AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.5659
RESEARCH ARTICLE

Prevascularized cell sheets enhance therapeutic effect of extracellular matrix scaffolds in a one-stage skin grafting rat model

Fei Zhou1,2 Ning Liu1,3 Shuying Chen1,2 Yahui Xiong1,2 Zhaoqiang Zhang4 Lei Chen1, 2* Yingbin Xu1,2*
Show Less
1 Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
2 Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
3 Department of the Second Plastic and Aesthetic Surgery, The First People’s Hospital of Foshan, Foshan, Guangdong, China
4 Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
Submitted: 28 October 2024 | Accepted: 20 December 2024 | Published: 20 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Dermal substitutes (DS) have been widely used in wound repair, but the low-survival rate of skin grafts with a DS remains an important challenge in regenerative medicine. This study aims to investigate the efficacy of combining prevascularized human mesenchymal stem cell sheets (PHCS) with DS in improving full-thickness wound healing. We used porcine dermis-derived decellularized extracellular matrix to construct an optimized 3D-printed DS, which exhibited the desired structure, good mechanical properties, and biocompatibility. Meanwhile, we constructed PHCS with a certain microstructure, which could enhance microvessel formation and maturation and upregulate the expression of angiogenic growth factors. An immunocompetent one-stage skin graft model in vivo demonstrated that the combination of PHCS and DS, along with split-thickness meshed skin autografting, could improve the repair effect of skin grafts, reduce graft fibrosis and later scar formation, and increase blood perfusion of skin grafts through early angiogenesis and rapid microvessel maturation. Our results suggest that the combination of PHCS and DS improves the repair effect of skin grafts through early angiogenesis for full-thickness skin defect repair.

Graphical abstract
Keywords
Angiogenesis
Decellularized extracellular matrix
Dermal substitutes
Prevascularized human mesenchymal stem cell sheets
Skin grafts
Funding
This study was supported by the Natural Science Foundation of Guangdong Province (2020A1515110694).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nat Rev Dis Primers. 2020;6(1):1-25. doi: 10.1038/s41572-020-0145-5
  2. Limandjaja GC, Belien JM, Scheper RJ, Niessen FB, Gibbs S. Hypertrophic and keloid scars fail to progress from the CD34- /α-smooth muscle actin (α-SMA)+ immature scar phenotype and show gradient differences in α-SMA and p16 expression. Br J Dermatol. 2020;182(4):974-986. doi: 10.1111/bjd.18219
  3. Finnerty CC, Jeschke MG, Branski LK, Barret JP, Dziewulski P, Herndon DN. Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet. 2016;388(10052): 1427-1436. doi: 10.1016/S0140-6736(16)31406-4
  4. Mascharak S, desJardins-Park HE, Davitt MF, et al. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science. 2021;372(6540):eaba2374. doi: 10.1126/science.aba2374
  5. Burke JF, Yannas IV, Quinby WC, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194(4):413-428. doi: 10.1097/00000658-198110000-00005
  6. Zhou F, Hong Y, Liang R, et al. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials. 2020;258:120287. doi: 10.1016/j.biomaterials.2020.120287
  7. Tan SH, Ngo ZH, Sci DB, Leavesley D, Liang K. Recent advances in the design of three-dimensional and bioprinted scaffolds for full-thickness wound healing. Tissue Eng Part B Rev. 2022;28(1):160-181. doi: 10.1089/ten.TEB.2020.0339
  8. Zhang J, Wehrle E, Rubert M, Müller R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. Int J Mol Sci. 2021;22(8):3971. doi: 10.3390/ijms22083971
  9. Elomaa L, Almalla A, Keshi E, Hillebrandt KH, Sauer IM, Weinhart M. Rise of tissue- and species-specific 3D bioprinting based on decellularized extracellular matrix-derived bioinks and bioresins. Biomater Biosyst. 2023;12:100084. doi: 10.1016/j.bbiosy.2023.100084
  10. Chen L, Li Z, Zheng Y, et al. 3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization. Bioact Mater. 2021;10:236-246. doi: 10.1016/j.bioactmat.2021.09.008
  11. Melchiorri AJ, Nguyen BNB, Fisher JP. Mesenchymal stem cells: roles and relationships in vascularization. Tissue Eng Part B Rev. 2014;20(3):218-228. doi: 10.1089/ten.TEB.2013.0541
  12. Kirby GTS, Michelmore A, Smith LE, Whittle JD, Short RD. Cell sheets in cell therapies. Cytotherapy. 2018;20(2): 169-180. doi: 10.1016/j.jcyt.2017.11.004
  13. Chen L, Xing Q, Zhai Q, et al. Pre-vascularization enhances therapeutic effects of human mesenchymal stem cell sheets in full thickness skin wound repair. Theranostics. 2017;7(1):117-131. doi: 10.7150/thno.17031
  14. Lei X, Yang Y, Shan G, Pan Y, Cheng B. Preparation of ADM/ PRP freeze-dried dressing and effect of mice full-thickness skin defect model. Biomed Mater. 2019;14(3):035004. doi: 10.1088/1748-605X/ab0060
  15. Zhou F, Zhang L, Chen L, et al. Prevascularized mesenchymal stem cell-sheets increase survival of random skin flaps in a nude mouse model. Am J Transl Res. 2019;11(3): 1403-1416. https://pmc.ncbi.nlm.nih.gov/articles/PMC6456548/
  16. Zhang L, Qian Z, Tahtinen M, Qi S, Zhao F. Prevascularization of natural nanofibrous extracellular matrix for engineering completely biological three‐dimensional prevascularized tissues for diverse applications. J Tissue Eng Regen Med. 2018;12(3):e1325–e1336. doi: 10.1002/term.2512
  17. Zhai Q, Zhou F, Ibrahim MM, et al. An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival. Am J Transl Res. 2018;10(6):1600-1610. https://pmc.ncbi.nlm.nih.gov/articles/PMC6038090/
  18. Lou X, Xue H, Li G, et al. One-stage pelnac reconstruction in full-thickness skin defects with bone or tendon exposure. Plast Reconstr Surg Glob Open. 2018;6(3):e1709. doi: 10.1097/GOX.0000000000001709
  19. Ibrahim MM, Bond J, Bergeron A, et al. A novel immune competent murine hypertrophic scar contracture model: A tool to elucidate disease mechanism and develop new therapies. Wound Repair Regen. 2014;22(6):755-764. doi: 10.1111/wrr.12238
  20. Wang Y, Xu R, He W, et al. Three-dimensional histological structures of the human dermis. Tissue Eng Part C Methods. 2015;21(9):932-944. doi: 10.1089/ten.TEC.2014.0578
  21. Amirsadeghi A, Jafari A, Eggermont LJ, Hashemi SS, Bencherif SA, Khorram M. Vascularization strategies for skin tissue engineering. Biomater Sci. 2020;8(15): 4073-4094. doi: 10.1039/d0bm00266f
  22. Sorushanova A, Delgado LM, Wu Z, et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater. 2019;31(1):1801651. doi: 10.1002/adma.201801651
  23. Yang M, Li Q, Sheng L, Li H, Weng R, Zan T. Bone marrow-derived mesenchymal stem cells transplantation accelerates tissue expansion by promoting skin regeneration during expansion. Ann Surg. 2011;253(1):202-209. doi: 10.1097/SLA.0b013e3181f9ba1ah
  24. Kim HK, Lee SG, Lee SW, et al. A subset of paracrine factors as efficient biomarkers for predicting vascular regenerative efficacy of mesenchymal stromal/stem cells. Stem Cells. 2019;37(1):77-88. doi: 10.1002/stem.2920
  25. Liu H, Chen B, Lilly B. Fibroblasts potentiate blood vessel formation partially through secreted factor TIMP-1. Angiogenesis. 2008;11(3):223-234. doi: 10.1007/s10456-008-9102-8
  26. Haifei S, Xingang W, Shoucheng W, Zhengwei M, Chuangang Y, Chunmao H. The effect of collagen–chitosan porous scaffold thickness on dermal regeneration in a one-stage grafting procedure. J Mech Behav Biomed Mater. 2014;29:114-125. doi: 10.1016/j.jmbbm.2013.08.031
  27. Glotzbach JP, Levi B, Wong VW, Longaker MT, Gurtner GC. The basic science of vascular biology: implications for the practicing surgeon. Plast Reconstr Surg. 2010;126(5):1528-1538. doi: 10.1097/PRS.0b013e3181ef8ccf
  28. Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev. 2018;129:16-36. doi: 10.1016/j.addr.2017.10.008
  29. Cai Z, Saiding Q, Cheng L, et al. Capturing dynamic biological signals via bio-mimicking hydrogel for precise remodeling of soft tissue. Bioact Mater. 2021;6(12):4506-4516. doi: 10.1016/j.bioactmat.2021.04.039
  30. Lorden ER, Miller KJ, Bashirov L, et al. Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold. Biomaterials. 2015;43:61-70. doi: 10.1016/j.biomaterials.2014.12.003
  31. Klar AS, Güven S, Biedermann T, et al. Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials. 2014;35(19): 5065-5078. doi: 10.1016/j.biomaterials.2014.02.049
  32. Frueh FS, Später T, Körbel C, et al. Prevascularization of dermal substitutes with adipose tissue-derived microvascular fragments enhances early skin grafting. Sci Rep. 2018;8(1):10977. doi: 10.1038/s41598-018-29252-6
  33. DiPietro LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol. 2016;100(5):979-984. doi: 10.1189/jlb.4MR0316-102R
  34. Hu W, Zhu S, Fanai ML, Wang J, Cai J, Feng J. 3D co-culture model of endothelial colony-forming cells (ECFCs) reverses late passage adipose-derived stem cell senescence for wound healing. Stem Cell Res Ther. 2020; 11(1):355. doi: 10.1186/s13287-020-01838-w

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing