Preparation and characterization of dental nanocomposite resin for 3D-printed dental crown and bridge restorations

Digital light processing (DLP) 3D printing technology exhibits remarkable potential in dental manufacturing due to its exceptional precision, customization capabilities, and rapid prototyping abilities. Compared to crown and bridge restorations produced through milling and sintering, resin restorations fabricated using DLP printing technology offer higher accuracy and more efficient and economical processing methods. However, the clinical application of DLP-printed tooth crowns and bridge prostheses is limited by their poor mechanical properties and biocompatibility. In this study, a light-curing resin matrix was formulated using urethane dimethacrylate, poly(propylene glycol) dimethacrylate, and a novel photoinitiator 2,4,6-trimethylbenzoyl bis(p-tolyl) phosphine oxide. Silane-modified nano-silica (SiO2) was used as a reinforcing filler to achieve different solid contents in the resin matrix. Four groups of DLP-printed dental nanocomposite resins (DNRs) were prepared with varying solid contents: 16, 19, 22, and 25 wt%. Subsequently, comprehensive evaluations were conducted on the rheological properties, flexural strength, compressive strength, hardness, water absorption capacity, solubility, double bond conversion efficiency, and light transmittance of DNRs with different solid contents. The esthetic properties and biocompatibility of DNRs were further assessed using gingival fibroblasts. The results demonstrated that incorporating 19 wt% SiO2 nanoparticles into the resin matrix significantly enhanced both physical– mechanical properties and biocompatibility of DNRs. In conclusion, the DLP-printed dental nanocomposite with a solid content of 19 wt% exhibited excellent physical– mechanical properties and biocompatibility, suggesting its potential for application in crown and bridge restorations for DLP-printed teeth.

- De Souza Costa CA, Hebling J, Scheffel DLS, Soares DGS, Basso FG, Ribeiro APD. Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques. Dent Mater. 2014;30(7):769-784. doi: 10.1016/j.dental.2014.04.010
- Khorsandi D, Fahimipour A, Abasian P, et al. 3D and 4D printing in dentistry and maxillofacial surgery: printing techniques, materials, and applications. Acta Biomater. 2021;122:26-49. doi: 10.1016/j.actbio.2020.12.044
- Revilla-Leon M, Ozcan M. Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont. 2019;28(2):146-158. doi: 10.1111/jopr.12801
- Aktas N, Ciftci V. Current applications of three-dimensional (3D) printing in pediatric dentistry: a literature review. J Clin Pediatr Dent. 2024;48(5):4-13. doi: 10.22514/jocpd.2024.099
- Liu Q, Leu MC, Schmitt SM. Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol. 2006;29(3-4):317-335. doi: 10.1007/s00170-005-2523-2
- Barazanchi A, Li KC, Al-Amleh B, Lyons K, Waddell JN. Additive technology: update on current materials and applications in dentistry. J Prosthodont. 2017;26(2):156-163. doi: 10.1111/jopr.12510
- Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent. 2016;115(6):760-767. doi: 10.1016/j.prosdent.2015.12.002
- Borella PS, Alvares LAS, Ribeiro MTH, et al. Physical and mechanical properties of four 3D-printed resins at two different thick layers: an in vitro comparative study. Dent Mater. 2023;39(8):686-692. doi: 10.1016/j.dental.2023.06.002
- Revilla‐León M, Meyers MJ, Zandinejad A, Özcan M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J Esthet Restor Dent. 2019;31(1):51-57. doi: 10.1111/jerd.12438
- Wu J, Wang X, Zhao X, Zhang C, Gao B. A study on the fabrication method of removable partial denture framework by computer-aided design and rapid prototyping. Rapid Prototyping J. 2012;18(4):318-323. doi: 10.1108/13552541211231743
- Fugolin APP, Pfeifer CS. New resins for dental composites. J Dent Res. 2017;96(10):1085-1091. doi: 10.1177/0022034517720658
- Habib E, Wang R, Wang Y, Zhu M, Zhu XX. Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng. 2016;2(1):1-11. doi: 10.1021/acsbiomaterials.5b00401
- Hassan R, Aslam Khan MU, Abdullah AM, Abd Razak SI. A review on current trends of polymers in orthodontics: BPA-free and smart materials. Polymers. 2021; 13(9):1409. doi: 10.3390/polym13091409
- Abebe W, Maddux WF. Roles of nitric oxide and prostacyclin in triethyleneglycol dimethacrylate (TEGDMA)-induced vasorelaxation. Dent Mater. 2006;22(1):37-44. doi: 10.1016/j.dental.2005.02.008
- Huang FM, Kuan YH, Lee SS, Chang YC. Cytotoxicity and genotoxicity of triethyleneglycol-dimethacrylate in macrophages involved in DNA damage and caspases activation. Environ Toxicol. 2015;30(5):581-588. doi: 10.1002/tox.21935
- Walters NJ, Xia W, Salih V, Ashley PF, Young AM. Poly(propylene glycol) and urethane dimethacrylates improve conversion of dental composites and reveal complexity of cytocompatibility testing. Dent Mater. 2016;32(2):264-277. doi: 10.1016/j.dental.2015.11.017
- Yao X, Hu J, Li X, Wei W, Liu R, Liu J. 3D printing of high solid Al2O3 ceramics based on green and renewable photosensitive resin with low viscosity and low shrinkage. Polym Adv Technol. 2024;35(3):e6330. doi: 10.1002/pat.6330
- Protopapa P, Kontonasaki E, Bikiaris D, Paraskevopoulos KM, Koidis P. Reinforcement of a PMMA resin for fixed interim prostheses with nanodiamonds. Dent Mater J. 2011;30(2):222-231. doi: 10.4012/dmj.2010-135
- Lee KH, Rhee SH. The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO2-CaO nanocomposite. Biomaterials. 2009;30(20):3444-3449. doi: 10.1016/j.biomaterials.2009.03.002
- Aati S, Akram Z, Ngo H, Fawzy AS. Development of 3D printed resin reinforced with modified ZrO2 nanoparticles for long-term provisional dental restorations. Dent Mater. 2021;37(6):e360-e374. doi: 10.1016/j.dental.2021.02.010
- Alshaikh AA, Khattar A, Almindil IA, et al. 3D-printed nanocomposite denture-base resins: effect of ZrO2 nanoparticles on the mechanical and surface properties in vitro. Nanomaterials (Basel). 2022;12(14):2451. doi: 10.3390/nano12142451
- Ai M, Du Z, Zhu S, et al. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application. Dent Mater. 2017;33(1):12-22. doi: 10.1016/j.dental.2016.09.038
- Persson C, Unosson E, Ajaxon I, Engstrand J, Engqvist H, Xia W. Nano grain sized zirconia-silica glass ceramics for dental applications. J Eur Ceram Soc. 2012;32(16): 4105-4110. doi: 10.1016/j.jeurceramsoc.2012.06.028
- Kumar P, Kumar V, Kumar R, Kumar R, Pruncu CI. Fabrication and characterization of ZrO2 incorporated SiO2- CaO-P2O5 bioactive glass scaffolds. J Mech Behav Biomed Mater. 2020;109:103854. doi: 10.1016/j.jmbbm.2020.103854
- Chaijareenont P, Takahashi H, Nishiyama N, Arksornnukit M. Effect of different amounts of 3-methacryloxypropyltrimethoxysilane on the flexural properties and wear resistance of alumina reinforced PMMA. Dent Mater J. 2012;31(4):623-628. doi: 10.4012/dmj.2012-056
- Maji P, Choudhary RB, Majhi M. Structural, optical and dielectric properties of ZrO2 reinforced polymeric nanocomposite films of polymethylmethacrylate (PMMA). Optik. 2016;127(11):4848-4853. doi: 10.1016/j.ijleo.2016.02.025
- Daood U, Iqbal K, Nitisusanta LI, Fawzy AS. Effect of chitosan/riboflavin modification on resin/dentin interface: Spectroscopic and microscopic investigations. J Biomed Mater Res A. 2013;101A(7):1846-1856. doi: 10.1002/jbm.a.34482
- Yli-Urpo H, Lassila LVJ, Närhi T, Vallittu PK. Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass. Dent Mater. 2005;21(3):201-209. doi: 10.1016/j.dental.2004.03.006
- Kim D, Shim JS, Lee D, et al. Effects of post-curing time on the mechanical and color properties of three-dimensional printed crown and bridge materials. Polymers. 2020;12(11):2762. doi: 10.3390/polym12112762
- Wu CC, Huang ST, Tseng TW, Rao QL, Lin HC. FT-IR and XRD investigations on sintered fluoridated hydroxyapatite composites. J Mol Struct. 2010;979(1-3):72-76. doi: 10.1016/j.molstruc.2010.06.003
- Nazarabady MM, Farzi G. Morphology control to design p(acrylic acid)/silica nanohybrids with controlled mechanical properties. Polymer. 2018;143:289-297. doi: 10.1016/j.polymer.2018.02.026
- Chen B, Lu Z, Meng H, et al. Effectiveness of pre-silanization in improving bond performance of universal adhesives or self-adhesive resin cements to silica-based ceramics: Chemical and in vitro evidences. Dent Mater. 2019;35(4):543-553. doi: 10.1016/j.dental.2019.01.010
- Kim I, Kim S, Andreu A, Kim JH, Yoon YJ. Influence of dispersant concentration toward enhancing printing precision and surface quality of vat photopolymerization 3D printed ceramics. Addit Manuf. 2022;52:102659. doi: 10.1016/j.addma.2022.102659
- Yao Y, Cui H, Wang W, Xing B, Zhao Z. High performance dental zirconia ceramics fabricated by vat photopolymerization based on aqueous suspension. J Eur Ceram Soc. 2024;44(16):116795. doi: 10.1016/j.jeurceramsoc.2024.116795
- Franz A, Koeniq F, Lucas T, Watts DC, Schedle A. Cytotoxic effects of dental bonding substances as a function of degree of conversion. Dent Mater. 2009;25(2):232-239. doi: 10.1016/j.dental.2008.07.003
- Li Z, Wang J, Chen H, Wang R, Zhu M. Synthesis of ZnO nanorod-decorated graphene oxide for application in dental resin composites. ACS Biomater Sci Eng. 2023;9(5):2706-2715. doi: 10.1021/acsbiomaterials.2c01523
- Chen H, Lee SY, Lin YM. Synthesis and formulation of PCL-based urethane acrylates for DLP 3D printers. Polymers. 2020;12(7):1500. doi: 10.3390/polym12071500
- Wang Y, Zhu M, Zhu XX. Functional fillers for dental resin composites. Acta Biomater. 2021;122:50-65. doi: 10.1016/j.actbio.2020.12.001
- Matinlinna JP, Lung CYK, Tsoi JKH. Silane adhesion mechanism in dental applications and surface treatments: a review. Dent Mater. 2018;34(1):13-28. doi: 10.1016/j.dental.2017.09.002
- Sideridou ID, Karabela MM. Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. Dent Mater. 2009;25(11):1315-1324. doi: 10.1016/j.dental.2009.03.016
- Otsuka T, Chujo Y. Poly(methyl methacrylate) (PMMA)- based hybrid materials with reactive zirconium oxide nanocrystals. Polym J. 2010;42(1):58-65. doi: 10.1038/pj.2009.309
- Caravaca C, Shi L, Balvay S, et al. Direct silanization of zirconia for increased biointegration. Acta Biomater. 2016;46:323-335. doi: 10.1016/j.actbio.2016.09.034
- Lee WJ, Jo YH, Yilmaz B, Yoon HI. Effect of layer thickness, build angle, and viscosity on the mechanical properties and manufacturing trueness of denture base resin for digital light processing. J Dent. 2023; 135:104598. doi: 10.1016/j.jdent.2023.104598
- Fan J, Li Q, Jin F, et al. High solid loading, low viscosity stereolithography 3D printing ceramic cores slurry. Ceram Int. 2023;49(24, Part A):40705-40715. doi: 10.1016/j.ceramint.2023.10.054
- Aminoroaya A, Neisiany RE, Khorasani SN, et al. A review of dental composites: challenges, chemistry aspects, filler influences, and future insights. Compos B: Eng. 2021;216:108852. doi: 10.1016/j.compositesb.2021.108852
- Lemon MT, Jones MS, Stansbury JW. Hydrogen bonding interactions in methacrylate monomers and polymers. J Biomed Mater Res A. 2007;83A(3):734-746. doi: 10.1002/jbm.a.31448
- Pereira SG, Nunes TG, Kalachandra S. Low viscosity dimethacrylate comonomer compositions [Bis-GMA and CH3Bis-GMA] for novel dental composites: analysis of the network by stray-field MRI, solid-state NMR and DSC & FTIR. Biomaterials. 2002;23(18):3799-3806. doi: 10.1016/S0142-9612(02)00094-7
- Miletic V, Santini A. Micro-Raman spectroscopic analysis of the degree of conversion of composite resins containing different initiators cured by polywave or monowave LED units. J Dent. 2012;40(2):106-113. doi: 10.1016/j.jdent.2011.10.018
- Manojlovic D, Dramićanin MD, Miletic V, Mitić-Ćulafić D, Jovanović B, Nikolić B. Cytotoxicity and genotoxicity of a low-shrinkage monomer and monoacylphosphine oxide photoinitiator: comparative analyses of individual toxicity and combination effects in mixtures. Dent Mater. 2017;33(4):454-466. doi: 10.1016/j.dental.2017.02.002
- Zhang S, Wang X, Yang J, Chen H, Jiang X. Micromechanical interlocking structure at the filler/resin interface for dental composites: a review. Int J Oral Sci. 2023;15(1):1-13. doi: 10.1038/s41368-023-00226-3
- Adnan S, Khan FR. Comparison of micro-leakage around temporary restorative materials placed in complex endodontic access cavities: an in-vitro study. J Coll Phys Surg Pak. 2016;26(3):182-186.
- Frasheri I, Aumer K, Kessler A, Miosge N, Folwaczny M. Effects of resin materials dedicated for additive manufacturing of temporary dental restorations on human gingival keratinocytes. J Esthet Restor Dent. 2022;34(7):1105-1112. doi: 10.1111/jerd.12938
- Bieger V, Thieringer FM, Fischer J, Rohr N. Fibroblast behavior on conventionally processed, milled, and printed occlusal device materials with different surface treatments. J Prosthet Dent. 2023;129(6):939-945. doi: 10.1016/j.prosdent.2021.08.015
- Atria PJ, Bordin D, Marti F, et al. 3D-printed resins for provisional dental restorations: comparison of mechanical and biological properties. J Esthet Restor Dent. 2022;34(5):804-815. doi: 10.1111/jerd.12888
- Mondschein RJ, Kanitkar A, Williams CB, Verbridge SS, Long TE. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials. 2017;140:170-188. doi: 10.1016/j.biomaterials.2017.06.005
- Gad MM, Fouda SM, Al-Harbi FA, Napankangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomed. 2017;12:3801-3812. doi: 10.2147/IJN.S130722
- Han Z, Zhu B, Chen R, Huang Z, Zhu C, Zhang X. Effect of silver-supported materials on the mechanical and antibacterial properties of reinforced acrylic resin composites. Mater Des (1980-2015). 2015; 65:1245-1252. doi: 10.1016/j.matdes.2014.10.023
- Ferracane JL. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater. 1985;1(1):11-14. doi: 10.1016/S0109-5641(85)80058-0
- Halvorson RH, Erickson RL, Davidson CL. Energy dependent polymerization of resin-based composite. Dent Mater. 2002;18(6):463-469. doi: 10.1016/S0109-5641(01)00069-0
- Leloup G, Holvoet PE, Bebelman S, Devaux J. Raman scattering determination of the depth of cure of light-activated composites: influence of different clinically relevant parameters. J Oral Rehabil. 2002; 29(6):510-515. doi: 10.1046/j.1365-2842.2002.00889.x
- Emami N, Sjödahl M, Söderholm KJM. How filler properties, filter fraction, sample thickness and light source affect light attenuation in particulate filled resin composites. Dent Mater. 2005;21(8):721-730. doi: 10.1016/j.dental.2005.01.002
- Ramezanzadeh B, Attar MM, Farzam M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J Therm Anal Calorim. 2011;103(2):731-739. doi: 10.1007/s10973-010-0996-1
- Panyayong W, Oshida Y, Andres CJ, Barco TM, Brown DT, Hovijitra S. Reinforcement of acrylic resins for provisional fixed restorations. Part III: effects of addition of titania and zirconia mixtures on some mechanical and physical properties. Biomed Mater Eng. 2002; 12(4):353-366.
- Pajor K, Pajchel L, Kolmas J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology-a review. Materials. 2019;12(17):2683. doi: 10.3390/ma12172683
- Aati S, Shrestha B, Fawzy A. Cytotoxicity and antimicrobial efficiency of ZrO2 nanoparticles reinforced 3D printed resins. Dent Mater. 2022;38(8):1432-1442. doi: 10.1016/j.dental.2022.06.030
- Perea-Lowery L, Gibreel M, Vallittu PK, Lassila L. Characterization of the mechanical properties of CAD/ CAM polymers for interim fixed restorations. Dent Mater J. 2020;39(2):319-325. doi: 10.4012/dmj.2019-042
- Hosseinalipour M, Javadpour J, Rezaie H, Dadras T, Hayati AN. Investigation of mechanical properties of experimental Bis-GMA/TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. J Prosthodont. 2010;19(2):112-117. doi: 10.1111/j.1532-849X.2009.00530.x
- Ahmed Omran Alhareb, Zainal Arifin Ahmad. Effect of Al2O3/ZrO2 reinforcement on the mechanical properties of PMMA denture base. J Reinf Plast Compos. 2011; 30(1):86-93. doi: 10.1177/0731684410379511
- Gad MM, Al-Thobity AM, Rahoma A, Abualsaud R, Al- Harbi FA, Akhtar S. Reinforcement of PMMA denture base material with a mixture of ZrO2 nanoparticles and glass fibers. Int J Dent. 2019;2019:2489393. doi: 10.1155/2019/2489393
- Gopalakrishnan S, Raj I, Mathew AT, et al. Development of oral-fluid-impervious and fracture-resistant silver-poly(methyl methacrylate) nanoformulations for intra-oral/extra-oral rehabilitation. J Appl Polym Sci. 2019;136(26):47669. doi: 10.1002/app.47669
- Sun L, Gibson RF, Gordaninejad F, Suhr J. Energy absorption capability of nanocomposites: a review. Compos Sci Technol. 2009;69(14):2392-2409. doi: 10.1016/j.compscitech.2009.06.020
- Pardini LC, Manhani LGB. Influence of the testing gage length on the strength, Young’s Modulus and Weibull Modulus of carbon fibres and glass fibres. Mater Res. 2002;5(4):411-420. doi: 10.1590/S1516-14392002000400004
- Craig RG, Peyton FA. Elastic and mechanical properties of human dentin. J Dent Res. 1958;37(4):710-718. doi: 10.1177/00220345580370041801
- Bora P, Sayed Ahmed A, Alford A, Pitttman K, Thomas V, Lawson NC. Characterization of materials used for 3D printing dental crowns and hybrid prostheses. J Esthet Restor Dent. 2024;36(1):220-230. doi: 10.1111/jerd.13174
- Espinar C, Perez MM, Pulgar R, Leon-Cecilla A, Lopez MT, Della Bona A. Influence of printing orientation on mechanical properties of aged 3D-printed restorative resins. Dent Mater. 2024;40(4):756-763. doi: 10.1016/j.dental.2024.02.023
- Ozog P, Blugan G, Kata D, Graule T. Influence of the printing parameters on the quality of alumina ceramics shaped by UV-LCM technology. J Ceram Sci Technol. 2019;10(2):1-10. doi: 10.4416/JCST2019-00023
- Gu Y, Duan W, Wang T, et al. Additive manufacturing of Al2O3 ceramic core with applicable microstructure and mechanical properties via digital light processing of high solid loading slurry. Ceram Int. 2023;49(15):25216-25224. doi: 10.1016/j.ceramint.2023.05.054
- Yang Z, Shan J, Huang Y, et al. Preparation and mechanism of free-radical/cationic hybrid photosensitive resin with high tensile strength for three-dimensional printing applications. J Appl Polym Sci. 2021;138(8):49881. doi: 10.1002/app.49881
- Altarazi A, Haider J, Alhotan A, Silikas N, Devlin H. Assessing the physical and mechanical properties of 3D printed acrylic material for denture base application. Dent Mater. 2022;38(12):1841-1854. doi: 10.1016/j.dental.2022.09.006
- Lu TY, Lin WC, Yang TH, Sahrir CD, Shen YK, Feng SW. The influence of dental virtualization, restoration types, and placement angles on the trueness and contact space in 3D-printed crowns: a comprehensive exploration. Dent J. 2024;12(1):2. doi: 10.3390/dj12010002