AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.6701
RESEARCH ARTICLE

An ink-insensitive deep learning model for improving the printing quality in extrusion-based bioprinting

Wei-Chih Tseng1,2 Chao-Yaug Liao2* Luc Chassagne1 Barthélemy Cagneau1*
Show Less
1 Laboratoire d’Ingénierie des Systèmes de Versailles (LISV), UVSQ - Université Paris-Saclay, Vélizy-Villacoublay, France
2 Department of Mechanical Engineering, College of Engineering, National Central University, Taoyuan, Taiwan
Submitted: 29 November 2024 | Accepted: 18 December 2024 | Published: 18 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Extrusion-based bioprinting (EBB) is an efficient, simple, and cost-effective bioprinting technique. However, due to the high complexity of biomaterial inks, a trial-and-error approach is typically required for determining the optimal printing parameter configurations. Thus, the quality and reproducibility of printed scaffolds remain a concern. In this study, we integrated flow sensing into the EBB and replaced conventional fixed-value printing parameters by capturing the time-series data of all printing parameters to enhance the monitoring of the printing process. To improve the EBB adaptability, we conducted experiments with three biomaterial inks with distinct properties under various parameter configurations to achieve ink-insensitive linewidth prediction through the construction and assessment of deep learning models. Additionally, two explainable artificial intelligence methods were used to analyze the decision-making process of the deep learning model. This analysis not only enhanced model reliability but also identified key features in printing parameters and time-series data. These results can be used to improve the efficiency and quality of the EBB processes by using various biomaterial inks.

Graphical abstract
Keywords
Deep learning
Explainable artificial intelligence
Extrusion-based bioprinting
Flow rate measurement
Printing quality
Time-series
Funding
This work was supported in part by the National Science and Technology Council, Taiwan, under Grant NSTC 112-2221-E-008-021, and in part by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program, through the IDEX Paris-Saclay, under Grant ANR-11-IDEX-0003-02.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Eyers DR, Potter AT. Industrial additive manufacturing: a manufacturing systems perspective. Comput Ind. 2017; 92-93:208-218. doi: 10.1016/j.compind.2017.08.002
  2. Culmone C, Smit G, Breedveld P. Additive manufacturing of medical instruments: a state-of-the-art review. Addit Manuf. 2019;27:461-473. doi: 10.1016/j.addma.2019.03.015
  3. Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharma Sci. 2020;15(5):529-557. doi: 10.1016/j.ajps.2019.11.003
  4. Mir TA, Iwanaga S, Kurooka T, Toda H, Sakai S, Nakamura M. Biofabrication offers future hope for tackling various obstacles and challenges in tissue engineering and regenerative medicine: a perspective. IJB. 2018; 5(1):153. doi: 10.18063/ijb.v5i1.153
  5. Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci. 2021;9(3):535-573. doi: 10.1039/D0BM00973C
  6. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication. 2015;7(4):045009. doi: 10.1088/1758-5090/7/4/045009
  7. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20-42. doi: 10.1016/j.biomaterials.2016.06.012
  8. Yusupov V, Churbanov S, Churbanova E, et al. Laser-induced forward transfer hydrogel printing: a defined route for highly controlled process. IJB. 2024;6(3):271. doi: 10.18063/ijb.v6i3.271
  9. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
  10. Ramesh S, Harrysson OLA, Rao PK, et al. Extrusion bioprinting: recent progress, challenges, and future opportunities. Bioprinting. 2021;21:e00116. doi: 10.1016/j.bprint.2020.e00116
  11. Badylak S, Freytes D, Gilbert T. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5(1):1-13. doi: 10.1016/j.actbio.2008.09.013
  12. Choi DJ, Park SJ, Gu BK, Kim YJ, Chung S, Kim CH. Effect of the pore size in a 3D bioprinted gelatin scaffold on fibroblast proliferation. J Ind Eng Chem. 2018;67:388-395. doi: 10.1016/j.jiec.2018.07.013
  13. Jiang S, Li SC, Huang C, Chan BP, Du Y. Physical properties of implanted porous bioscaffolds regulate skin repair: focusing on mechanical and structural features. Adv Healthc Mater. 2018;7(6):1700894. doi: 10.1002/adhm.201700894
  14. Danilevicius P, Georgiadi L, Pateman CJ, Claeyssens F, Chatzinikolaidou M, Farsari M. The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds. Appl Surf Sci. 2015;336:2-10. doi: 10.1016/j.apsusc.2014.06.012
  15. Nosrati H, Aramideh Khouy R, Nosrati A, et al. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J Nanobiotechnol. 2021;19(1):1. doi: 10.1186/s12951-020-00755-7
  16. Gerdes S, Ramesh S, Mostafavi A, Tamayol A, Rivero IV, Rao P. Extrusion-based 3D (Bio)printed tissue engineering scaffolds: process–structure–quality relationships. ACS Biomater Sci Eng. 2021;7(10):4694-4717. doi: 10.1021/acsbiomaterials.1c00598
  17. Tian S, Zhao H, Lewinski N. Key parameters and applications of extrusion-based bioprinting. Bioprinting. 2021; 23:e00156. doi: 10.1016/j.bprint.2021.e00156
  18. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on the printability of hydrogels in 3D bioprinting. Sci Rep. 2016;6(1):29977. doi: 10.1038/srep29977
  19. Singh YP, Bandyopadhyay A, Mandal BB. 3D bioprinting using cross-linker-free silk–gelatin bioink for cartilage tissue engineering. ACS Appl Mater Interfaces. 2019; 11(37):33684-33696. doi: 10.1021/acsami.9b11644
  20. Barros NR, Kim HJ, Gouidie MJ, et al. Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering. Biofabrication. 2021;13(3):035030. doi: 10.1088/1758-5090/aba503
  21. Gharraei R, Bergstrom DJ, Chen X. Extrusion bioprinting from a fluid mechanics perspective. IJB. 2024; 10(6):3973. doi: 10.36922/ijb.3973
  22. Wang YJ, Jeng US, Hsu SH. Biodegradable water-based polyurethane shape memory elastomers for bone tissue engineering. ACS Biomater Sci Eng. 2018;4(4):1397-1406. doi: 10.1021/acsbiomaterials.8b00091
  23. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16(5):1489-1496. doi: 10.1021/acs.biomac.5b00188
  24. Webb B, Doyle BJ. Parameter optimization for 3D bioprinting of hydrogels. Bioprinting. 2017;8:8-12. doi: 10.1016/j.bprint.2017.09.001
  25. Trachtenberg JE, Placone JK, Smith BT, et al. Extrusion-based 3D printing of poly(propylene fumarate) in a full-factorial design. ACS Biomater Sci Eng. 2016;2(10):1771-1780. doi: 10.1021/acsbiomaterials.6b00026
  26. Armstrong AA, Norato J, Alleyne AG, Wagoner Johnson AJ. Direct process feedback in extrusion-based 3D bioprinting. Biofabrication. 2019;12(1):015017. doi: 10.1088/1758-5090/ab4d97
  27. Wang L, Xu M-E, Luo L, Zhou Y, Si P. Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability. Sci Rep. 2018;8(1):2802. doi: 10.1038/s41598-018-21274-4
  28. Tseng WC, Liao CY, Chassagne L, Cagneau B. Assessment of a flow-measurement technique for the printability of extrusion-based bioprinting. IEEE Robot Autom Lett. 2024;9(2):1716-1723. doi: 10.1109/LRA.2024.3349972
  29. Wenger L, Strauß S, Hubbuch J. Automated and dynamic extrusion pressure adjustment based on real-time flow rate measurements for precise ink dispensing in 3D bioprinting. Bioprinting. 2022;28:e00229. doi: 10.1016/j.bprint.2022.e00229
  30. Brion DAJ, Pattinson SW. Quantitative and real‐time control of 3d printing material flow through deep learning. Adv Intell Syst. 2022;4(11):2200153. doi: 10.1002/aisy.202200153
  31. Bonatti AF, Vozzi G, Chua CK, Maria CD. A deep learning quality control loop of the extrusion-based bioprinting process. IJB. 2022;8(4):620. doi: 10.18063/ijb.v8i4.620
  32. Fu Z, Angeline V, Sun W. Evaluation of printing parameters on 3D extrusion printing of pluronic hydrogels and machine learning guided parameter recommendation. IJB. 2024;7(4):434. doi: 10.18063/ijb.v7i4.434
  33. Ruberu K, Senadeera M, Rana S, et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl Mater Today. 2021;22:100914. doi: 10.1016/j.apmt.2020.100914
  34. Weeks RD, Ruddock JM, Berrigan JD, Lewis JA, Hardin James O. In‐situ rheology measurements via machine‐learning enhanced direct‐ink‐writing. Adv Intell Syst. 2024:2400293. doi: 10.1002/aisy.202400293
  35. Angelov PP, Soares EA, Jiang R, Arnold NI, Atkinson PM. Explainable artificial intelligence: an analytical review. WIREs Data Min Knowl. 2021;11(5):e1424. doi: 10.1002/widm.1424
  36. Hassija V, Chamola V, Mahapatra A, et al. Interpreting Black- Box models: a review on explainable artificial intelligence. Cogn Comput. 2024;16(1):45-74. doi: 10.1007/s12559-023-10179-8
  37. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735-1780. doi: 10.1162/neco.1997.9.8.1735
  38. Bai S, Kolter JZ, Koltun V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. 2018. Accessed November 20, 2024. http://arxiv.org/abs/1803.01271
  39. Rajabi M, McConnell M, Cabral J, Ali MA. Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr Polym. 2021;260:117768. doi: 10.1016/j.carbpol.2021.117768
  40. Huang J, Huang Z, Liang Y, et al. 3D printed gelatin/ hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair. Biomater Sci. 2021;9(7):2620-2630. doi: 10.1039/D0BM02103B
  41. Song P, Li M, Zhang B, et al. DLP fabricating of precision GelMA/HAp porous composite scaffold for bone tissue engineering application. Compos B: Eng. 2022;244: 110163. doi: 10.1016/j.compositesb.2022.110163
  42. Dos Santos Carvalho JD, Rabelo RS, Hubinger MD. Thermo-rheological properties of chitosan hydrogels with hydroxypropyl methylcellulose and methylcellulose. Int J Biol Macromol. 2022;209:367-375.doi: 10.1016/j.ijbiomac.2022.04.035
  43. Liao CY, Wu WJ, Hsieh CT, Tseng CS, Dai NT, Hsu SH. Design and development of a novel frozen-form additive manufacturing system for tissue engineering applications. 3D Print Addit Manuf. 2016;3(4):216-225. doi: 10.1089/3dp.2015.0042
  44. Lundberg S, Lee SI. A Unified Approach to Interpreting Model Predictions; 2017. Accessed November 20, 2024. http://arxiv.org/abs/1705.07874
  45. Fisher A, Rudin C, Dominici F. All Models Are Wrong, but Many Are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously; 2019. Accessed November 20, 2024. http://arxiv.org/abs/1801.01489
  46. Ran J, Hu J, Chen L, Shen X, Tong H. Preparation and characterization of gelatin/hydroxyapatite nanocomposite for bone tissue engineering. Polym Compos. 2017;38(8): 1579-1590. doi: 10.1002/pc.23725
  47. Parker NG, Povey MJW. Ultrasonic study of the gelation of gelatin: phase diagram, hysteresis and kinetics. Food Hydrocolloids. 2012;26(1):99-107. doi: 10.1016/j.foodhyd.2011.04.016

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing