chem. 2022;33(2):263-271. doi: 10.1021/acs.bioconjchem.1c00564
  62. Di Martino M, Sessa L, Diana R, Piotto S, Concilio S. Recent progress in photoresponsive biomaterials. Molecules. 2023;28(9):3712. doi: 10.3390/molecules28093712
  63. Yoon S, Fuwad A, Jeong S, Cho H, Jeon TJ, Kim SM. Surface deformation of biocompatible materials: recent advances in biological applications. Biomimetics (Basel). 2024; 9(7):395. doi: 10.3390/biomimetics9070395
  64. Li H, Wang P, Wen C. Recent progress on nanocrystalline metallic materials for biomedical applications. Nanomaterials (Basel). 2022;12(12):2111. doi: 10.3390/nano12122111
  65. Jiang Q, Zhang M, Mujumdar AS. Novel evaluation technology for the demand characteristics of 3D food printing materials: a review. Crit Rev Food Sci Nutr. 2022;62(17):4669-4683. doi: 10.1080/10408398.2021.1878099
  66. Patel AS, Yanai I. A developmental constraint model of cancer cell states and tumor heterogeneity. Cell. 2024;187(12): 2907-2918. doi: 10.1016/j.cell.2024.04.032
  67. Puram SV, Tirosh I, Parikh AS, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171(7): 1611-1624 e24. doi: 10.1016/j.cell.2017.10.044
  68. Xue Y, Friedl V, Ding H, Wong CK, Stuart JM. Single-cell signatures identify microenvironment factors in tumors associated with patient outcomes. Cell Rep Methods. 2024;4(6):100799. doi: 10.1016/j.crmeth.2024.100799
  69. Zhang Y, Chen P, Zhou Q, et al. A novel immune-related prognostic signature in head and neck squamous cell carcinoma. Front Genet. 2021;12:570336. doi: 10.3389/fgene.2021.570336

 

  1. Lynch AW, Brown M, Meyer CA. Multi-batch single-cell comparative atlas construction by deep learning disentanglement. Nat Commun. 2023;14(1):4126. doi: 10.1038/s41467-023-39494-2
  2. Sun H, Sun L, Ke X, et al. Prediction of clinical precision chemotherapy by patient-derived 3D bioprinting models of colorectal cancer and its liver metastases. Adv Sci (Weinh). 2024;11(2):e2304460. doi: 10.1002/advs.202304460
  3. Lee TW, Lai A, Harms JK, et al. Patient-derived xenograft and organoid models for precision medicine targeting of the tumour microenvironment in head and neck cancer. Cancers (Basel). 2020;12(12):3743. doi: 10.3390/cancers12123743
  4. Dai Y, Wang Z, Xia Y, et al. Integrative single-cell and bulk transcriptomes analyses identify intrinsic HNSCC subtypes with distinct prognoses and therapeutic vulnerabilities. Clin Cancer Res. 2023;29(15):2845-2858. doi: 10.1158/1078-0432.CCR-22-3563
  5. Gilbert DF, Friedrich O, Wiest J. Assaying proliferation characteristics of cells cultured under static versus periodic conditions. Methods Mol Biol. 2023;2644:35-45. doi: 10.1007/978-1-0716-3052-5_3
  6. Ciccarese D, Micali G, Borer B, Ruan C, Or D, Johnson DR. Rare and localized events stabilize microbial community composition and patterns of spatial self-organization in a fluctuating environment. ISME J. 2022;16(5):1453-1463. doi: 10.1038/s41396-022-01189-9
  7. Vasiljevs S, Gupta A, Baines D. Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium. Heliyon. 2023;9(11):e21469. doi: 10.1016/j.heliyon.2023.e21469
  8. Immohr MB, Dos Santos Adrego F, Teichert HL, et al. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability. Biomed Mater. 2022;18(1):015004. doi: 10.1088/1748-605X/ac9f91
  9. Trucco D, Sharma A, Manferdini C, et al. Modeling and fabrication of silk fibroin-gelatin-based constructs using extrusion-based three-dimensional bioprinting. ACS Biomater Sci Eng. 2021;7(7):3306-3320. doi: 10.1021/acsbiomaterials.1c00410
  10. Pieri K, Felix BM, Zhang T, Soman P, Henderson JH. Printing parameters of fused filament fabrication affect key properties of four-dimensional printed shape-memory polymers. 3D Print Addit Manuf. 2023;10(2):279-288. doi: 10.1089/3dp.2021.0072
  11. Kim MH, Lee YW, Jung WK, Oh J, Nam SY. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. J Mech Behav Biomed Mater. 2019;98:187-194. doi: 10.1016/j.jmbbm.2019.06.014
  12. Li X, Li X, Yang J, et al. Living and injectable porous hydrogel microsphere with paracrine activity for cartilage regeneration. Small. 2023;19(17):e2207211. doi: 10.1002/smll.202207211
  13. Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U. Engineering cancer microenvironments for in vitro 3-D tumor models. Mater Today (Kidlington). 2015;18(10):539-553. doi: 10.1016/j.mattod.2015.05.002
  14. Dey M, Kim MH, Dogan M, et al. Chemotherapeutics and CAR-T cell-based immunotherapeutics screening on a 3D bioprinted vascularized breast tumor model. Adv Funct Mater. 2022;32(52):3966. doi: 10.1002/adfm.202203966
  15. Langer EM, Allen-Petersen BL, King SM, et al. Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep. 2019;26(3):608-623 e6. doi: 10.1016/j.celrep.2018.12.090
  16. Stoth M, Mineif AT, Sauer F, et al. A tissue engineered 3D model of cancer cell invasion for human head and neck squamous-cell carcinoma. Curr Issues Mol Biol. 2024;46(5):4049-4062. doi: 10.3390/cimb46050250
  17. Atat OE, Farzaneh Z, Pourhamzeh M, et al. 3D modeling in cancer studies. Hum Cell. 2022;35(1):23-36. doi: 10.1007/s13577-021-00642-9
  18. Hong Q, Ding S, Xing C, Mu Z. Advances in tumor immune microenvironment of head and neck squamous cell carcinoma: a review of literature. Medicine (Baltimore). 2024;103(9):e37387. doi: 10.1097/MD.0000000000037387
  19. Chen SMY, Krinsky AL, Woolaver RA, Wang X, Chen Z, Wang JH. Tumor immune microenvironment in head and neck cancers. Mol Carcinog. 2020;59(7):766-774. doi: 10.1002/mc.23162
  20. Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL, Bruno TC. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer. 2023;23(3):173-188. doi: 10.1038/s41568-022-00531-9
  21. El Herch I, Tornaas S, Dongre HN, Costea DE. Heterogeneity of cancer-associated fibroblasts and tumor-promoting roles in head and neck squamous cell carcinoma. Front Mol Biosci. 2024;11:1340024. doi: 10.3389/fmolb.2024.1340024
  22. Wang HC, Chan LP, Cho SF. Targeting the immune microenvironment in the treatment of head and neck squamous cell carcinoma. Front Oncol. 2019;9:1084. doi: 10.3389/fonc.2019.01084
  23. Du W, Xia X, Hu F, Yu J. Extracellular matrix remodeling in the tumor immunity. Front Immunol. 2023;14:1340634. doi: 10.3389/fimmu.2023.1340634
  24. Huang J, Zhang L, Wan D, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 2021;6(1):153. doi: 10.1038/s41392-021-00544-0
  25. Jang DG, Sim HJ, Song EK, Kwon T, Park TJ. Extracellular matrixes and neuroinflammation. BMB Rep. 2020;53(10):491-499. doi: 10.5483/BMBRep.2020.53.10.156
  26. Azhakesan A, Kern J, Mishra A, et al. 3D bioprinted head and neck squamous cell carcinoma (HNSCC) model using tunicate derived nanocellulose (NC) bioink. Adv Healthc Mater. 2025:e2403114. doi: 10.1002/adhm.202403114
  27. Gugulothu SB, Asthana S, Homer-Vanniasinkam S, Chatterjee K. Trends in photopolymerizable bioinks for 3D bioprinting of tumor models. JACS Au. 2023;3(8): 2086-2106. doi: 10.1021/jacsau.3c00281
  28. Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater. 2012;8(5):1838-1848. doi: 10.1016/j.actbio.2011.12.034
  29. Petta D, Armiento AR, Grijpma D, Alini M, Eglin D, D‘Este M. 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking. Biofabrication. 2018;10(4):044104. doi: 10.1088/1758-5090/aadf58
  30. Czekay RP, Cheon DJ, Samarakoon R, Kutz SM, Higgins PJ. Cancer-associated fibroblasts: mechanisms of tumor progression and novel therapeutic targets. Cancers (Basel). 2022;14(5):1231. doi: 10.3390/cancers14051231
  31. Wang X, Wang X, Li J, et al. PDPN contributes to constructing immunosuppressive microenvironment in IDH wildtype glioma. Cancer Gene Ther. 2023;30(2):345-357. doi: 10.1038/s41417-022-00550-6
  32. Kumar D, New J, Vishwakarma V, et al. Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression. Cancer Res. 2018;78(14):3769-3782. doi: 10.1158/0008-5472.CAN-17-1076
  33. Dean T, Li NT, Cadavid JL, Ailles L, McGuigan AP. A TRACER culture invasion assay to probe the impact of cancer associated fibroblasts on head and neck squamous cell carcinoma cell invasiveness. Biomater Sci. 2020;8(11): 3078-3094. doi: 10.1039/c9bm02017a
  34. Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell-cell interactions and communication from gene expression. Nat Rev Genet. 2021;22(2):71-88. doi: 10.1038/s41576-020-00292-x
  35. Lammert A, Affolter A, Gvaramia D, et al. [The tumor stem cell niche of head and neck - point of intersection with therapeutic potential?]. Laryngorhinootologie. 2021;100(1):23-29. Die Tumorstammzellnische im Kopf-Hals-Bereich - Knotenpunkt mit therapeutischem Potenzial? doi: 10.1055/a-1260-3054
  36. Augustine R, Kalva SN, Ahmad R, et al. 3D bioprinted cancer models: revolutionizing personalized cancer therapy. Transl Oncol. 2021;14(4):101015. doi: 10.1016/j.tranon.2021.101015
  37. Ganguly D, Chandra R, Karalis J, et al. Cancer-associated fibroblasts: versatile players in the tumor microenvironment. Cancers (Basel). 2020;12(9):2652. doi: 10.3390/cancers12092652
  38. Chandler EM, Seo BR, Califano JP, et al. Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proc Natl Acad Sci U S A. 2012;109(25):9786-9791. doi: 10.1073/pnas.1121160109
  39. Raz Y, Erez N. An inflammatory vicious cycle: fibroblasts and immune cell recruitment in cancer. Exp Cell Res. 2013;319(11):1596-603. doi: 10.1016/j.yexcr.2013.03.022
  40. Tanaka M, Siemann DW. Gas6/Axl signaling pathway in the tumor immune microenvironment. Cancers (Basel). 2020;12(7):1850. doi: 10.3390/cancers12071850
  41. Baker AT, Abuwarwar MH, Poly L, Wilkins S, Fletcher AL. Cancer-associated fibroblasts and T cells: from mechanisms to outcomes. J Immunol. 2021;206(2):310-320. doi: 10.4049/jimmunol.2001203
  42. Alkema NG, Wisman GB, van der Zee AG, van Vugt MA, de Jong S. Studying platinum sensitivity and resistance in high-grade serous ovarian cancer: different models for different questions. Drug Resist Updat. 2016;24:55-69. doi: 10.1016/j.drup.2015.11.005
  43. Alemany-Ribes M, Semino CE. Bioengineering 3D environments for cancer models. Adv Drug Deliv Rev. 2014;79–80:40-49. doi: 10.1016/j.addr.2014.06.004
  44. Carvalho MR, Lima D, Reis RL, Correlo VM, Oliveira JM. Evaluating biomaterial- and microfluidic-based 3D tumor models. Trends Biotechnol. 2015;33(11):667-678. doi: 10.1016/j.tibtech.2015.09.009
  45. Ostapowicz J, Ostrowska K, Golusinski W, Kulcenty K, Suchorska WM. Improving therapeutic strategies for head and neck cancer: insights from 3D hypoxic cell culture models in treatment response evaluation. Adv Med Sci. 2024;69(2):368-376. doi: 10.1016/j.advms.2024.07.007
  46. Torre-Castro J, Rios-Vinuela E, Balaguer-Franch I, et al. Perineural infiltration: a comprehensive review of diagnostic, prognostic, and therapeutic implications. Am J Dermatopathol. 2024;46(5):271-286. doi: 10.1097/DAD.0000000000002667
  47. Jafari Nivlouei S, Soltani M, Carvalho J, Travasso R, Salimpour MR, Shirani E. Multiscale modeling of tumor growth and angiogenesis: evaluation of tumor-targeted therapy. PLoS Comput Biol. 2021;17(6):e1009081. doi: 10.1371/journal.pcbi.1009081
  48. Nan J, Roychowdhury S, Randles A. Investigating the influence of heterogeneity within cell types on microvessel network transport. Cell Mol Bioeng. 2023;16(5-6):497-507. doi: 10.1007/s12195-023-00790-y
  49. Cuenca MB, Canedo L, Perez-Castro C, Grecco HE. An integrative and modular framework to recapitulate emergent behavior in cell migration. Front Cell Dev Biol. 2020;8:615759. doi: 10.3389/fcell.2020.615759
  50. Park JY, Choi JC, Shim JH, et al. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication. 2014;6(3):035004. doi: 10.1088/1758-5082/6/3/035004
  51. Fischetti T, Di Pompo G, Baldini N, Avnet S, Graziani G. 3D printing and bioprinting to model bone cancer: the role of materials and nanoscale cues in directing cell behavior. Cancers (Basel). 2021;13(16):4065. doi: 10.3390/cancers13164065
  52. Mojena-Medina D, Martinez-Hernandez M, de la Fuente M, et al. Design, implementation, and validation of a piezoelectric device to study the effects of dynamic mechanical stimulation on cell proliferation, migration and morphology. Sensors (Basel). 2020;20(7):2155. doi: 10.3390/s20072155
  53. Hong S, Song SJ, Lee JY, et al. Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. J Biosci Bioeng. 2013;116(2):224-230. doi: 10.1016/j.jbiosc.2013.02.011
  54. Liu N, Liang W, Liu L, et al. Extracellular-controlled breast cancer cell formation and growth using non-UV patterned hydrogels via optically-induced electrokinetics. Lab Chip. 2014;14(7):1367-1376. doi: 10.1039/c3lc51247a
  55. Petreus T, Cadogan E, Hughes G, et al. Tumour-on-chip microfluidic platform for assessment of drug pharmacokinetics and treatment response. Commun Biol. 2021;4(1):1001. doi: 10.1038/s42003-021-02526-y
  56. Ruchika, Bhardwaj N, Yadav SK, Saneja A. Recent advances in 3D bioprinting for cancer research: From precision models to personalized therapies. Drug Discov Today. 2024;29(4):103924. doi: 10.1016/j.drudis.2024.103924
  57. Chen H, Wu Z, Gong Z, et al. Acoustic bioprinting of patient-derived organoids for predicting cancer therapy responses. Adv Healthc Mater. 2022;11(13):e2102784. doi: 10.1002/adhm.202102784
  58. Park A, Lee Y, Nam S. A performance evaluation of drug response prediction models for individual drugs. Sci Rep. 2023;13(1):11911. doi: 10.1038/s41598-023-39179-2
  59. Shukla P, Bera AK, Yeleswarapu S, Pati F. High throughput bioprinting using decellularized adipose tissue-based hydrogels for 3D breast cancer modeling. Macromol Biosci. 2024;24(8):e2400035. doi: 10.1002/mabi.202400035
  60. Yi HG, Kim H, Kwon J, Choi YJ, Jang J, Cho DW. Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduct Target Ther. 2021;6(1):177. doi: 10.1038/s41392-021-00566-8
  61. Driehuis E, Kolders S, Spelier S, et al. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov. 2019;9(7):852-871. doi: 10.1158/2159-8290.CD-18-1522
  62. Yang K, Wang L, Vijayavenkataraman S, Yuan Y, Tan ECK, Kang L. Recent applications of three-dimensional bioprinting in drug discovery and development. Adv Drug Deliv Rev. 2024;214:115456. doi: 10.1016/j.addr.2024.115456
  63. Smith AD, Roda D, Yap TA. Strategies for modern biomarker and drug development in oncology. J Hematol Oncol. 2014;7:70. doi: 10.1186/s13045-014-0070-8
  64. Tate KM, Munson JM. Assessing drug response in engineered brain microenvironments. Brain Res Bull. 2019;150:21-34. doi: 10.1016/j.brainresbull.2019.04.027
  65. Morikawa A, Li J, Ulintz P, et al. Optimizing precision medicine for breast cancer brain metastases with functional drug response assessment. Cancer Res Commun. 2023;3(6):1093-1103. doi: 10.1158/2767-9764.CRC-22-0492
  66. Norkin M, Ordonez-Moran P, Huelsken J. High-content, targeted RNA-seq screening in organoids for drug discovery in colorectal cancer. Cell Rep. 2021;35(3):109026. doi: 10.1016/j.celrep.2021.109026
  67. Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems - a passing fad or the future? Adv Drug Deliv Rev. 2018;132:139-168. doi: 10.1016/j.addr.2018.05.006
  68. Day D, Siu LL. Approaches to modernize the combination drug development paradigm. Genome Med. 2016; 8(1):115. doi: 10.1186/s13073-016-0369-x
  69. Karavasili C, Eleftheriadis GK, Gioumouxouzis C, Andriotis EG, Fatouros DG. Mucosal drug delivery and 3D printing technologies: a focus on special patient populations. Adv Drug Deliv Rev. 2021;176:113858. doi: 10.1016/j.addr.2021.113858
  70. Sandler N, Preis M. Printed drug-delivery systems for improved patient treatment. Trends Pharmacol Sci. 2016;37(12):1070-1080. doi: 10.1016/j.tips.2016.10.002
  71. Soman SS, Vijayavenkataraman S. Applications of 3D bioprinted-induced pluripotent stem cells in healthcare. Int J Bioprint. 2020;6(4):280. doi: 10.18063/ijb.v6i4.280
  72. Frohlich H, Bontridder N, Petrovska-Delacreta D, et al. Leveraging the potential of digital technology for better individualized treatment of Parkinson‘s disease. Front Neurol. 2022;13:788427. doi: 10.3389/fneur.2022.788427
  73. Zhao W, Hu C, Xu T. In vivo bioprinting: broadening the therapeutic horizon for tissue injuries. Bioact Mater. 2023;25:201-222. doi: 10.1016/j.bioactmat.2023.01.018
  74. Sekar MP, Budharaju H, Zennifer A, et al. Current standards and ethical landscape of engineered tissues-3D bioprinting perspective. J Tissue Eng. 2021;12:20417314211027677. doi: 10.1177/20417314211027677
  75. Zou W, McAdorey A, Yan H, Chen W. Nanomedicine to overcome antimicrobial resistance: challenges and prospects. Nanomedicine (Lond). 2023;18(5): 471-484. doi: 10.2217/nnm-2023-0022
  76. Li J, Wang H. Selective organ targeting nanoparticles: from design to clinical translation. Nanoscale Horiz. 2023;8(9):1155-1173. doi: 10.1039/d3nh00145h
  77. Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181:114083. doi: 10.1016/j.addr.2021.114083
  78. Bettinger CJ, Ecker M, Kozai TDY, Malliaras GG, Meng E, Voit W. Recent advances in neural interfaces-Materials chemistry to clinical translation. MRS Bull. 2020;45(8): 655-668. doi: 10.1557/mrs.2020.195
  79. Jaskulski S, Nuszbaum C, Michels KB. Components, prospects and challenges of personalized prevention. Front Public Health. 2023;11:1075076. doi: 10.3389/fpubh.2023.1075076
  80. Assefa D, Melaku T, Alemu S. Commentary: nanoparticle-based chemotherapy delivery and potential health risks: prospects for effective clinical translation. Technol Cancer Res Treat. 2023;22:15330338231220171. doi: 10.1177/15330338231220171
  81. Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials/ bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006
  82. Kiyotake EA, Douglas AW, Thomas EE, Nimmo SL, Detamore MS. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting. Acta Biomater. 2019;95:176-187. doi: 10.1016/j.actbio.2019.01.041
  83. Kim YB, Lee H, Kim GH. Strategy to achieve highly porous/biocompatible macroscale cell blocks, using a collagen/genipin-bioink and an optimal 3D printing process. ACS Appl Mater Interfaces. 2016;8(47): 32230-32240. doi: 10.1021/acsami.6b11669
  84. Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Role of microenvironmental components in head and neck squamous cell carcinoma. J Pers Med. 2023;13(11):1616. doi: 10.3390/jpm13111616
  85. Lopez de Andres J, Rodriguez-Santana C, de Lara-Pena L, Jimenez G, Escames G, Marchal JA. A bioengineered tumor matrix-based scaffold for the evaluation of melatonin efficacy on head and neck squamous cancer stem cells. Mater Today Bio. 2024;29:101246. doi: 10.1016/j.mtbio.2024.101246
  86. Zhou J, Liu C, Amornphimoltham P, et al. Mouse models for head and neck squamous cell carcinoma. J Dent Res. 2024;103(6):585-595. doi: 10.1177/00220345241240997
  87. Knops AM, South A, Rodeck U, et al. Cancer-associated fibroblast density, prognostic characteristics, and recurrence in head and neck squamous cell carcinoma: a meta-analysis. Front Oncol. 2020;10:565306. doi: 10.3389/fonc.2020.565306
  88. Piluso S, Skvortsov GA, Altunbek M, et al. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments. Biofabrication. 2021;13(4):045008. doi: 10.1088/1758-5090/ac0ff0
  89. Cai Y, Chang SY, Gan SW, Ma S, Lu WF, Yen CC. Nanocomposite bioinks for 3D bioprinting. Acta Biomater. 2022;151:45-69. doi: 10.1016/j.actbio.2022.08.014
  90. Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci. 2019;234:116781. doi: 10.1016/j.lfs.2019.116781
  91. Bhat AA, Yousuf P, Wani NA, et al. Tumor microenvironment: an evil nexus promoting aggressive head and neck squamous cell carcinoma and avenue for targeted therapy. Signal Transduct Target Ther. 2021;6(1):12. doi: 10.1038/s41392-020-00419-w
  92. Dai X, Ma C, Lan Q, Xu T. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication. 2016;8(4):045005. doi: 10.1088/1758-5090/8/4/045005
  93. You S, Xiang Y, Hwang HH, et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci Adv. 2023;9(8):eade7923. doi: 10.1126/sciadv.ade7923
  94. Lee S, Sani ES, Spencer AR, Guan Y, Weiss AS, Annabi N. Human-recombinant-elastin-based bioinks for 3d bioprinting of vascularized soft tissues. Adv Mater. 2020;32(45):e2003915. doi: 10.1002/adma.202003915
  95. Zhang Z, Wu C, Dai C, et al. A multi-axis robot-based bioprinting system supporting natural cell function preservation and cardiac tissue fabrication. Bioact Mater. 2022;18:138-150. doi: 10.1016/j.bioactmat.2022.02.009
  96. Ali ASM, Wu D, Bannach-Brown A, et al. 3D bioprinting of liver models: a systematic scoping review of methods, bioinks, and reporting quality. Mater Today Bio. 2024;26:100991. doi: 10.1016/j.mtbio.2024.100991
  97. Chimene D, Miller L, Cross LM, Jaiswal MK, Singh I, Gaharwar AK. Nanoengineered osteoinductive bioink for 3D bioprinting bone tissue. ACS Appl Mater Interfaces. 2020;12(14):15976-15988. doi: 10.1021/acsami.9b19037
  98. Jiu J, Liu H, Li D, et al. 3D bioprinting approaches for spinal cord injury repair. Biofabrication. 2024;16(3):032003. doi: 10.1088/1758-5090/ad3a13
  99. Sheth RA, Wehrenberg-Klee E, Patel SP, Brock KK, Fotiadis N, de Baere T. Intratumoral injection of immunotherapeutics: state of the art and future directions. Radiology. 2024;312(1):e232654. doi: 10.1148/radiol.232654
  100. Mazzaglia C, Sheng Y, Rodrigues LN, Lei IM, Shields JD, Huang YYS. Deployable extrusion bioprinting of compartmental tumoroids with cancer associated fibroblasts for immune cell interactions. Biofabrication. 2023;15(2):025005. doi: 10.1088/1758-5090/acb1db
  101. Zhang H, Dong S, Li Z, et al. Biointerface engineering nanoplatforms for cancer-targeted drug delivery. Asian J Pharm Sci. 2020;15(4):397-415. doi: 10.1016/j.ajps.2019.11.004
  102. Yang Y, Qiao X, Huang R, et al. E-jet 3D printed drug delivery implants to inhibit growth and metastasis of orthotopic breast cancer. Biomaterials. 2020;230:119618. doi: 10.1016/j.biomaterials.2019.119618
  103. Beg S, Almalki WH, Malik A, et al. 3D printing for drug delivery and biomedical applications. Drug Discov Today. 2020;25(9):1668-1681. doi: 10.1016/j.drudis.2020.07.007
  104. Ravnic DJ, Leberfinger AN, Koduru SV, et al. Transplantation of bioprinted tissues and organs: technical and clinical challenges and future perspectives. Ann Surg. 2017;266(1):48-58. doi: 10.1097/SLA.0000000000002141

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing