AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4063
REVIEW

The promising role of semi-solid extrusion technology in custom drug formulation for pediatric medicine

Thomas Cerveto1 Lucas Denis2, 3 Maxime Stoops2 Anna Lechanteur4 Christine Jérôme5 Julien Leenhardt6, 7, 8 Stephen Flynn9 Alvaro Goyanes10, 11, 12 Roseline Mazet6 * Maxime Annereau2 * Luc Choisnard1
Show Less
1 Grenoble Alpes University and Centre National de la Recherche Scientifique (CNRS; French National Centre for Scientific Research), Département de Pharmacochimie Moléculaire (DPM; Department of Molecular Pharmacochemistry), Unité Mixte de Recherche (UMR; Mixed Research Unit), Grenoble, France
2 Clinical Pharmacy Department, Gustave Roussy Cancer Campus, Villejuif, France
3 Paris-Saclay University and CNRS, Institut Galien Paris-Saclay, UMR, Orsay, France
4 Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
5 CESAM Research Unit, Center for Education and Research on Macromolecules (CERM), University of Liège, Liège, Belgium
6 Pharmacy Department, Centre Hospitalier Universitaire (CHU; University Hospital Center) Grenoble Alpes, Grenoble, France
7 Nuclear Medicine Department, CHU Grenoble Alpes, Grenoble, France
8 Grenoble Alpes University, Institut National de la Santé et de la Recherche Médicale (INSERM; National Institute of Health and Medical Research), Laboratoire de Recherche sur les Maladies Cardiovasculaires (LRB; Cardiovascular Diseases Research Laboratory), UMR, Grenoble, France
9 Global Pharma Marketing service, Roquette Frères, Lestrem, France
10 Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
11 Department of Pharmaceutics, UCL School of Pharmacy, University College London, Brunswick Square, London, UK
12 FABRX Ltd., Henwood House, Henwood, Ashford, Kent, UK
Submitted: 27 June 2024 | Accepted: 7 August 2024 | Published: 29 August 2024
(This article belongs to the Special Issue Advanced Biomaterials for 3D Printing and Healthcare Application)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The long-standing issue of inadequate medicine formulations has been a focus of regulatory bodies and pharmaceutical research, particularly in adapting medicines for children’s unique requirements. The pediatric population presents diverse challenges in pharmacotherapy due to their varying age-related physiological differences, and taste and dosage form preferences. Conventional formulations often fail to meet these needs, leading to a high prevalence of off-label medication use and modifications by caregivers, which can compromise drug efficacy and safety. The well-known challenges of managing children’s medication are similar to those in geriatrics, both of which require dose adjustments to accommodate the patient’s pathophysiological characteristics and prevent deglutination problems. This paper explores recent innovations in drug formulations, highlighting the shift from traditional liquid formulations to solid dosages through three-dimensional (3D) printing technology. Recent advancements in 3D printing technology offer promising solutions to these challenges. Additive manufacturing (AM), or 3D printing, facilitates the creation of complex objects (e.g., drug formulations) directly from digital models, allowing for high precision and customization. 3D-printed formulations have displayed considerable promise in improving palatability, adherence, and dose accuracy for pediatric use. Innovations like chewable tablets and taste-masked formulations make medications more acceptable to children. Moreover, the ability of 3D printing to adjust drug release profiles and doses offers a personalized approach to pediatric and geriatric pharmacotherapy, which is essential for managing conditions that require precise therapeutic control. The paper discusses several case studies using the semi-solid extrusion (SSE) process for producing personalized dosage forms, along with various technical and regulatory challenges associated with implementing this process in hospital-based drug manufacturing. In conclusion, while 3D printing in pediatric and geriatric pharmacotherapy addresses many challenges of traditional drug formulations, ongoing research and adaptation of regulatory frameworks are necessary to expand its application, ensuring safer, more effective, and more acceptable medication.

 

Keywords
Unlicensed preparation
3D printing
Pediatrics
Semi-solid extrusion
Hospital preparation
Personalized medicines
Funding
This work was partially supported by Agence Nationale de la Recherche through Labex ARCANE and CBH-EUR-GS (ANR-17-EURE-0003).
Conflict of interest
The authors declare they have no competing interests
References
  1. Rocchi F, Tomasi P. The development of medicines for children. Part of a series on Pediatric Pharmacology, guest edited by Gianvincenzo Zuccotti, Emilio Clementi, and Massimo Molteni. Pharmacol Res. 2011;64(3):169-175. doi: 10.1016/j.phrs.2011.01.016
  2. O’Brien F, Clapham D, Krysiak K, et al. Making medicines baby size: the challenges in bridging the formulation gap in neonatal medicine. Int J Mol Sci. 2019;20(11):2688. doi: 10.3390/ijms20112688
  3. Kogermann K, Lass J, Nellis G, Metsvaht T, Lutsar I. Age-appropriate formulations including pharmaceutical excipients in neonatal medicines. Curr Pharm Des. 2017;23(38):5779-5789. doi: 10.2174/1381612823666170926122613
  4. Nunn T, Williams J. Formulation of medicines for children. Br J Clin Pharmacol. 2005;59(6):674-676. doi: 10.1111/j.1365-2125.2005.02410.x
  5. Ranmal SR, Cram A, Tuleu C. Age-appropriate and acceptable paediatric dosage forms: insights into end-user perceptions, preferences and practices from the Children’s Acceptability of Oral Formulations (CALF) Study. Int J Pharm. 2016;514(1):296-307. doi: 10.1016/j.ijpharm.2016.07.054
  6. Ivanovska V, Rademaker CMA, van Dijk L, Mantel- Teeuwisse AK. Pediatric drug formulations: a review of challenges and progress. Pediatrics. 2014;134(2):361-372. doi: 10.1542/peds.2013-3225
  7. Joosse IR, Mantel-Teeuwisse AK, Wirtz VJ, Suleman F, van den Ham HA. Missing data on accessibility of children’s medicines. Bull World Health Organ. 2022;100(10): 636-642. doi: 10.2471/BLT.22.288137
  8. Mfoafo KA, Omidian M, Bertol CD, Omidi Y, Omidian H. Neonatal and pediatric oral drug delivery: Hopes and hurdles. Int J Pharm. 2021;597:120296. doi: 10.1016/j.ijpharm.2021.120296
  9. Alessandrini E, Brako F, Scarpa M, et al. Children’s preferences for oral dosage forms and their involvement in formulation research via EPTRI (European Paediatric Translational Research Infrastructure). Pharmaceutics. 2021;13(5):730. doi: 10.3390/pharmaceutics13050730
  10. Jîtcă CM, Jîtcă G, Ősz BE, Pușcaș A, Imre S. Stability of oral liquid dosage forms in pediatric cardiology: a prerequisite for patient’s safety—a narrative review. Pharmaceutics. 2023;15(4):1306. doi: 10.3390/pharmaceutics15041306
  11. Batchelor HK, Marriott JF. Formulations for children: problems and solutions. Br J Clin Pharmacol. 2015;79(3):405-418. doi: 10.1111/bcp.12268
  12. Litalien C, Bérubé S, Tuleu C, et al. From paediatric formulations development to access: Advances made and remaining challenges. Br J Clin Pharmacol. 2022;88(10):4349-4383. doi: 10.1111/bcp.15293
  13. US Food and Drug Administration. Qualifying for pediatric exclusivity under Section 505A of the Federal Food, Drug, and Cosmetic Act: frequently asked questions on pediatric exclusivity (505A). The Pediatric “Rule,” and their Interaction. Q1–Q14: Exclusivity. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/ DevelopmentResources/ucm077915.htm.
  14. US Food and Drug Administration. Pediatric Research Equity Act of 2003.
  15. Regulation (EC) No 1901/2006 of the European Parliament and of the Council of 12 December 2006 on medicinal products for paediatric use and amending Regulation (EEC) No 1768/92, Directive 2001/20/EC, Directive 2001/83/EC and Regulation (EC) No 726/2004.
  16. Regulation (EC) No 1902/2006 of the European Parliament and of the Council of 12 December 2006 amending Regulation 1901/2006 on medicinal products for paediatric use.
  17. Commission, to the European Parliament, and the Council. 10 years of the EU Paediatric Regulation - State of Paediatric Medicines in the EU; 2017. Accessed April 20, 2021. https://health.ec.europa.eu/system/files/2017-11/2017_ childrensmedicines_report_en_0.pdf
  18. Kaguelidou F, Ouèdraogo M, Treluyer JM, et al. Développement des médicaments en pédiatrie: défis existants et recommandations. Therapies. 2023;78(1): 95-104. doi: 10.1016/j.therap.2022.12.002
  19. Vieira I, Sousa JJ, Vitorino C. Paediatric medicines – regulatory drivers, restraints, opportunities and challenges. J Pharm Sci. 2021;110(4):1545-1556. doi: 10.1016/j.xphs.2020.12.036
  20. Huss G, Barak S, Reali L, et al. Drug Shortages in Pediatrics in Europe: the position of the European Pediatric Societies. J Pediatr. 2023;261:113472 doi: 10.1016/j.jpeds.2023.11347
  21. Atif M, Sehar A, Malik I, Mushtaq I, Ahmad N, Babar ZUD. What impact does medicines shortages have on patients? A qualitative study exploring patients’ experience and views of healthcare professionals. BMC Health Serv Res. 2021;21(1):827. doi: 10.1186/s12913-021-06812-7
  22. ASHP Expert Panel on Drug Product Shortages, Fox ER, Birt A, et al. ASHP guidelines on managing drug product shortages in hospitals and health systems. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm. 2009;66(15):1399-1406. doi: 10.2146/ajhp090026
  23. Butterfield L, Cash J, Pham K, Advocacy Committee for the Pediatric Pharmacy Advocacy Group. Drug shortages and implications for pediatric patients. J Pediatr Pharmacol Ther JPPT Off J PPAG. 2015;20(2):149-152. doi: 10.5863/1551-6776-20.2.149
  24. Metzger ML, Billett A, Link MP. The impact of drug shortages on children with cancer--the example of mechlorethamine. N Engl J Med. 2012;367(26):2461-2463. doi: 10.1056/NEJMp1212468
  25. Allen HC, Garbe MC, Lees J, et al. Off-label medication use in children, more common than we think: a systematic review of the literature. J Okla State Med Assoc. 2018; 111(8):776-783.
  26. Balan S, Hassali MAA, Mak VSL. Two decades of off-label prescribing in children: a literature review. World J Pediatr WJP. 2018;14(6):528-540. doi: 10.1007/s12519-018-0186-y
  27. Koszma EIA, Bispo AJB, Santana IA de O, dos Santos CNODB. Use of off-label medications in a neonatal intensive care unit. Rev Paul Pediatr. 2021;39:e2020063. doi: 10.1590/1984-0462/2021/39/2020063
  28. Meng M, Lv M, Wang L, et al. Off-label use of drugs in pediatrics: a scoping review. Eur J Pediatr. 2022;181(9):3259-3269. doi: 10.1007/s00431-022-04515-7
  29. Meng M, Zhou Q, Lei W, et al. Recommendations on off-label drug use in pediatric guidelines. Front Pharmacol. 2022;13:892574. doi: 10.3389/fphar.2022.892574
  30. Richey RH, Craig JV, Shah UU, et al. MODRIC - Manipulation of drugs in children. Int J Pharm. 2013;457(1):339-341. doi: 10.1016/j.ijpharm.2013.08.061
  31. Kirkevold Ø, Engedal K. Concealment of drugs in food and beverages in nursing homes: cross sectional study. BMJ. 2005;330(7481):20. doi: 10.1136/bmj.38268.579097.55
  32. Mercovich N, Kyle GJ, Naunton M. Safe to crush? A pilot study into solid dosage form modification in aged care. Australas J Ageing. 2014;33(3):180-184. doi: 10.1111/ajag.12037
  33. Kelly J, Wright D. Administering medication to adult patients with dysphagia. Nurs Stand R Coll Nurs G B 1987. 2009;23(29):62-68. doi: 10.7748/ns2009.03.23.29.62.c6928
  34. Lemarchand C, Bienaymé H, Rieutord A, Abbou S, Annereau M, Bastid J. Dispensing oral temozolomide in children: precision and stability of a novel and ready to use liquid formulation in comparison with capsule derived mixtures. Pharmaceutics. 2023;15(12):2711. doi: 10.3390/pharmaceutics15122711
  35. ANSM. Monographie Préparation magistrale Amoxicilline 125 mg, 250 mg et 500 mg, gélules réalisées à partir de MPUP d’Amoxicilline trihydratée; 2023. Accessed December 12, 2023. https://ansm.sante.fr/uploads/2023/12/26/20231226- amoxicilline-trihydratee-monographie.pdf
  36. EDS Form Group. Aprépitant : avis d’expert sur les formulations extemporanées;2024. Accessed May 16, 2024. https://www.edqm.eu/documents/52006/1912832/ A p r % C 3 % A 9 p i t a n t % 2 0 - % 2 0 A v i s % 2 0 d%E2%80%99expert%20sur%20les%20formulations%20 extemporan%C3%A9es.pdf/02dc9885-c08b-e8f3- 4554-b46bec47014a?t=1713795079735
  37. Otsokolhich M, Annereau M, Bauters T, et al. SIOPE and ESOP recommendations for extemporaneous compounding of oral liquid medicine formulations in paediatric oncology. EJC Paediatr Oncol. 2024;3:100163. doi: 10.1016/j.ejcped.2024.100163
  38. Annereau M, Toussaint B, Dufaÿ Wojcicki A, Dufaÿ S, Diaz Salmeron R, Boudy V. [2D-3D printing in hospital pharmacies, what roles and challenges?]. Ann Pharm Fr. 2021;79(4):361-374. doi: 10.1016/j.pharma.2021.01.002
  39. Tagami T, Ito E, Kida R, Hirose K, Noda T, Ozeki T. 3D printing of gummy drug formulations composed of gelatin and an HPMC-based hydrogel for pediatric use. Int J Pharm. 2021;594:120118. doi: 10.1016/j.ijpharm.2020.120118
  40. Thabet Y, Klingmann V, Breitkreutz J. Drug formulations: standards and novel strategies for drug administration in pediatrics. J Clin Pharmacol. 2018;58(S10):S26-S35. doi: 10.1002/jcph.1138
  41. Vijayavenkataraman S, Fuh JYH, Lu WF. 3D printing and 3d bioprinting in pediatrics. Bioengineering. 2017;4(3):63. doi: 10.3390/bioengineering4030063
  42. Lafeber I, Ruijgrok EJ, Guchelaar HJ, Schimmel KJM. 3D printing of pediatric medication: the end of bad tasting oral liquids?—A scoping review. Pharmaceutics. 2022;14(2):416. doi: 10.3390/pharmaceutics14020416
  43. Sukanya VS, Panigrahy N, Rath SN. Recent approaches in clinical applications of 3D printing in neonates and pediatrics. Eur J Pediatr. 2021;180(2):323-332. doi: 10.1007/s00431-020-03819-w
  44. Taylor S, Glass BD. Altering dosage forms for older adults. Aust Prescr. 2018;41(6):191-193. doi: 10.18773/austprescr.2018.063
  45. Gauthier P. État des lieux des besoins en préparation magistrale gériatrique pour la voie orale; 2021. Accessed May 25, 2022. https://dumas.ccsd.cnrs.fr/dumas-03736513
  46. Thakar N, Rajab I, Moozhayil S. Extemporaneous compounding of amoxicillin suspensions during national shortage. Pharmacy Times. https://www.pharmacytimes.com/view/extemporaneous-compounding-of-amoxicillin-suspensions-during-national-shortage. Published 2023. Accessed April 4, 2024.
  47. Watson CP, Tyler KL, Bickers DR, Millikan LE, Smith S, Coleman E. A randomized vehicle-controlled trial of topical capsaicin in the treatment of postherpetic neuralgia. Clin Ther. 1993;15(3):510-526.
  48. Ashley DD. FDA Revises Hospital and Health System Compounding Guidance to Help Preserve Patient Access to Compounded Drugs; 2021. Accessed May 10, 2024. https://www.fda.gov/news-events/press-announcements/ fda-revises-hospital-and-health-system-compounding-guidance-help-preserve-patient-access-compounded
  49. ANSM. Bonnes Pratiques de Préparation; 2022. Accessed September 20, 2022. https://ansm.sante.fr/documents/reference/bonnes-pratiques-de-preparation
  50. Beer N, Hegger I, Kaae S, et al. Scenarios for 3D printing of personalized medicines - a case study. Explor Res Clin Soc Pharm. 2021;4:100073. doi: 10.1016/j.rcsop.2021.100073
  51. Warsi MH, Yusuf M, Robaian MA, Khan M, Muheem A, Khan S. 3D printing methods for pharmaceutical manufacturing: opportunity and challenges. Curr Pharm Des. 2023;24(42):4949-4956. Accessed January 5, 2023. https://www.eurekaselect.com/article/95074
  52. International Organization for Standardization [ISO]. ISO/ ASTM 52900:2021(Fr), Fabrication Additive — Principes Généraux — Fondamentaux et Vocabulaire; 2021. Accessed November 22, 2022. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed- 2:v1:fr
  53. Barlier C, Bernard A. Fabrication Additive : Du Prototypage Rapide à l’impression 3D Ed. 2. Dunod; 2020.
  54. Laverne F, Segonds F, Dubois P. Fabrication Additive - Principes Généraux. Editions T.I.; 2016.
  55. Gibson I, Rosen D, Stucker B. Additive Manufacturing Technologies. 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. 2nded. Springer; 2015.
  56. International Organization for Standardization [ISO]. Norme internationale ISO/ASTM 52900 Fabrication additive — Principes généraux — Fondamentaux et vocabulaire. Accessed July 26, 2022. https://www.iso.org/cms/render/live/fr/sites/isoorg/ contents/data/standard/07/45/74514.html
  57. Auriemma G, Tommasino C, Falcone G, Esposito T, Sardo C, Aquino RP. Additive manufacturing strategies for personalized drug delivery systems and medical devices: fused filament fabrication and semi solid extrusion. Molecules. 2022;27(9):2784. doi: 10.3390/molecules27092784
  58. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440-451. doi: 10.1016/j.tips.2018.02.006
  59. Pou J, Riveiro A, Davim JP. Additive Manufacturing. Elsevier Science; 2021.
  60. Dumpa N, Butreddy A, Wang H, Komanduri N, Bandari S, Repka MA. 3D printing in personalized drug delivery: an overview of hot-melt extrusion-based fused deposition modeling. Int J Pharm. 2021;600:120501. doi: 10.1016/j.ijpharm.2021.120501
  61. Dotchev K, Yusoff W. Recycling of polyamide 12 based powders in the laser sintering process. Rapid Prototyp J. 2009;15(3):192-203. doi: 10.1108/13552540910960299
  62. Kellens K, Renaldi R, Dewulf W, Kruth J pierre, Duflou JR. Environmental impact modeling of selective laser sintering processes. Rapid Prototyp J. 2014;20(6):459-470. doi: 10.1108/RPJ-02-2013-0018
  63. ZipDose Technology | Spritam | Aprecia. Accessed December 15, 2022. https://www.aprecia.com/technology/zipdose
  64. Melocchi A, Briatico-Vangosa F, Uboldi M, et al. Quality considerations on the pharmaceutical applications of fused deposition modeling 3D printing. Int J Pharm. 2021;592:119901. doi: 10.1016/j.ijpharm.2020.119901
  65. Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: fFrom hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553-575. doi: 10.1016/j.addr.2021.05.003
  66. Xu X, Awad A, Robles-Martinez P, Gaisford S, Goyanes A, Basit AW. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Controlled Release. 2021;329:743-757. doi: 10.1016/j.jconrel.2020.10.008
  67. Uddin MJ, Hassan J, Douroumis D. Thermal inkjet printing: prospects and applications in the development of medicine. Technologies. 2022;10(5):108. doi: 10.3390/technologies10050108
  68. Carou-Senra P, Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Inkjet printing of pharmaceuticals. Adv Mater. 2024;36(11):2309164. doi: 10.1002/adma.202309164
  69. Académie de Pharmacie. Dictionnaire de l’académie de Pharmacie. https://dictionnaire.acadpharm.org/w/Extrusion
  70. Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B, Soulairol I. Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines. J Controlled Release. 2021;330:821-841. doi: 10.1016/j.jconrel.2020.10.056
  71. Cano-Vicent A, Tambuwala MM, Hassan SkS, et al. Fused deposition modelling: Current status, methodology, applications and future prospects. Addit Manuf. 2021;47:102378. doi: 10.1016/j.addma.2021.102378
  72. Eleftheriadis GK, Ritzoulis C, Bouropoulos N, et al. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: in vitro and ex vivo evaluation. Eur J Pharm Biopharm. 2019;144:180-192. doi: 10.1016/j.ejpb.2019.09.018
  73. Goyanes A, Allahham N, Trenfield SJ, Stoyanov E, Gaisford S, Basit AW. Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process. Int J Pharm. 2019;567:118471. doi: 10.1016/j.ijpharm.2019.118471
  74. Isreb A, Baj K, Wojsz M, Isreb M, Peak M, Alhnan MA. 3D printed oral theophylline doses with innovative ‘radiator-like’ design: Impact of polyethylene oxide (PEO) molecular weight. Int J Pharm. 2019;564:98-105. doi: 10.1016/j.ijpharm.2019.04.017
  75. Nober C, Manini G, Carlier E, et al. Feasibility study into the potential use of fused-deposition modeling to manufacture 3D-printed enteric capsules in compounding pharmacies. Int J Pharm. 2019;569:118581. doi: 10.1016/j.ijpharm.2019.118581
  76. Parulski C, Jennotte O, Lechanteur A, Evrard B. Challenges of fused deposition modeling 3D printing in pharmaceutical applications: where are we now? Adv Drug Deliv Rev. 2021;175:113810. doi: 10.1016/j.addr.2021.05.020
  77. Quodbach J, Bogdahn M, Breitkreutz J, et al. Quality of FDM 3D printed medicines for pediatrics: considerations for formulation development, filament extrusion, printing process and printer design. Ther Innov Regul Sci. 2022;56(6):910-928. doi: 10.1007/s43441-021-00354-0
  78. Tagami T, Yoshimura N, Goto E, Noda T, Ozeki T. Fabrication of muco-adhesive oral films by the 3D printing of hydroxypropyl methylcellulose-based catechin-loaded formulations. Biol Pharm Bull. 2019;42(11): 1898-1905. doi: 10.1248/bpb.b19-00481
  79. Parulski C, Bya LA, Goebel J, Servais AC, Lechanteur A, Evrard B. Development of 3D printed mini-waffle shapes containing hydrocortisone for children’s personalized medicine. Int J Pharm. 2023;642:123131. doi: 10.1016/j.ijpharm.2023.123131
  80. Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: personalised solutions for healthcare challenges. J Controlled Release. 2021;332:367-389. doi: 10.1016/j.jconrel.2021.02.027
  81. Díaz-Torres E, Rodríguez-Pombo L, Ong JJ, et al. Integrating pressure sensor control into semi-solid extrusion 3D printing to optimize medicine manufacturing. Int J Pharm X. 2022;4:100133. doi: 10.1016/j.ijpx.2022.100133
  82. Roche A, Sanchez-Ballester NM, Aubert A, Rossi JC, Begu S, Soulairol I. Preliminary Study on the development of caffeine oral solid form 3D printed by semi-solid extrusion for application in neonates. AAPS PharmSciTech. 2023;24(5):122. doi: 10.1208/s12249-023-02582-z
  83. Koshovyi O, Vlasova I, Laur H, et al. Chemical composition and insulin-resistance activity of arginine-loaded american cranberry (Vaccinium macrocarpon Aiton, Ericaceae) Leaf Extracts. Pharmaceutics. 2023;15(11):2528. doi: 10.3390/pharmaceutics15112528
  84. Lyousoufi M, Lafeber I, Kweekel D, et al. Development and bioequivalence of 3D-printed medication at the point-of-care: bridging the gap toward personalized medicine. Clin Pharmacol Ther. 2023;113(5):1125-1131. doi: 10.1002/cpt.2870
  85. Chatzitaki AT, Eleftheriadis G, Tsongas K, et al. Fabrication of 3D-printed octreotide acetate-loaded oral solid dosage forms by means of semi-solid extrusion printing. Int J Pharm. 2023;632:122569. doi: 10.1016/j.ijpharm.2022.122569
  86. Teoh XY, Zhang B, Belton P, Chan SY, Qi S. The effects of solid particle containing inks on the printing quality of porous pharmaceutical structures fabricated by 3d semi-solid extrusion printing. Pharm Res. 2022;39(6):1267-1279. doi: 10.1007/s11095-022-03299-7
  87. de Oliveira TV, de Oliveira RS, dos Santos J, Funk NL, Petzhold CL, Beck RCR. Redispersible 3D printed nanomedicines: an original application of the semisolid extrusion technique. Int J Pharm. 2022;624:122029. doi: 10.1016/j.ijpharm.2022.122029
  88. Falcone G, Mazzei P, Piccolo A, et al. Advanced printable hydrogels from pre-crosslinked alginate as a new tool in semi solid extrusion 3D printing process. Carbohydr Polym. 2022;276:118746. doi: 10.1016/j.carbpol.2021.118746
  89. Lopez-Vidal L, Real JP, Real DA, et al. Nanocrystal-based 3D-printed tablets: semi-solid extrusion using melting solidification printing process (MESO-PP) for oral administration of poorly soluble drugs. Int J Pharm. 2022;611:121311. doi: 10.1016/j.ijpharm.2021.121311
  90. Zhang B, Belton P, Teoh XY, Gleadall A, Bibb R, Qi S. An investigation into the effects of ink formulations of semi-solid extrusion 3D printing on the performance of printed solid dosage forms. J Mater Chem B. 2023;12(1):131-144. doi: 10.1039/D3TB01868G
  91. Chen P, Liu J, Zhang K, et al. Preparation of clarithromycin floating core-shell systems (CSS) using multi-nozzle semi-solid extrusion-based 3D printing. Int J Pharm. 2021;605:120837. doi: 10.1016/j.ijpharm.2021.120837
  92. Falcone G, Saviano M, Aquino RP, Del Gaudio P, Russo P. Coaxial semi-solid extrusion and ionotropic alginate gelation: a successful duo for personalized floating formulations via 3D printing. Carbohydr Polym. 2021;260:117791. doi: 10.1016/j.carbpol.2021.117791
  93. Lafeber I, Tichem JM, Ouwerkerk N, et al. 3D printed furosemide and sildenafil tablets: Innovative production and quality control. Int J Pharm. 2021;603:120694. doi: 10.1016/j.ijpharm.2021.120694
  94. Yang HS, Kim DW. Fabrication of gastro-floating famotidine tablets: hydroxypropyl methylcellulose-based semisolid extrusion 3D printing. Pharmaceutics. 2023; 15(2):316. doi: 10.3390/pharmaceutics15020316
  95. Real JP, Real DA, Lopez-Vidal L, et al. 3D-printed gastroretentive tablets loaded with niclosamide nanocrystals by the melting solidification printing process (MESO-PP). Pharmaceutics. 2023;15(5):1387. doi: 10.3390/pharmaceutics15051387
  96. Falcone G, Real JP, Palma SD, et al. Floating ricobendazole delivery systems: a 3D printing method by co-extrusion of sodium alginate and calcium chloride. Int J Mol Sci. 2022;23(3):1280. doi: 10.3390/ijms23031280
  97. Ganatra P, Jyothish L, Mahankal V, Sawant T, Dandekar P, Jain R. Drug-loaded vegan gummies for personalized dosing of simethicone: a feasibility study of semi-solid extrusion-based 3D printing of pectin-based low-calorie drug gummies. Int J Pharm. 2024;651:123777. doi: 10.1016/j.ijpharm.2024.123777
  98. Rodríguez-Pombo L, de Castro-López MJ, Sánchez-Pintos P, et al. Paediatric clinical study of 3D printed personalised medicines for rare metabolic disorders. Int J Pharm. 2024;657:124140. doi: 10.1016/j.ijpharm.2024.124140
  99. Johannesson J, Pathare MM, Johansson M, Bergström CAS, Teleki A. Synergistic stabilization of emulsion gel by nanoparticles and surfactant enables 3D printing of lipid-rich solid oral dosage forms. J Colloid Interface Sci. 2023;650:1253-1264. doi: 10.1016/j.jcis.2023.07.055
  100. Rouaz-El Hajoui K, Herrada-Manchón H, Rodríguez- González D, et al. Pellets and gummies: seeking a 3D printed gastro-resistant omeprazole dosage for paediatric administration. Int J Pharm. 2023;643:123289. doi: 10.1016/j.ijpharm.2023.123289
  101. Chatzitaki AT, Mystiridou E, Bouropoulos N, Ritzoulis C, Karavasili C, Fatouros DG. Semi-solid extrusion 3D printing of starch-based soft dosage forms for the treatment of paediatric latent tuberculosis infection. J Pharm Pharmacol. 2022;74(10):1498-1506. doi: 10.1093/jpp/rgab121
  102. Han X, Kang D, Liu B, et al. Feasibility of developing hospital preparation by semisolid extrusion 3D printing: personalized amlodipine besylate chewable tablets. Pharm Dev Technol. 2022;27(2):164-174. doi: 10.1080/10837450.2022.2027965
  103. Zhu C, Tian Y, Zhang E, et al. Semisolid extrusion 3D printing of propranolol hydrochloride gummy chewable tablets: an innovative approach to prepare personalized medicine for pediatrics. AAPS PharmSciTech. 2022;23(5):166. doi: 10.1208/s12249-022-02304-x
  104. Wang F, Li L, Zhu X, Chen F, Han X. Development of pH-responsive polypills via semi-solid extrusion 3D printing. Bioengineering. 2023;10(4):402. doi: 10.3390/bioengineering10040402
  105. Korelc K, Larsen BS, Heintze AL, et al. Towards personalized drug delivery via semi-solid extrusion: exploring poly(vinyl alcohol-co-vinyl acetate) copolymers for hydrochlorothiazide-loaded films. Eur J Pharm Sci. 2024;192:106645. doi: 10.1016/j.ejps.2023.106645
  106. Yi S, Xie J, Chen L, Xu F. Preparation of loratadine orally disintegrating tablets by semi-solid extrusion 3D printing. Curr Drug Deliv. 2023;20(6):818-829. doi: 10.2174/1567201819666221011094913
  107. Koshovyi O, Heinämäki J, Raal A, et al. Pharmaceutical 3D-printing of nanoemulsified eucalypt extracts and their antimicrobial activity. Eur J Pharm Sci. 2023;187:106487. doi: 10.1016/j.ejps.2023.106487
  108. Schmidt LM, dos Santos J, de Oliveira TV, et al. Drug-loaded mesoporous silica on carboxymethyl cellulose hydrogel:Development of innovative 3D printed hydrophilic films. Int J Pharm. 2022;620:121750. doi: 10.1016/j.ijpharm.2022.121750
  109. Panraksa P, Rachtanapun P, Thipchai P, et al. Sustainable 3D printing of oral films with tunable characteristics using CMC-based inks from durian rind wastes. Eur J Pharm Biopharm. 2023;186:30-42. doi: 10.1016/j.ejpb.2023.03.006
  110. 110 Mathiyalagan R, Sjöholm E, Manandhar S, et al. Personalizing oral delivery of nanoformed piroxicam by semi-solid extrusion 3D printing. Eur J Pharm Sci. 2023; 188:106497. doi: 10.1016/j.ejps.2023.106497
  1. Johannesson J, Wu M, Johansson M, Bergström CAS. Quality attributes for printable emulsion gels and 3D-printed tablets: towards production of personalized dosage forms. Int J Pharm. 2023;646:123413. doi: 10.1016/j.ijpharm.2023.123413
  2. Suárez-González J, Magariños-Triviño M, Díaz-Torres E, Cáceres-Pérez AR, Santoveña-Estévez A, Fariña JB. Individualized orodispersible pediatric dosage forms obtained by molding and semi-solid extrusion by 3D printing: a comparative study for hydrochlorothiazide. J Drug Deliv Sci Technol. 2021;66:102884. doi: 10.1016/j.jddst.2021.102884
  3. Hu J, Fitaihi R, Abukhamees S, Abdelhakim HE. Formulation and characterisation of carbamazepine orodispersible 3D-printed mini-tablets for paediatric use. Pharmaceutics. 2023;15(1):250. doi: 10.3390/pharmaceutics15010250
  4. Elbl J, Veselý M, Blaháčková D, et al. Development of 3D printed multi-layered orodispersible films with porous structure applicable as a substrate for inkjet printing. Pharmaceutics. 2023;15(2):714. doi: 10.3390/pharmaceutics15020714
  5. Janigová N, Elbl J, Pavloková S, Gajdziok J. Effects of various drying times on the properties of 3D printed orodispersible films. Pharmaceutics. 2022;14(2):250. doi: 10.3390/pharmaceutics14020250
  6. Panraksa P, Zhang B, Rachtanapun P, Jantanasakulwong K, Qi S, Jantrawut P. ‘Tablet-in-Syringe’: a novel dosing mechanism for dysphagic patients containing fast-disintegrating tablets fabricated using semisolid extrusion 3D printing. Pharmaceutics. 2022;14(2):443. doi: 10.3390/pharmaceutics14020443
  7. Abdella S, Afinjuomo F, Song Y, Upton R, Garg S. 3D printed bilayer mucoadhesive buccal film of estradiol: Impact of design on film properties, release kinetics and predicted in vivo performance. Int J Pharm. 2022;628:122324. doi: 10.1016/j.ijpharm.2022.122324
  8. Takashima H, Tagami T, Kato S, Pae H, Ozeki T, Shibuya Y. Three-dimensional printing of an apigenin-loaded mucoadhesive film for tailored therapy to oral leukoplakia and the chemopreventive effect on a rat model of oral carcinogenesis. Pharmaceutics. 2022;14(8):1575. doi: 10.3390/pharmaceutics14081575
  9. Munoz-Perez E, Rubio-Retama J, Cussó L, Igartua M, Hernandez RM, Santos-Vizcaino E. 3D-printed Laponite/ Alginate hydrogel-based suppositories for versatile drug loading and release. Drug Deliv Transl Res. 2024. doi: 10.1007/s13346-023-01506-5
  10. Awad A, Hollis E, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed multi-drug-loaded suppositories for acute severe ulcerative colitis. Int J Pharm X. 2023; 5:100165. doi: 10.1016/j.ijpx.2023.100165
  11. Awad A, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed infliximab suppositories for rectal biologic delivery. Int J Pharm X. 2023;5:100176. doi: 10.1016/j.ijpx.2023.100176
  12. Utomo E, Domínguez-Robles J, Anjani QK, et al. Development of 3D-printed vaginal devices containing metronidazole for alternative bacterial vaginosis treatment. Int J Pharm X. 2022;5:100142. doi: 10.1016/j.ijpx.2022.100142
  13. Teworte S, Aleandri S, Weber JR, Carone M, Luciani P. Mucoadhesive 3D printed vaginal ovules to treat endometriosis and fibrotic uterine diseases. Eur J Pharm Sci. 2023;188:106501. doi: 10.1016/j.ejps.2023.106501
  14. Pérez Gutiérrez CL, Cottone F, Pagano C, et al. The Optimization of Pressure-Assisted Microsyringe (PAM) 3D printing parameters for the development of sustainable starch-based patches. Polymers. 2023;15(18):3792. doi: 10.3390/polym15183792
  15. Kyser AJ, Mahmoud MY, Herold SE, et al. Formulation and characterization of pressure-assisted microsyringe 3D-printed scaffolds for controlled intravaginal antibiotic release. Int J Pharm. 2023;641:123054. doi: 10.1016/j.ijpharm.2023.123054
  16. Archana M, Rubini D, Dharshini KP, et al. Development of an anti-infective urinary catheter composed of polyvinyl alcohol/sodium alginate/methylcellulose/polyethylene glycol by using a pressure-assisted 3D-printing technique. Int J Biol Macromol. 2023;249:126029. doi: 10.1016/j.ijbiomac.2023.126029
  17. Conceição J, Farto-Vaamonde X, Goyanes A, et al. Hydroxypropyl-β-cyclodextrin-based fast dissolving carbamazepine printlets prepared by semisolid extrusion 3D printing. Carbohydr Polym. 2019;221:55-62. doi: 10.1016/j.carbpol.2019.05.084
  18. Rahman J, Quodbach J. Versatility on demand – the case for semi-solid micro-extrusion in pharmaceutics. Adv Drug Deliv Rev. 2021;172:104-126. doi: 10.1016/j.addr.2021.02.013
  19. Elbadawi M, Gustaffson T, Gaisford S, Basit AW. 3D printing tablets: predicting printability and drug dissolution from rheological data. Int J Pharm. 2020; 590:119868. doi: 10.1016/j.ijpharm.2020.119868
  20. Suárez-González J, Díaz-Torres E, Monzón-Rodríguez CN, Santoveña-Estévez A, Fariña JB. Revolutionizing three-dimensional printing: enhancing quality assurance and point-of-care integration through instrumentation. Pharmaceutics. 2024;16(3):408. doi: 10.3390/pharmaceutics16030408
  21. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643-650. doi: 10.1016/j.ijpharm.2015.07.067
  22. Haring AP, Tong Y, Halper J, Johnson BN. Programming of multicomponent temporal release profiles in 3D printed polypills via core–shell, multilayer, and gradient concentration profiles. Adv Healthc Mater. 2018;7(16):1800213. doi: 10.1002/adhm.201800213
  23. Borges AF, Silva C, Coelho JFJ, Simões S. Outlining critical quality attributes (CQAs) as guidance for the development of orodispersible films. Pharm Dev Technol. 2017;22(2):237-245. doi: 10.1080/10837450.2016.1199567
  24. El Aita I, Breitkreutz J, Quodbach J. On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing. Eur J Pharm Biopharm. 2019;134:29-36. doi: 10.1016/j.ejpb.2018.11.008
  25. Pluta P. Compounding overview: primary considerations for the workplace. Pharm Technol. 2024;48(2):18-22. Accessed April 10, 2024. https://www.pharmtech.com/view/compounding-overview-primary-considerations-for-the-workplace
  26. European Medicines Agency. ICH guideline Q10 on pharmaceutical quality system; 2007. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human_en.pdf
  27. European Medicines Agency. ICH guideline Q8 (R2) on pharmaceutical development; 2004. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-11.pdf
  28. Seoane-Viaño I, Xu X, Ong JJ, et al. A case study on decentralized manufacturing of 3D printed medicines. Int J Pharm X. 2023;5:100184. doi: 10.1016/j.ijpx.2023.100184
  29. Section 503A of the Federal Food, Drug, and Cosmetic Act. FDA; 2018. Accessed April 12, 2024. https://www.fda.gov/drugs/human-drug-compounding/ section-503a-federal-food-drug-and-cosmetic-act
  30. Beitler BG, Abraham PF, Glennon AR, et al. Interpretation of regulatory factors for 3D printing at hospitals and medical centers, or at the point of care. 3D Print Med. 2022;8(1):7. doi: 10.1186/s41205-022-00134-y
  31. Jørgensen AK, Ong JJ, Parhizkar M, Goyanes A, Basit AW. Advancing non-destructive analysis of 3D printed medicines. Trends Pharmacol Sci. 2023;44(6):379-393. doi: 10.1016/j.tips.2023.03.006
  32. Miller GF, Coffield E, Leroy Z, Wallin R. Prevalence and costs of five chronic conditions in children. J Sch Nurs Off Publ Natl Assoc Sch Nurses. 2016;32(5):357-364. doi: 10.1177/1059840516641190
  33. Bg PK, Mehrotra S, Marques SM, Kumar L, Verma R. 3D printing in personalized medicines: a focus on applications of the technology. Mater Today Commun. 2023;35:105875. doi: 10.1016/j.mtcomm.2023.105875
  34. ClinicalTrials.gov. Metronomic Chemotherapy in Wilms Tumor (MetroWilms-1906) (MetroWilms); 2022. Accessed April 30, 2024. https://classic.clinicaltrials.gov/ct2/show/NCT05384821
  35. Binson G, Sanchez C, Waton K, et al. Accuracy of dose administered to children using off-labelled or unlicensed oral dosage forms. Pharmaceutics. 2021;13(7):1014. doi: 10.3390/pharmaceutics13071014
  36. Curti C, Brandin T, Kabac T, et al. Contrôle qualité des préparations magistrales en officine: contraintes réglementaires et pistes d’amélioration. Pharm Hosp Clin. 2020;55(3):268-274. doi: 10.1016/j.phclin.2020.04.009
  37. Zheng Z, Lv J, Yang W, et al. Preparation and application of subdivided tablets using 3D printing for precise hospital dispensing. Eur J Pharm Sci. 2020;149:105293. doi: 10.1016/j.ejps.2020.105293
  38. Cui M, Pan H, Fang D, Sun H, Qiao S, Pan W. Exploration and evaluation of dynamic dose-control platform for pediatric medicine based on Drop-on-Powder 3D printing technology. Int J Pharm. 2021;596:120201. doi: 10.1016/j.ijpharm.2021.120201
  39. Park BJ, Choi HJ, Moon SJ, et al. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Investig. 2019;49:575-585. doi: 10.1007/s40005-018-00414-y
  40. de Groot MCH, van Puijenbroek EP. Clindamycin and taste disorders. Br J Clin Pharmacol. 2007;64(4):542-545. doi: 10.1111/j.1365-2125.2007.02908.x
  41. Shinotsuka H, Mizutani N, Aikawa S, Kimura G. Palatability evaluation of sulfamethoxazole/trimethoprim wit sweetener using the two-bottle choice test. Chem Pharm Bull (Tokyo). 2023;71(12):906-908. doi: 10.1248/cpb.c23-00428
  42. Protopapa C, Siamidi A, Kolipaka SS, Junqueira LA, Douroumis D, Vlachou M. In vitro profile of hydrocortisone release from three-dimensionally printed paediatric mini-tablets. Pharmaceutics. 2024;16(3):385. doi: 10.3390/pharmaceutics16030385
  43. Herrada-Manchón H, Rodríguez-González D, Alejandro Fernández M, et al. 3D printed gummies: personalized drug dosage in a safe and appealing way. Int J Pharm. 2020;587:119687. doi: 10.1016/j.ijpharm.2020.119687
  44. Godoi FC, Prakash S, Bhandari BR. 3d printing technologies applied for food design: Status and prospects. J Food Eng. 2016;179:44-54. doi: 10.1016/j.jfoodeng.2016.01.025
  45. Schmidt CM, Knief A, Deuster D, Matulat P, Zehnhoff- Dinnesen A. Melatonin is a useful alternative to sedation in children undergoing brainstem audiometry with an age dependent success rate - a field report of 250 investigations. Neuropediatrics. 2007;38:2-4. doi: 10.1055/s-2007-981467
  46. Seoane-Viaño I, Ong JJ, Luzardo-Álvarez A, et al. 3D printed tacrolimus suppositories for the treatment of ulcerative colitis. Asian J Pharm Sci. 2021;16(1):110-119. doi: 10.1016/j.ajps.2020.06.003
  47. Chakka LRJ, Chede S. 3D printing of pharmaceuticals for disease treatment. Front Med Technol. 2023;4: 1040052. doi: 10.3389/fmedt.2022.1040052
  48. Heitman T, Day AJ, Bassani AS. Pediatric compounding pharmacy: taking on the responsibility of providing quality customized prescriptions. Children. 2019;6(5):66. doi: 10.3390/children6050066
  49. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11-17. doi: 10.1016/j.ejps.2014.11.009

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing