AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4889
RESEARCH ARTICLE

Heterotopically differentiated PDLSCs-laden 3D-bioprinted scaffolds for concurrent oral hard and soft tissue regeneration

Huilin Zhu1,2 Ke Yi1,2 Zhihui Tang1,2* Qing Li1,2,3*
Show Less
1 Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
2 National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
3 Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
Submitted: 19 September 2024 | Accepted: 24 October 2024 | Published: 24 October 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Following dental extraction, the alveolar bone and gingival tissues could undergo varying degrees of resorption, which affects subsequent implant integration and aesthetic outcomes. Thus, having adequate volume of both hard and soft tissues for implantation or aesthetic restoration is essential for optimal results. Three-dimensional (3D) bioprinting technology offers the advantages of biomimicry, personalization, and precise spatial distribution, which are pivotal for enhancing the success and esthetics of dental restorations. In this study, we fabricated a construct with a natural transition and varying material concentrations by 3D bioprinting, comprising an upper layer of collagen/alginate/periodontal ligament stem cells (PDLSCs) and a lower layer of collagen/nano-hydroxyapatite (nHA)/alginate/PDLSCs. Characterization of the physicochemical properties revealed that the incorporation of nHA significantly enhanced the mechanical properties of both the bioink and the construct.Flow cytometry analysis confirmed the stemness of PDLSCs. Scanning electron microscopy (SEM) revealed that the construct possesses satisfactory pore density and a natural transition at the stratification point. The construct displayed good cell viability and proliferation, with the cellular movement observed at the stratification interface after bioprinting. Differentiation staining and quantitative reverse-transcription polymerase chain reaction (RT-qPCR) results demonstrated that PDLSCs within the 3D construct are capable of both osteogenic and fibroblastic differentiations. Ectopic transplantation in mice confirmed the biocompatibility of the construct. A rat tooth extraction model validated the construct’s effectiveness in the integrated regeneration of both hard and soft tissues in alveolar ridge preservation. In conclusion, this personalized, concentration-varied 3D construct exhibits excellent biocompatibility and tissue preservation effects, holding significant potential for clinical application.

Graphical abstract
Keywords
3D bioprinting
Heterotopic differentiation
Stem cells
Oral tissue engineering
Funding
This work was supported by the National Key Research and Development Program of China (2017YFA0701302, PKUSS20200113).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Tan WL, Wong TLT, Wong MCM, Lang NP. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res. 2012;23(S5):1-21. doi: 10.1111/j.1600-0501.2011.02375.x.
  2. Khzam N, Arora H, Kim P, Fisher A, Mattheos N, Ivanovski S. Systematic review of soft tissue alterations and esthetic outcomes following immediate implant placement and restoration of single implants in the anterior maxilla. J Periodontol. 2015;86(12):1321-1330. doi: 10.1902/jop.2015.150287.
  3. Farmer M, Darby I. Ridge dimensional changes following single-tooth extraction in the aesthetic zone. Clin Oral Implants Res. 2014;25(2):272-277. doi: 10.1111/clr.12108.
  4. Aribau-Gumà C, Jorba-García A, Sánchez-Torres A, Sànchez-Garcés M. Alveolar ridge preservation: an overview of systematic reviews. Int J Oral Maxillofac Surg. 2022;51(2):234-242. doi: 10.1016/j.ijom.2021.06.002.
  5. Barootchi S, Tavelli L, Majzoub J, Stefanini M, Wang HL, Avila-Ortiz G. Alveolar ridge preservation: complications and cost-effectiveness. Periodontol 2000. 2023;92(1): 235-262. doi: 10.1111/prd.12469
  6. Montazerian H, Davoodi E, Baidya A, Baghdasarian S, Sarikhani E, Meyer CE, Haghniaz R, Badv M, Annabi N, Khademhosseini A, Weiss PS. Engineered Hemostatic Biomaterials for Sealing Wounds. Chem Rev 2022;122(15):12864-12903. doi: 10.1021/acs.chemrev.1c01015.
  7. Ayari H. The use of periodontal membranes in the field of periodontology: spotlight on collagen membranes. J Appl Biomed 2022;20(4):154-162. doi: 10.32725/jab.2022.020.
  8. Canullo L, Pesce P, Antonacci D, Ravidà A, Galli M, Khijmatgar S, Tommasato G, Sculean A, Del Fabbro M. Soft tissue dimensional changes after alveolar ridge preservation using different sealing materials: a systematic review and network meta-analysis. Clin Oral Investig. 2022;26(1): 13-39. doi: 10.1007/s00784-021-04192-0.
  9. Abere DV, Ojo SA, Oyatogun GM, Paredes-Epinosa MB, Niluxsshun MCD, Hakami A. Mechanical and morphological characterization of nano-hydroxyapatite (nHA) for bone regeneration: a mini review. Biomed Eng Adv 2022;4(3):100056. doi: 10.1016/j.bea.2022.100056.
  10. Rosa N, Moura MFSF, Olhero S, Simoes R, Magalhães FD, Marques AT, Ferreira JPS, Reis AR, Carvalho M, Parente M. Bone: an outstanding composite material. Appl Sci 2022;12(7):1-16. doi: 10.3390/app12073381.
  11. Han HS, Lee JT, Oh S, Cho YD, Kim S. Effectiveness of a collagen matrix seal and xenograft in alveolar ridge preservation: an experimental study in dogs. Sci Rep 2024;14(1):1-10. doi: 10.1038/s41598-023-50370-3.
  12. Gabay E, Katorza A, Zigdon-Giladi H, Horwitz J, Machtei EE. Histological and dimensional changes of the alveolar ridge following tooth extraction when using collagen matrix and collagen-embedded xenogenic bone substitute: a randomized clinical trial. Clin Implant Dent Relat Res. 2022;24(3):382-390. doi: 10.1111/cid.13085.
  13. Tonar Z, Khadang I, Fiala P, Nedorost L, Kochová P. Quantification of compact bone microporosities in the basal and alveolar portions of the human mandible using osteocyte lacunar density and area fraction of vascular canals. Ann Anat. 2011;193(3):211-219. doi: 10.1016/j.aanat.2011.02.001.
  14. Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014;10(9):3815-3826. doi: 10.1016/j.actbio.2014.05.024.
  15. Bartold PM. Connective tissues of the periodontium-- preface. Periodontol. 2000. 2000;24(1):7-8. doi: 10.1034/j.1600-0757.2000.2240101.x.
  16. Liu J, Zhao Z, Ruan J, Weir MD, Ma T, Ren K, Schneider A, Oates TW, Li A, Zhao L, Xu HHK. Stem cells in the periodontal ligament differentiated into osteogenic, fibrogenic and cementogenic lineages for the regeneration of the periodontal complex. J Dent. 2020;92:103259. doi: 10.1016/j.jdent.2019.103259.
  17. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149-155. doi: 10.1016/S0140-6736(04)16627-0.
  18. Li M, Sun L, Liu Z, Shen Z, Cao Y, Han L, Sang S, Wang J. 3D bioprinting of heterogeneous tissue-engineered skin containing human dermal fibroblasts and keratinocytes. Biomater Sci. 2023;11(7):2461-2477. doi: 10.1039/d2bm02092k.
  19. Jian H, Li X, Dong Q, Tian S, Bai S. In vitro construction of liver organoids with biomimetic lobule structure by a multicellular 3D bioprinting strategy. Cell Prolif. 56(5):1-9. doi: 10.1111/cpr.13465.
  20. Dai W, Zhang L, Yu Y, Yan W, Zhao F, Fan Y, Cao C, Cai Q, Hu X, Ao Y. 3D Bioprinting of heterogeneous constructs providing tissue-specific microenvironment based on host– guest modulated dynamic hydrogel bioink for osteochondral regeneration. Adv Funct Mater. 2022;32(23):1-12. doi: 10.1002/adfm.202200710.
  21. Zhang Y, Li D, Liu Y, Peng L, Lu D, Wang P, Ke D, Yang H, Zhu X, Ruan C. 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage–bone interface. Innovation. 2024;5(1):100542. doi: 10.1016/j.xinn.2023.100542.
  22. Nguyen LH, Kudva AK, Guckert NL, Linse KD, Roy K. Unique biomaterial compositions direct bone marrow stem cells into specific chondrocytic phenotypes corresponding to the various zones of articular cartilage. Biomaterials. 2011;32(5):1327-1338. doi: 10.1016/j.biomaterials.2010.10.009.
  23. Balestri W, Hickman GK, Morris RH, Hunt JA, Reinwald Y. Triphasic 3D in vitro model of bone-tendon-muscle interfaces to study their regeneration. Cells. 2023; 12(2):313. doi: 10.3390/cells12020313.
  24. Panduwawala CP, Zhan X, Dissanayaka WL, Samaranayake LP, Jin L, Zhang C. In vivo periodontal tissue regeneration by periodontal ligament stem cells and endothelial cells in three-dimensional cell sheet constructs. J Periodontal Res. 2017;52(3):408-418. doi: 10.1111/jre.12405.
  25. Zhu Y, Wang W, Chen Q, Ren T, Yang J, Li G, Qi Y, Yuan C, Wang P. Bioprinted PDLSCs with high-concentration GelMA hydrogels exhibit enhanced osteogenic differentiation in vitro and promote bone regeneration in vivo. Clin Oral Investig. 2023;27(9):5153-5170. doi: 10.1007/s00784-023-05135-7.
  26. Adolpho LF, Lopes HB, Freitas GP, Weffort D, Campos Totoli GG, Loyola Barbosa AC, Freire Assis RI, Silverio Ruiz KG, Andia DC, Rosa AL, Beloti MM. Human periodontal ligament stem cells with distinct osteogenic potential induce bone formation in rat calvaria defects. Regen Med. 2022;17(6):341-353. doi: 10.2217/rme-2021-0178.
  27. Chen J, Ahmad R, Li W, Swain M, Li Q. Biomechanics of oral mucosa. J R Soc Interface. 2015;12(109):20150325. doi: 10.1098/rsif.2015.0325.
  28. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25(7):1468-1486. doi: 10.1002/jbmr.141.
  29. Boularaoui S, Shanti A, Khan KA, Iacoponi S, Christoforou N, Stefanini C. Harnessing shear stress preconditioning to improve cell viability in 3D post-printed biostructures using extrusion bioprinting. Bioprinting. 2022;25(8):e00184. doi: 10.1016/j.bprint.2021.e00184.
  30. Popescu F, Titorencu I, Albu Kaya M, Miculescu F, Tutuianu R, Coman AE, Danila E, Marin MM, Ancuta DL, Coman C, Barbilian A. Development of innovative biocomposites with collagen, keratin and hydroxyapatite for bone tissue engineering. Biomimetics. 2024;9(7):428. doi: 10.3390/biomimetics9070428.
  31. Elango J, Hou C, Bao B, Wang S, Maté Sánchez de Val JE, Wenhui W. The molecular interaction of collagen with cell receptors for biological function. Polymers (Basel). 2022;14(5):1-25. doi: 10.3390/polym14050876.
  32. Bose S, Li S, Mele E, Silberschmidt VV. Exploring the mechanical properties and performance of type-I collagen at various length scales: a progress report. Materials (Basel). 2022;15(8):1-17. doi: 10.3390/ma15082753.
  33. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084.
  34. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S131-S139. doi: 10.2215/CJN.04151206.
  35. Joodaki H, Panzer MB, Skin mechanical properties and modeling: a review. Proc Inst Mech Eng H. 2018;232(4):323-343. doi: 10.1177/0954411918759801.
  36. P Jain, H Kathuria, N Dubey. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287(8):121639. doi: 10.1016/j.biomaterials.2022.121639.
  37. Ghayor C, Bhattacharya I, Guerrero J, Ozcan M, Weber FE. 3D-printed HA-based scaffolds for bone regeneration: microporosity, osteoconduction and osteoclastic resorption. Materials. 2022;15(4):1433. doi: 10.3390/ma15041433
  38. Rouwkema J, Khademhosseini A. Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol. 2016;34(9):733-745. doi: 10.1016/j.tibtech.2016.03.002.
  39. Carotenuto F, Politi S, Ul Haq A, De Matteis F, Tamburri E, Terranova ML, Teodori L, Pasquo A, Di Nardo P. From soft to hard biomimetic materials: tuning micro/nano-architecture of saffolds for tissue regeneration. Micromachines. 2022;13(5):1-25. doi: 10.3390/mi13050780.
  40. Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84(10):16-33. doi: 10.1016/j.actbio.2018.11.039.
  41. Li X, van Blitterswijk CA, Feng Q, Cui F, Watari F. The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials. 2008;29(23):3306-3316. doi: 10.1016/j.biomaterials.2008.04.039.
  42. Li X, Liu H, Niu X, Fan Y, Feng W, Cui FZ, F Watari F. Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics. J Biomed Mater Res B Appl Biomater. 2011;97(1):10-19. doi: 10.1002/jbm.b.31773.
  43. Hernandez JL, Woodrow KA. Medical applications of porous biomaterials: features of porosity and tissue-specific implications for biocompatibility. Adv Healthc Mater. 2022;11(9):1-25. doi: 10.1002/adhm.202102087.
  44. Hayrapetyan A, Bongio M, Leeuwenburgh SCG, Jansen JA, van den Beucken JJJP. Effect of nano-HA/collagen composite hydrogels on osteogenic behavior of mesenchymal stromal cells. Stem Cell Rev Rep. 2016;12(3):352-364. doi: 10.1007/s12015-016-9644-x.
  45. Japudom J, Karaman S, Quartey BC, WMohamed WKE, Mahtani N, Garcia-Sabaté A, Teo J. Collagen fibril orientation instructs fibroblast differentiation via cell contractility. Adv Sci. 2023;10(22):1-14. doi: 10.1002/advs.202301353.
  46. Togo S, Sato T, Sugiura H, Wang X, Basma H, Nelson A, Liu X, Bargar TW, Sharp JG, Rennard SI. Differentiation of embryonic stem cells into fibroblast-like cells in three-dimensional type i collagen gel cultures. Vitr Cell Dev Biol Anim. 2011;47(2):114-124. doi: 10.1007/s11626-010-9367-2.
  47. Rivas M, Turon P, Alemán C, Puiggalí J, del Valle LJ. Incorporation of functionalized calcium phosphate nanoparticles in living cells. J Clust Sci. 33(1):2781-2795. doi: 10.1007/s10876-021-02182-6.
  48. Komatsu K. Mechanical strength and viscoelastic response of the periodontal ligament in relation to structure. J Dent Biomech. 2009;2010:502318. doi: 10.4061/2010/502318.
  49. Takedachi M, Yamamoto S, Kawasaki K, Shimomura J, Murata M, Morimoto C, Hirai A, Kawakami K, Bhongsatiern P, Iwayama T, Sawada K, Yamada S, Murakami S. Reciprocal role of PLAP-1 in HIF-1α-mediated responses to hypoxia. J Periodontal Res. 2022:57(3):470-478. doi: 10.1111/jre.12976.
  50. Knaup I, Symmank J, Bastian A, Neuss S, Pufe T, Jacobs C, Wolf M. Impact of FGF1 on human periodontal ligament fibroblast growth, osteogenic differentiation and inflammatory reaction in vitro. J Orofac Orthop. 2022;83(Suppl 1):42-55. doi: 10.1007/s00056-021-00363-6.
  51. Gardeazabal L, Izeta A. Elastin and collagen fibres in cutaneous wound healing. Exp Dermatol. 2024;33(3):1-14. doi: 10.1111/exd.15052.
  52. Schini M, Vilaca T, Gossiel F, Salam S, Eastell R. Bone turnover markers: basic biology to clinical applications. Endocr Rev. 2023;44(3):417-473. doi: 10.1210/endrev/bnac031.
  53. Ogle ME, Segar CE, Sridhar S, Botchwey EA. Monocytes and macrophages in tissue repair: implications for immunoregenerative biomaterial design. Exp Biol Med. 2016;241(10):1084-1097. doi: 10.1177/1535370216650293.
  54. Londono R, Dziki JL, Haljasmaa E, Turner NJ, Leifer, Badylak. The effect of cell debris within biologic scaffolds upon the macrophage response. J Biomed Mater Res A. 2017;105(8):2109-2118. doi: 10.1002/jbm.a.36055.
  55. P Feng, R Zhao, W Tang, F Yang, H Tian, S Peng, H Pan, C Shuai. Structural and functional adaptive artificial bone: materials, fabrications, and properties. Adv Funct Mater. 2023;33(23):1-29. doi: 10.1002/adfm.202214726.
  56. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, Van Blitterswijk CA, Mulligan RC, D’Amore PA, Langer R. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 2005;23(7):879-884. doi: 10.1038/nbt1109.
  57. Nagasaki K, Chavez MB, Nagasaki A, Taylor JM, Tan MH, Ma M, Ralston E, Thew ME, Kim DG, Somerman MJ, Foster L. The bone sialoprotein RGD domain modulates and maintains periodontal development. J Dent Res. 2022;101(10):1238-1247. doi: 10.1177/00220345221100794.
  58. Chavez MB, Tan MH, Kolli TN, Zachariadou C, Farah F, Mohamed FF, Chu EY, Foster BL. Bone sialoprotein is critical for alveolar bone healing in mice. J Dent Res. 2023;102(2):187-196. doi: 10.1177/00220345221126716.
  59. Candeliere GA, Liu F, Aubin JE. Individual osteoblasts in the developing calvaria express different gene repertoires. Bone. 2001;28(4):351-361. doi: 10.1016/S8756-3282(01)00410-0.
  60. Chen J, Singh K, Mukherjee BB, Sodek J. Developmental expression of osteopontin (OPN) mRNA in rat tissues: evidence for a role for OPN in bone formation and resorption. Matrix. 1993;13(12):113-123. doi: 10.1016/s0934-8832(11)80070-3.
  61. Xin Y, Xu P, Wang X, Chen Y, Zhang Z, Zhang Y. Human foreskin-derived dermal stem/progenitor cell-conditioned medium combined with hyaluronic acid promotes extracellular matrix regeneration in diabetic wounds. Stem Cell Res Ther. 2021;12(1):1-18. doi: 10.1186/s13287-020-02116-5.
  62. Lee CH, Shah B, Moioli EK, Mao JJ. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest. 2010;120(9):3340-3349. doi: 10.1172/JCI43230.
  63. Becker W, Clokie C, Sennerby L, Urist MR, Becker BE, Histologic findings after implantation and evaluation of different grafting materials and titanium micro screws into extraction sockets: case reports. J Periodontol. 1998;69(4):414-421. doi: 10.1902/jop.1998.69.4.414.
  64. Canellas JVDS, Ritto FG, C Figueredo CMDS, Fischer RG, de Oliveira GP, Thole AA, Medeiros PJD. Histomorphometric evaluation of different grafting materials used for alveolar ridge preservation: a systematic review and network meta-analysis. Int J Oral Maxillofac Surg. 2020;49(6);797-810. doi: 10.1016/j.ijom.2019.10.007.

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing