Prevascularized cell sheets enhance therapeutic effect of extracellular matrix scaffolds in a one-stage skin grafting rat model
Dermal substitutes (DS) have been widely used in wound repair, but the low-survival rate of skin grafts with a DS remains an important challenge in regenerative medicine. This study aims to investigate the efficacy of combining prevascularized human mesenchymal stem cell sheets (PHCS) with DS in improving full-thickness wound healing. We used porcine dermis-derived decellularized extracellular matrix to construct an optimized 3D-printed DS, which exhibited the desired structure, good mechanical properties, and biocompatibility. Meanwhile, we constructed PHCS with a certain microstructure, which could enhance microvessel formation and maturation and upregulate the expression of angiogenic growth factors. An immunocompetent one-stage skin graft model in vivo demonstrated that the combination of PHCS and DS, along with split-thickness meshed skin autografting, could improve the repair effect of skin grafts, reduce graft fibrosis and later scar formation, and increase blood perfusion of skin grafts through early angiogenesis and rapid microvessel maturation. Our results suggest that the combination of PHCS and DS improves the repair effect of skin grafts through early angiogenesis for full-thickness skin defect repair.
- Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nat Rev Dis Primers. 2020;6(1):1-25. doi: 10.1038/s41572-020-0145-5
- Limandjaja GC, Belien JM, Scheper RJ, Niessen FB, Gibbs S. Hypertrophic and keloid scars fail to progress from the CD34- /α-smooth muscle actin (α-SMA)+ immature scar phenotype and show gradient differences in α-SMA and p16 expression. Br J Dermatol. 2020;182(4):974-986. doi: 10.1111/bjd.18219
- Finnerty CC, Jeschke MG, Branski LK, Barret JP, Dziewulski P, Herndon DN. Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet. 2016;388(10052): 1427-1436. doi: 10.1016/S0140-6736(16)31406-4
- Mascharak S, desJardins-Park HE, Davitt MF, et al. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science. 2021;372(6540):eaba2374. doi: 10.1126/science.aba2374
- Burke JF, Yannas IV, Quinby WC, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194(4):413-428. doi: 10.1097/00000658-198110000-00005
- Zhou F, Hong Y, Liang R, et al. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials. 2020;258:120287. doi: 10.1016/j.biomaterials.2020.120287
- Tan SH, Ngo ZH, Sci DB, Leavesley D, Liang K. Recent advances in the design of three-dimensional and bioprinted scaffolds for full-thickness wound healing. Tissue Eng Part B Rev. 2022;28(1):160-181. doi: 10.1089/ten.TEB.2020.0339
- Zhang J, Wehrle E, Rubert M, Müller R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. Int J Mol Sci. 2021;22(8):3971. doi: 10.3390/ijms22083971
- Elomaa L, Almalla A, Keshi E, Hillebrandt KH, Sauer IM, Weinhart M. Rise of tissue- and species-specific 3D bioprinting based on decellularized extracellular matrix-derived bioinks and bioresins. Biomater Biosyst. 2023;12:100084. doi: 10.1016/j.bbiosy.2023.100084
- Chen L, Li Z, Zheng Y, et al. 3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization. Bioact Mater. 2021;10:236-246. doi: 10.1016/j.bioactmat.2021.09.008
- Melchiorri AJ, Nguyen BNB, Fisher JP. Mesenchymal stem cells: roles and relationships in vascularization. Tissue Eng Part B Rev. 2014;20(3):218-228. doi: 10.1089/ten.TEB.2013.0541
- Kirby GTS, Michelmore A, Smith LE, Whittle JD, Short RD. Cell sheets in cell therapies. Cytotherapy. 2018;20(2): 169-180. doi: 10.1016/j.jcyt.2017.11.004
- Chen L, Xing Q, Zhai Q, et al. Pre-vascularization enhances therapeutic effects of human mesenchymal stem cell sheets in full thickness skin wound repair. Theranostics. 2017;7(1):117-131. doi: 10.7150/thno.17031
- Lei X, Yang Y, Shan G, Pan Y, Cheng B. Preparation of ADM/ PRP freeze-dried dressing and effect of mice full-thickness skin defect model. Biomed Mater. 2019;14(3):035004. doi: 10.1088/1748-605X/ab0060
- Zhou F, Zhang L, Chen L, et al. Prevascularized mesenchymal stem cell-sheets increase survival of random skin flaps in a nude mouse model. Am J Transl Res. 2019;11(3): 1403-1416. https://pmc.ncbi.nlm.nih.gov/articles/PMC6456548/
- Zhang L, Qian Z, Tahtinen M, Qi S, Zhao F. Prevascularization of natural nanofibrous extracellular matrix for engineering completely biological three‐dimensional prevascularized tissues for diverse applications. J Tissue Eng Regen Med. 2018;12(3):e1325–e1336. doi: 10.1002/term.2512
- Zhai Q, Zhou F, Ibrahim MM, et al. An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival. Am J Transl Res. 2018;10(6):1600-1610. https://pmc.ncbi.nlm.nih.gov/articles/PMC6038090/
- Lou X, Xue H, Li G, et al. One-stage pelnac reconstruction in full-thickness skin defects with bone or tendon exposure. Plast Reconstr Surg Glob Open. 2018;6(3):e1709. doi: 10.1097/GOX.0000000000001709
- Ibrahim MM, Bond J, Bergeron A, et al. A novel immune competent murine hypertrophic scar contracture model: A tool to elucidate disease mechanism and develop new therapies. Wound Repair Regen. 2014;22(6):755-764. doi: 10.1111/wrr.12238
- Wang Y, Xu R, He W, et al. Three-dimensional histological structures of the human dermis. Tissue Eng Part C Methods. 2015;21(9):932-944. doi: 10.1089/ten.TEC.2014.0578
- Amirsadeghi A, Jafari A, Eggermont LJ, Hashemi SS, Bencherif SA, Khorram M. Vascularization strategies for skin tissue engineering. Biomater Sci. 2020;8(15): 4073-4094. doi: 10.1039/d0bm00266f
- Sorushanova A, Delgado LM, Wu Z, et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater. 2019;31(1):1801651. doi: 10.1002/adma.201801651
- Yang M, Li Q, Sheng L, Li H, Weng R, Zan T. Bone marrow-derived mesenchymal stem cells transplantation accelerates tissue expansion by promoting skin regeneration during expansion. Ann Surg. 2011;253(1):202-209. doi: 10.1097/SLA.0b013e3181f9ba1ah
- Kim HK, Lee SG, Lee SW, et al. A subset of paracrine factors as efficient biomarkers for predicting vascular regenerative efficacy of mesenchymal stromal/stem cells. Stem Cells. 2019;37(1):77-88. doi: 10.1002/stem.2920
- Liu H, Chen B, Lilly B. Fibroblasts potentiate blood vessel formation partially through secreted factor TIMP-1. Angiogenesis. 2008;11(3):223-234. doi: 10.1007/s10456-008-9102-8
- Haifei S, Xingang W, Shoucheng W, Zhengwei M, Chuangang Y, Chunmao H. The effect of collagen–chitosan porous scaffold thickness on dermal regeneration in a one-stage grafting procedure. J Mech Behav Biomed Mater. 2014;29:114-125. doi: 10.1016/j.jmbbm.2013.08.031
- Glotzbach JP, Levi B, Wong VW, Longaker MT, Gurtner GC. The basic science of vascular biology: implications for the practicing surgeon. Plast Reconstr Surg. 2010;126(5):1528-1538. doi: 10.1097/PRS.0b013e3181ef8ccf
- Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev. 2018;129:16-36. doi: 10.1016/j.addr.2017.10.008
- Cai Z, Saiding Q, Cheng L, et al. Capturing dynamic biological signals via bio-mimicking hydrogel for precise remodeling of soft tissue. Bioact Mater. 2021;6(12):4506-4516. doi: 10.1016/j.bioactmat.2021.04.039
- Lorden ER, Miller KJ, Bashirov L, et al. Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold. Biomaterials. 2015;43:61-70. doi: 10.1016/j.biomaterials.2014.12.003
- Klar AS, Güven S, Biedermann T, et al. Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials. 2014;35(19): 5065-5078. doi: 10.1016/j.biomaterials.2014.02.049
- Frueh FS, Später T, Körbel C, et al. Prevascularization of dermal substitutes with adipose tissue-derived microvascular fragments enhances early skin grafting. Sci Rep. 2018;8(1):10977. doi: 10.1038/s41598-018-29252-6
- DiPietro LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol. 2016;100(5):979-984. doi: 10.1189/jlb.4MR0316-102R
- Hu W, Zhu S, Fanai ML, Wang J, Cai J, Feng J. 3D co-culture model of endothelial colony-forming cells (ECFCs) reverses late passage adipose-derived stem cell senescence for wound healing. Stem Cell Res Ther. 2020; 11(1):355. doi: 10.1186/s13287-020-01838-w