AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.6400
RESEARCH ARTICLE

Preparation and characterization of dental nanocomposite resin for 3D-printed dental crown and bridge restorations

Junlong Liu1,2,3,4,5,6 Weiqu Wang7 Yuanli Zheng1,2,3,4,5,6* Zhe Zhao7* Yaoyang Xiong1,2,3,4,5,6*
Show Less
1 Department of First Dental Clinic, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2 College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
3 National Center for Stomatology, Shanghai, China
4 National Clinical Research Center for Oral Diseases, Shanghai, China
5 Shanghai Key Laboratory of Stomatology, Shanghai, China
6 Shanghai Research Institute of Stomatology, Shanghai, China
7 Department of Material Science and Engineering, Shanghai Institute of Technology, Shanghai, China
Submitted: 21 November 2024 | Accepted: 20 January 2025 | Published: 21 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Digital light processing (DLP) 3D printing technology exhibits remarkable potential in dental manufacturing due to its exceptional precision, customization capabilities, and rapid prototyping abilities. Compared to crown and bridge restorations produced through milling and sintering, resin restorations fabricated using DLP printing technology offer higher accuracy and more efficient and economical processing methods. However, the clinical application of DLP-printed tooth crowns and bridge prostheses is limited by their poor mechanical properties and biocompatibility. In this study, a light-curing resin matrix was formulated using urethane dimethacrylate, poly(propylene glycol) dimethacrylate, and a novel photoinitiator 2,4,6-trimethylbenzoyl bis(p-tolyl) phosphine oxide. Silane-modified nano-silica (SiO2) was used as a reinforcing filler to achieve different solid contents in the resin matrix. Four groups of DLP-printed dental nanocomposite resins (DNRs) were prepared with varying solid contents: 16, 19, 22, and 25 wt%. Subsequently, comprehensive evaluations were conducted on the rheological properties, flexural strength, compressive strength, hardness, water absorption capacity, solubility, double bond conversion efficiency, and light transmittance of DNRs with different solid contents. The esthetic properties and biocompatibility of DNRs were further assessed using gingival fibroblasts. The results demonstrated that incorporating 19 wt% SiO2 nanoparticles into the resin matrix significantly enhanced both physical– mechanical properties and biocompatibility of DNRs. In conclusion, the DLP-printed dental nanocomposite with a solid content of 19 wt% exhibited excellent physical– mechanical properties and biocompatibility, suggesting its potential for application in crown and bridge restorations for DLP-printed teeth.

Graphical abstract
Keywords
3D printing
Biocompatibility
Dental crown and bridge
Dental nanocomposite resin
Mechanical physical properties
Nano-SiO2
Funding
The study received financial support from the Key Research and Development Project of Zhejiang Province (No. 2022C01186), the Leading Entrepreneurial Team Project of Zhejiang Province (No. 2021R02016), the Health Industry Clinical Research Special Project of Shanghai Health Commission (No.202440008), and the Natural Science Foundation of Shanghai (No.23ZR1453600)
Conflict of interest
The authors declare that they have no known competing financial interests that could have appeared to influence the work reported in this paper.
References
  1. De Souza Costa CA, Hebling J, Scheffel DLS, Soares DGS, Basso FG, Ribeiro APD. Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques. Dent Mater. 2014;30(7):769-784. doi: 10.1016/j.dental.2014.04.010
  2. Khorsandi D, Fahimipour A, Abasian P, et al. 3D and 4D printing in dentistry and maxillofacial surgery: printing techniques, materials, and applications. Acta Biomater. 2021;122:26-49. doi: 10.1016/j.actbio.2020.12.044
  3. Revilla-Leon M, Ozcan M. Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont. 2019;28(2):146-158. doi: 10.1111/jopr.12801
  4. Aktas N, Ciftci V. Current applications of three-dimensional (3D) printing in pediatric dentistry: a literature review. J Clin Pediatr Dent. 2024;48(5):4-13. doi: 10.22514/jocpd.2024.099
  5. Liu Q, Leu MC, Schmitt SM. Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol. 2006;29(3-4):317-335. doi: 10.1007/s00170-005-2523-2
  6. Barazanchi A, Li KC, Al-Amleh B, Lyons K, Waddell JN. Additive technology: update on current materials and applications in dentistry. J Prosthodont. 2017;26(2):156-163. doi: 10.1111/jopr.12510
  7. Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent. 2016;115(6):760-767. doi: 10.1016/j.prosdent.2015.12.002
  8. Borella PS, Alvares LAS, Ribeiro MTH, et al. Physical and mechanical properties of four 3D-printed resins at two different thick layers: an in vitro comparative study. Dent Mater. 2023;39(8):686-692. doi: 10.1016/j.dental.2023.06.002
  9. Revilla‐León M, Meyers MJ, Zandinejad A, Özcan M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J Esthet Restor Dent. 2019;31(1):51-57. doi: 10.1111/jerd.12438
  10. Wu J, Wang X, Zhao X, Zhang C, Gao B. A study on the fabrication method of removable partial denture framework by computer-aided design and rapid prototyping. Rapid Prototyping J. 2012;18(4):318-323. doi: 10.1108/13552541211231743
  11. Fugolin APP, Pfeifer CS. New resins for dental composites. J Dent Res. 2017;96(10):1085-1091. doi: 10.1177/0022034517720658
  12. Habib E, Wang R, Wang Y, Zhu M, Zhu XX. Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng. 2016;2(1):1-11. doi: 10.1021/acsbiomaterials.5b00401
  13. Hassan R, Aslam Khan MU, Abdullah AM, Abd Razak SI. A review on current trends of polymers in orthodontics: BPA-free and smart materials. Polymers. 2021; 13(9):1409. doi: 10.3390/polym13091409
  14. Abebe W, Maddux WF. Roles of nitric oxide and prostacyclin in triethyleneglycol dimethacrylate (TEGDMA)-induced vasorelaxation. Dent Mater. 2006;22(1):37-44. doi: 10.1016/j.dental.2005.02.008
  15. Huang FM, Kuan YH, Lee SS, Chang YC. Cytotoxicity and genotoxicity of triethyleneglycol-dimethacrylate in macrophages involved in DNA damage and caspases activation. Environ Toxicol. 2015;30(5):581-588. doi: 10.1002/tox.21935
  16. Walters NJ, Xia W, Salih V, Ashley PF, Young AM. Poly(propylene glycol) and urethane dimethacrylates improve conversion of dental composites and reveal complexity of cytocompatibility testing. Dent Mater. 2016;32(2):264-277. doi: 10.1016/j.dental.2015.11.017
  17. Yao X, Hu J, Li X, Wei W, Liu R, Liu J. 3D printing of high solid Al2O3 ceramics based on green and renewable photosensitive resin with low viscosity and low shrinkage. Polym Adv Technol. 2024;35(3):e6330. doi: 10.1002/pat.6330
  18. Protopapa P, Kontonasaki E, Bikiaris D, Paraskevopoulos KM, Koidis P. Reinforcement of a PMMA resin for fixed interim prostheses with nanodiamonds. Dent Mater J. 2011;30(2):222-231. doi: 10.4012/dmj.2010-135
  19. Lee KH, Rhee SH. The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO2-CaO nanocomposite. Biomaterials. 2009;30(20):3444-3449. doi: 10.1016/j.biomaterials.2009.03.002
  20. Aati S, Akram Z, Ngo H, Fawzy AS. Development of 3D printed resin reinforced with modified ZrO2 nanoparticles for long-term provisional dental restorations. Dent Mater. 2021;37(6):e360-e374. doi: 10.1016/j.dental.2021.02.010
  21. Alshaikh AA, Khattar A, Almindil IA, et al. 3D-printed nanocomposite denture-base resins: effect of ZrO2 nanoparticles on the mechanical and surface properties in vitro. Nanomaterials (Basel). 2022;12(14):2451. doi: 10.3390/nano12142451
  22. Ai M, Du Z, Zhu S, et al. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application. Dent Mater. 2017;33(1):12-22. doi: 10.1016/j.dental.2016.09.038
  23. Persson C, Unosson E, Ajaxon I, Engstrand J, Engqvist H, Xia W. Nano grain sized zirconia-silica glass ceramics for dental applications. J Eur Ceram Soc. 2012;32(16): 4105-4110. doi: 10.1016/j.jeurceramsoc.2012.06.028
  24. Kumar P, Kumar V, Kumar R, Kumar R, Pruncu CI. Fabrication and characterization of ZrO2 incorporated SiO2- CaO-P2O5 bioactive glass scaffolds. J Mech Behav Biomed Mater. 2020;109:103854. doi: 10.1016/j.jmbbm.2020.103854
  25. Chaijareenont P, Takahashi H, Nishiyama N, Arksornnukit M. Effect of different amounts of 3-methacryloxypropyltrimethoxysilane on the flexural properties and wear resistance of alumina reinforced PMMA. Dent Mater J. 2012;31(4):623-628. doi: 10.4012/dmj.2012-056
  26. Maji P, Choudhary RB, Majhi M. Structural, optical and dielectric properties of ZrO2 reinforced polymeric nanocomposite films of polymethylmethacrylate (PMMA). Optik. 2016;127(11):4848-4853. doi: 10.1016/j.ijleo.2016.02.025
  27. Daood U, Iqbal K, Nitisusanta LI, Fawzy AS. Effect of chitosan/riboflavin modification on resin/dentin interface: Spectroscopic and microscopic investigations. J Biomed Mater Res A. 2013;101A(7):1846-1856. doi: 10.1002/jbm.a.34482
  28. Yli-Urpo H, Lassila LVJ, Närhi T, Vallittu PK. Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass. Dent Mater. 2005;21(3):201-209. doi: 10.1016/j.dental.2004.03.006
  29. Kim D, Shim JS, Lee D, et al. Effects of post-curing time on the mechanical and color properties of three-dimensional printed crown and bridge materials. Polymers. 2020;12(11):2762. doi: 10.3390/polym12112762
  30. Wu CC, Huang ST, Tseng TW, Rao QL, Lin HC. FT-IR and XRD investigations on sintered fluoridated hydroxyapatite composites. J Mol Struct. 2010;979(1-3):72-76. doi: 10.1016/j.molstruc.2010.06.003
  31. Nazarabady MM, Farzi G. Morphology control to design p(acrylic acid)/silica nanohybrids with controlled mechanical properties. Polymer. 2018;143:289-297. doi: 10.1016/j.polymer.2018.02.026
  32. Chen B, Lu Z, Meng H, et al. Effectiveness of pre-silanization in improving bond performance of universal adhesives or self-adhesive resin cements to silica-based ceramics: Chemical and in vitro evidences. Dent Mater. 2019;35(4):543-553. doi: 10.1016/j.dental.2019.01.010
  33. Kim I, Kim S, Andreu A, Kim JH, Yoon YJ. Influence of dispersant concentration toward enhancing printing precision and surface quality of vat photopolymerization 3D printed ceramics. Addit Manuf. 2022;52:102659. doi: 10.1016/j.addma.2022.102659
  34. Yao Y, Cui H, Wang W, Xing B, Zhao Z. High performance dental zirconia ceramics fabricated by vat photopolymerization based on aqueous suspension. J Eur Ceram Soc. 2024;44(16):116795. doi: 10.1016/j.jeurceramsoc.2024.116795
  35. Franz A, Koeniq F, Lucas T, Watts DC, Schedle A. Cytotoxic effects of dental bonding substances as a function of degree of conversion. Dent Mater. 2009;25(2):232-239. doi: 10.1016/j.dental.2008.07.003
  36. Li Z, Wang J, Chen H, Wang R, Zhu M. Synthesis of ZnO nanorod-decorated graphene oxide for application in dental resin composites. ACS Biomater Sci Eng. 2023;9(5):2706-2715. doi: 10.1021/acsbiomaterials.2c01523
  37. Chen H, Lee SY, Lin YM. Synthesis and formulation of PCL-based urethane acrylates for DLP 3D printers. Polymers. 2020;12(7):1500. doi: 10.3390/polym12071500
  38. Wang Y, Zhu M, Zhu XX. Functional fillers for dental resin composites. Acta Biomater. 2021;122:50-65. doi: 10.1016/j.actbio.2020.12.001
  39. Matinlinna JP, Lung CYK, Tsoi JKH. Silane adhesion mechanism in dental applications and surface treatments: a review. Dent Mater. 2018;34(1):13-28. doi: 10.1016/j.dental.2017.09.002
  40. Sideridou ID, Karabela MM. Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. Dent Mater. 2009;25(11):1315-1324. doi: 10.1016/j.dental.2009.03.016
  41. Otsuka T, Chujo Y. Poly(methyl methacrylate) (PMMA)- based hybrid materials with reactive zirconium oxide nanocrystals. Polym J. 2010;42(1):58-65. doi: 10.1038/pj.2009.309
  42. Caravaca C, Shi L, Balvay S, et al. Direct silanization of zirconia for increased biointegration. Acta Biomater. 2016;46:323-335. doi: 10.1016/j.actbio.2016.09.034
  43. Lee WJ, Jo YH, Yilmaz B, Yoon HI. Effect of layer thickness, build angle, and viscosity on the mechanical properties and manufacturing trueness of denture base resin for digital light processing. J Dent. 2023; 135:104598. doi: 10.1016/j.jdent.2023.104598
  44. Fan J, Li Q, Jin F, et al. High solid loading, low viscosity stereolithography 3D printing ceramic cores slurry. Ceram Int. 2023;49(24, Part A):40705-40715. doi: 10.1016/j.ceramint.2023.10.054
  45. Aminoroaya A, Neisiany RE, Khorasani SN, et al. A review of dental composites: challenges, chemistry aspects, filler influences, and future insights. Compos B: Eng. 2021;216:108852. doi: 10.1016/j.compositesb.2021.108852
  46. Lemon MT, Jones MS, Stansbury JW. Hydrogen bonding interactions in methacrylate monomers and polymers. J Biomed Mater Res A. 2007;83A(3):734-746. doi: 10.1002/jbm.a.31448
  47. Pereira SG, Nunes TG, Kalachandra S. Low viscosity dimethacrylate comonomer compositions [Bis-GMA and CH3Bis-GMA] for novel dental composites: analysis of the network by stray-field MRI, solid-state NMR and DSC & FTIR. Biomaterials. 2002;23(18):3799-3806. doi: 10.1016/S0142-9612(02)00094-7
  48. Miletic V, Santini A. Micro-Raman spectroscopic analysis of the degree of conversion of composite resins containing different initiators cured by polywave or monowave LED units. J Dent. 2012;40(2):106-113. doi: 10.1016/j.jdent.2011.10.018
  49. Manojlovic D, Dramićanin MD, Miletic V, Mitić-Ćulafić D, Jovanović B, Nikolić B. Cytotoxicity and genotoxicity of a low-shrinkage monomer and monoacylphosphine oxide photoinitiator: comparative analyses of individual toxicity and combination effects in mixtures. Dent Mater. 2017;33(4):454-466. doi: 10.1016/j.dental.2017.02.002
  50. Zhang S, Wang X, Yang J, Chen H, Jiang X. Micromechanical interlocking structure at the filler/resin interface for dental composites: a review. Int J Oral Sci. 2023;15(1):1-13. doi: 10.1038/s41368-023-00226-3
  51. Adnan S, Khan FR. Comparison of micro-leakage around temporary restorative materials placed in complex endodontic access cavities: an in-vitro study. J Coll Phys Surg Pak. 2016;26(3):182-186.
  52. Frasheri I, Aumer K, Kessler A, Miosge N, Folwaczny M. Effects of resin materials dedicated for additive manufacturing of temporary dental restorations on human gingival keratinocytes. J Esthet Restor Dent. 2022;34(7):1105-1112. doi: 10.1111/jerd.12938
  53. Bieger V, Thieringer FM, Fischer J, Rohr N. Fibroblast behavior on conventionally processed, milled, and printed occlusal device materials with different surface treatments. J Prosthet Dent. 2023;129(6):939-945. doi: 10.1016/j.prosdent.2021.08.015
  54. Atria PJ, Bordin D, Marti F, et al. 3D-printed resins for provisional dental restorations: comparison of mechanical and biological properties. J Esthet Restor Dent. 2022;34(5):804-815. doi: 10.1111/jerd.12888
  55. Mondschein RJ, Kanitkar A, Williams CB, Verbridge SS, Long TE. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials. 2017;140:170-188. doi: 10.1016/j.biomaterials.2017.06.005
  56. Gad MM, Fouda SM, Al-Harbi FA, Napankangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomed. 2017;12:3801-3812. doi: 10.2147/IJN.S130722
  57. Han Z, Zhu B, Chen R, Huang Z, Zhu C, Zhang X. Effect of silver-supported materials on the mechanical and antibacterial properties of reinforced acrylic resin composites. Mater Des (1980-2015). 2015; 65:1245-1252. doi: 10.1016/j.matdes.2014.10.023
  58. Ferracane JL. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater. 1985;1(1):11-14. doi: 10.1016/S0109-5641(85)80058-0
  59. Halvorson RH, Erickson RL, Davidson CL. Energy dependent polymerization of resin-based composite. Dent Mater. 2002;18(6):463-469. doi: 10.1016/S0109-5641(01)00069-0
  60. Leloup G, Holvoet PE, Bebelman S, Devaux J. Raman scattering determination of the depth of cure of light-activated composites: influence of different clinically relevant parameters. J Oral Rehabil. 2002; 29(6):510-515. doi: 10.1046/j.1365-2842.2002.00889.x
  61. Emami N, Sjödahl M, Söderholm KJM. How filler properties, filter fraction, sample thickness and light source affect light attenuation in particulate filled resin composites. Dent Mater. 2005;21(8):721-730. doi: 10.1016/j.dental.2005.01.002
  62. Ramezanzadeh B, Attar MM, Farzam M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J Therm Anal Calorim. 2011;103(2):731-739. doi: 10.1007/s10973-010-0996-1
  63. Panyayong W, Oshida Y, Andres CJ, Barco TM, Brown DT, Hovijitra S. Reinforcement of acrylic resins for provisional fixed restorations. Part III: effects of addition of titania and zirconia mixtures on some mechanical and physical properties. Biomed Mater Eng. 2002; 12(4):353-366.
  64. Pajor K, Pajchel L, Kolmas J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology-a review. Materials. 2019;12(17):2683. doi: 10.3390/ma12172683
  65. Aati S, Shrestha B, Fawzy A. Cytotoxicity and antimicrobial efficiency of ZrO2 nanoparticles reinforced 3D printed resins. Dent Mater. 2022;38(8):1432-1442. doi: 10.1016/j.dental.2022.06.030
  66. Perea-Lowery L, Gibreel M, Vallittu PK, Lassila L. Characterization of the mechanical properties of CAD/ CAM polymers for interim fixed restorations. Dent Mater J. 2020;39(2):319-325. doi: 10.4012/dmj.2019-042
  67. Hosseinalipour M, Javadpour J, Rezaie H, Dadras T, Hayati AN. Investigation of mechanical properties of experimental Bis-GMA/TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. J Prosthodont. 2010;19(2):112-117. doi: 10.1111/j.1532-849X.2009.00530.x
  68. Ahmed Omran Alhareb, Zainal Arifin Ahmad. Effect of Al2O3/ZrO2 reinforcement on the mechanical properties of PMMA denture base. J Reinf Plast Compos. 2011; 30(1):86-93. doi: 10.1177/0731684410379511
  69. Gad MM, Al-Thobity AM, Rahoma A, Abualsaud R, Al- Harbi FA, Akhtar S. Reinforcement of PMMA denture base material with a mixture of ZrO2 nanoparticles and glass fibers. Int J Dent. 2019;2019:2489393. doi: 10.1155/2019/2489393
  70. Gopalakrishnan S, Raj I, Mathew AT, et al. Development of oral-fluid-impervious and fracture-resistant silver-poly(methyl methacrylate) nanoformulations for intra-oral/extra-oral rehabilitation. J Appl Polym Sci. 2019;136(26):47669. doi: 10.1002/app.47669
  71. Sun L, Gibson RF, Gordaninejad F, Suhr J. Energy absorption capability of nanocomposites: a review. Compos Sci Technol. 2009;69(14):2392-2409. doi: 10.1016/j.compscitech.2009.06.020
  72. Pardini LC, Manhani LGB. Influence of the testing gage length on the strength, Young’s Modulus and Weibull Modulus of carbon fibres and glass fibres. Mater Res. 2002;5(4):411-420. doi: 10.1590/S1516-14392002000400004
  73. Craig RG, Peyton FA. Elastic and mechanical properties of human dentin. J Dent Res. 1958;37(4):710-718. doi: 10.1177/00220345580370041801
  74. Bora P, Sayed Ahmed A, Alford A, Pitttman K, Thomas V, Lawson NC. Characterization of materials used for 3D printing dental crowns and hybrid prostheses. J Esthet Restor Dent. 2024;36(1):220-230. doi: 10.1111/jerd.13174
  75. Espinar C, Perez MM, Pulgar R, Leon-Cecilla A, Lopez MT, Della Bona A. Influence of printing orientation on mechanical properties of aged 3D-printed restorative resins. Dent Mater. 2024;40(4):756-763. doi: 10.1016/j.dental.2024.02.023
  76. Ozog P, Blugan G, Kata D, Graule T. Influence of the printing parameters on the quality of alumina ceramics shaped by UV-LCM technology. J Ceram Sci Technol. 2019;10(2):1-10. doi: 10.4416/JCST2019-00023
  77. Gu Y, Duan W, Wang T, et al. Additive manufacturing of Al2O3 ceramic core with applicable microstructure and mechanical properties via digital light processing of high solid loading slurry. Ceram Int. 2023;49(15):25216-25224. doi: 10.1016/j.ceramint.2023.05.054
  78. Yang Z, Shan J, Huang Y, et al. Preparation and mechanism of free-radical/cationic hybrid photosensitive resin with high tensile strength for three-dimensional printing applications. J Appl Polym Sci. 2021;138(8):49881. doi: 10.1002/app.49881
  79. Altarazi A, Haider J, Alhotan A, Silikas N, Devlin H. Assessing the physical and mechanical properties of 3D printed acrylic material for denture base application. Dent Mater. 2022;38(12):1841-1854. doi: 10.1016/j.dental.2022.09.006
  80. Lu TY, Lin WC, Yang TH, Sahrir CD, Shen YK, Feng SW. The influence of dental virtualization, restoration types, and placement angles on the trueness and contact space in 3D-printed crowns: a comprehensive exploration. Dent J. 2024;12(1):2. doi: 10.3390/dj12010002

 

 

 




Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing