Development and applications of an in vitro non-alcoholic fatty liver disease model based on 3D-printed liver tissue
Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic disease worldwide, but its underlying etiology and molecular mechanisms are complex, and there are currently no effective clinical treatments. Animal models for studying NAFLD have limitations, necessitating the development of novel in vitro models. In this study, a bioink was first optimized for the cultivation of liver tissue. Subsequently, 3D bioprinting technology was utilized to construct large-scale liver tissue with a vascular-like function in vitro using the optimized bioink. Thereafter, the printed HepaRG cells were induced to form liver organoids. Compared with traditional liver tissue models, 3D-printed liver tissue has superior hepatic functions and greater cell viability. Moreover, glycogen storage and the formation of bile canaliculi-like structures were observed within it. Subsequently, 3D-printed liver tissue was induced to establish an NAFLD model, which was confirmed by lipid droplet analysis, liver function assays, and cell viability assessments. Additionally, this NAFLD model was used for drug testing and analysis. Our study successfully constructed a functional NAFLD model, which contributes to a deeper understanding of the mechanisms underlying NAFLD, facilitates the development of related pharmaceuticals, and promotes the development of new therapeutic strategies.
- Lazarus JV, Mark HE, Villota-Rivas M, et al. The global NAFLD policy review and preparedness index: are countries ready to address this silent public health challenge? J Hepatol. 2022;76(4):771-780. doi: 10.1016/j.jhep.2021.10.025
- Sozen E, Demirel-Yalciner T, Sari D, Ozer NK. Cholesterol accumulation in hepatocytes mediates IRE1/p38 branch of endoplasmic reticulum stress to promote nonalcoholic steatohepatitis. Free Radic Biol Med. 2022;191:1-7. doi: 10.1016/j.freeradbiomed.2022.08.024
- Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med. 2024;95:101231. doi: 10.1016/j.mam.2023.101231
- Rosso C, Kazankov K, Younes R, et al. Crosstalk between adipose tissue insulin resistance and liver macrophages in non-alcoholic fatty liver disease. J Hepatol. 2019;71(5):1012-1021. doi: 10.1016/j.jhep.2019.06.031
- Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15(5):261-273. doi: 10.1038/s41574-019-0156-z
- Hendriks D, Brouwers JF, Hamer K, et al. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Nat Biotechnol. 2023;41(11):1567-1581. doi: 10.1038/s41587-023-01680-4
- Zhu C, Huai Q, Zhang X, Dai H, Li X, Wang H. Insights into the roles and pathomechanisms of ceramide and sphigosine- 1-phosphate in nonalcoholic fatty liver disease. Int J Biol Sci. 2023;19(1):311. doi: 10.7150/ijbs.78525
- Im YR, Hunter H, de Gracia Hahn D, et al. A systematic review of animal models of NAFLD finds high-fat, high-fructose diets most closely resemble human NAFLD. Hepatology. 2021;74(4):1884-1901. doi: 10.1002/hep.31897
- Smati S, Polizzi A, Fougerat A, et al. Integrative study of diet-induced mouse models of NAFLD identifies PPARalpha as a sexually dimorphic drug target. Gut. 2022;71(4):807-821. doi: 10.1136/gutjnl-2020-323323
- Trépo E, Valenti L. Update on NAFLD genetics: from new variants to the clinic. J Hepatol. 2020;72(6): 1196-1209. doi: 10.1016/j.jhep.2020.02.020
- Tsuchida T, Lee YA, Fujiwara N, et al. A simple diet-and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol. 2018;69(2):385-395. doi: 10.1016/j.jhep.2018.03.011
- Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease – a practical approach for translational research. J Hepatol. 2020;73(2):423-440. doi: 10.1016/j.jhep.2020.04.011
- Ma L, Wu Y, Li Y, et al. Current advances on 3D‐bioprinted liver tissue models. Adv Healthc Mater. 2020;9(24):2001517. doi: 10.1002/adhm.202001517
- Suurmond CE, Lasli S, van den Dolder FW, et al. In vitro human liver model of nonalcoholic steatohepatitis by coculturing hepatocytes, endothelial cells, and Kupffer cells. Adv Healthc Mater. 2019;8(24):e1901379. doi: 10.1002/adhm.201901379
- Cheng S, Yang Y, Zhou Y, Xiang W, Yao H, Ma L. Influence of different concentrations of uric acid on oxidative stress in steatosis hepatocytes. Exp Ther Med. 2018;15(4):3659-3665. doi: 10.3892/etm.2018.5855
- Michaut A, Le Guillou D, Moreau C, et al. A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: application to acetaminophen. Toxicol Appl Pharmacol. 2016;292:40-55. doi: 10.1016/j.taap.2015.12.020
- Luckert C, Braeuning A, de Sousa G, et al. Adverse outcome pathway-driven analysis of liver steatosis in vitro: a case study with cyproconazole. Chem Res Toxicol. 2018;31(8): 784-798. doi: 10.1021/acs.chemrestox.8b00112
- Kimura M, Iguchi T, Iwasawa K, et al. En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH. Cell. 2022;185(22):4216-4232 e16. doi: 10.1016/j.cell.2022.09.031
- Yang H, Sun L, Pang Y, et al. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut. 2021;70(3):567-574. doi: 10.1136/gutjnl-2019-319960
- Ryu JS, Lee M, Mun SJ, et al. Targeting CYP4A attenuates hepatic steatosis in a novel multicellular organotypic liver model. J Biol Eng. 2019;13:69. doi: 10.1186/s13036-019-0198-8
- Leite SB, Roosens T, El Taghdouini A, et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials. 2016;78:1-10. doi: 10.1016/j.biomaterials.2015.11.026
- Zhang B, Korolj A, Lai BFL, Radisic M. Advances in organ-on-a-chip engineering. Nat Rev Mater. 2018;3(8):257-278. doi: 10.1038/ s41578-018-0034-7
- Feaver RE, Cole BK, Lawson MJ, et al. Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis. JCI Insight. 2016;1(20):e90954. doi: 10.1172/jci.insight.90954
- Bulutoglu B, Rey-Bedón C, Kang YBA, Mert S, Yarmush ML, Usta OB. A microfluidic patterned model of non-alcoholic fatty liver disease: applications to disease progression and zonation. Lab Chip. 2019;19(18):3022-3031. doi: 10.1039/c9lc00354a
- Lasli S, Kim HJ, Lee K, et al. A human liver-on-a-chip platform for modeling nonalcoholic fatty liver disease. Adv Biosyst. 2019;3(8):e1900104. doi: 10.1002/adbi.201900104
- Gori M, Simonelli MC, Giannitelli SM, Businaro L, Trombetta M, Rainer A. Investigating nonalcoholic fatty liver disease in a liver-on-a-chip microfluidic device. PLoS One. 2016;11(7):e0159729. doi: 10.1371/journal.pone.0159729
- Du K, Li S, Li C, et al. Modeling nonalcoholic fatty liver disease on a liver lobule chip with dual blood supply. Acta Biomater. 2021;134:228-239. doi: 10.1016/j.actbio.2021.07.013
- Kostrzewski T, Maraver P, Ouro-Gnao L, et al. A microphysiological system for studying nonalcoholic steatohepatitis. Hepatol Commun. 2020;4(1):77-91. doi: 10.1002/hep4.1450
- Liu J, Zhou Z, Zhang M, Song F, Feng C, Liu H. Simple and robust 3D bioprinting of full-thickness human skin tissue. Bioengineered. 2022;13(4):10087-10097. doi: 10.1080/21655979.2022.2063651
- Li R, Liu J, Ma J, et al. Fibrinogen improves liver function via promoting cell aggregation and fibronectin assembly in hepatic spheroids. Biomaterials. 2022;280:121266. doi: 10.1016/j.biomaterials.2021.121266
- Lee JB, Park JS, Shin YM, et al. Implantable vascularized liver chip for cross‐validation of disease treatment with animal model. Adv Funct Mater. 2019;29(23): 1900075. doi: 10.1002/adfm.201900075
- Mahjoubin-Tehran M, De Vincentis A, Mikhailidis DP, et al. Non-alcoholic fatty liver disease and steatohepatitis: state of the art on effective therapeutics based on the gold standard method for diagnosis. Mol Metab. 2021;50:101049. doi: 10.1016/j.molmet.2020.101049
- Jamwal R, Barlock BJJP. Nonalcoholic fatty liver disease (NAFLD) and hepatic cytochrome P450 (CYP) enzymes. Pharmaceuticals (Basel). 2020;13(9):222. doi: 10.3390/ph13090222
- Fierbinteanu-Braticevici C, Baicus C, Tribus L, Papacocea R. Predictive factors for nonalcoholic steatohepatitis (NASH) in patients with nonalcoholic fatty liver disease (NAFLD). J Gastrointestin Liver Dis. 2011;20(2):153-159. doi: 10.15403/jgld.2011.1121.202
- Roth JD, Veidal SS, Fensholdt LKD, et al. Combined obeticholic acid and elafibranor treatment promotes additive liver histological improvements in a diet-induced ob/ob mouse model of biopsy-confirmed NASH. Sci Rep. 2019;9(1):9046. doi: 10.1038/s41598-019-45178-z
- Boeckmans J, Natale A, Rombaut M, et al. Human hepatic in vitro models reveal distinct anti-NASH potencies of PPAR agonists. Cell Biol Toxicol. 2021;37:293-311. doi: 10.1007/s10565-020-09544-2
- Pingitore P, Sasidharan K, Ekstrand M, Prill S, Lindén D, Romeo S. Human multilineage 3D spheroids as a model of liver steatosis and fibrosis. Int J Mol Sci. 2019;20(7):1629. doi: 10.3390/ijms20071629
- Boeckmans J, Buyl K, Natale A, et al. Elafibranor restricts lipogenic and inflammatory responses in a human skin stem cell-derived model of NASH. Pharmacol Res. 2019;144:377-389.
- Banaeiyan AA, Theobald J, Paukštyte J, Wölfl S, Adiels CB, Goksör MJB. Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. 2017;9(1):015014. doi:10.1088/1758-5090/9/1/015014. doi: 10.1016/j.phrs.2019.04.016