The promising role of semi-solid extrusion technology in custom drug formulation for pediatric medicine
The long-standing issue of inadequate medicine formulations has been a focus of regulatory bodies and pharmaceutical research, particularly in adapting medicines for children’s unique requirements. The pediatric population presents diverse challenges in pharmacotherapy due to their varying age-related physiological differences, and taste and dosage form preferences. Conventional formulations often fail to meet these needs, leading to a high prevalence of off-label medication use and modifications by caregivers, which can compromise drug efficacy and safety. The well-known challenges of managing children’s medication are similar to those in geriatrics, both of which require dose adjustments to accommodate the patient’s pathophysiological characteristics and prevent deglutination problems. This paper explores recent innovations in drug formulations, highlighting the shift from traditional liquid formulations to solid dosages through three-dimensional (3D) printing technology. Recent advancements in 3D printing technology offer promising solutions to these challenges. Additive manufacturing (AM), or 3D printing, facilitates the creation of complex objects (e.g., drug formulations) directly from digital models, allowing for high precision and customization. 3D-printed formulations have displayed considerable promise in improving palatability, adherence, and dose accuracy for pediatric use. Innovations like chewable tablets and taste-masked formulations make medications more acceptable to children. Moreover, the ability of 3D printing to adjust drug release profiles and doses offers a personalized approach to pediatric and geriatric pharmacotherapy, which is essential for managing conditions that require precise therapeutic control. The paper discusses several case studies using the semi-solid extrusion (SSE) process for producing personalized dosage forms, along with various technical and regulatory challenges associated with implementing this process in hospital-based drug manufacturing. In conclusion, while 3D printing in pediatric and geriatric pharmacotherapy addresses many challenges of traditional drug formulations, ongoing research and adaptation of regulatory frameworks are necessary to expand its application, ensuring safer, more effective, and more acceptable medication.
- Rocchi F, Tomasi P. The development of medicines for children. Part of a series on Pediatric Pharmacology, guest edited by Gianvincenzo Zuccotti, Emilio Clementi, and Massimo Molteni. Pharmacol Res. 2011;64(3):169-175. doi: 10.1016/j.phrs.2011.01.016
- O’Brien F, Clapham D, Krysiak K, et al. Making medicines baby size: the challenges in bridging the formulation gap in neonatal medicine. Int J Mol Sci. 2019;20(11):2688. doi: 10.3390/ijms20112688
- Kogermann K, Lass J, Nellis G, Metsvaht T, Lutsar I. Age-appropriate formulations including pharmaceutical excipients in neonatal medicines. Curr Pharm Des. 2017;23(38):5779-5789. doi: 10.2174/1381612823666170926122613
- Nunn T, Williams J. Formulation of medicines for children. Br J Clin Pharmacol. 2005;59(6):674-676. doi: 10.1111/j.1365-2125.2005.02410.x
- Ranmal SR, Cram A, Tuleu C. Age-appropriate and acceptable paediatric dosage forms: insights into end-user perceptions, preferences and practices from the Children’s Acceptability of Oral Formulations (CALF) Study. Int J Pharm. 2016;514(1):296-307. doi: 10.1016/j.ijpharm.2016.07.054
- Ivanovska V, Rademaker CMA, van Dijk L, Mantel- Teeuwisse AK. Pediatric drug formulations: a review of challenges and progress. Pediatrics. 2014;134(2):361-372. doi: 10.1542/peds.2013-3225
- Joosse IR, Mantel-Teeuwisse AK, Wirtz VJ, Suleman F, van den Ham HA. Missing data on accessibility of children’s medicines. Bull World Health Organ. 2022;100(10): 636-642. doi: 10.2471/BLT.22.288137
- Mfoafo KA, Omidian M, Bertol CD, Omidi Y, Omidian H. Neonatal and pediatric oral drug delivery: Hopes and hurdles. Int J Pharm. 2021;597:120296. doi: 10.1016/j.ijpharm.2021.120296
- Alessandrini E, Brako F, Scarpa M, et al. Children’s preferences for oral dosage forms and their involvement in formulation research via EPTRI (European Paediatric Translational Research Infrastructure). Pharmaceutics. 2021;13(5):730. doi: 10.3390/pharmaceutics13050730
- Jîtcă CM, Jîtcă G, Ősz BE, Pușcaș A, Imre S. Stability of oral liquid dosage forms in pediatric cardiology: a prerequisite for patient’s safety—a narrative review. Pharmaceutics. 2023;15(4):1306. doi: 10.3390/pharmaceutics15041306
- Batchelor HK, Marriott JF. Formulations for children: problems and solutions. Br J Clin Pharmacol. 2015;79(3):405-418. doi: 10.1111/bcp.12268
- Litalien C, Bérubé S, Tuleu C, et al. From paediatric formulations development to access: Advances made and remaining challenges. Br J Clin Pharmacol. 2022;88(10):4349-4383. doi: 10.1111/bcp.15293
- US Food and Drug Administration. Qualifying for pediatric exclusivity under Section 505A of the Federal Food, Drug, and Cosmetic Act: frequently asked questions on pediatric exclusivity (505A). The Pediatric “Rule,” and their Interaction. Q1–Q14: Exclusivity. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/ DevelopmentResources/ucm077915.htm.
- US Food and Drug Administration. Pediatric Research Equity Act of 2003.
- Regulation (EC) No 1901/2006 of the European Parliament and of the Council of 12 December 2006 on medicinal products for paediatric use and amending Regulation (EEC) No 1768/92, Directive 2001/20/EC, Directive 2001/83/EC and Regulation (EC) No 726/2004.
- Regulation (EC) No 1902/2006 of the European Parliament and of the Council of 12 December 2006 amending Regulation 1901/2006 on medicinal products for paediatric use.
- Commission, to the European Parliament, and the Council. 10 years of the EU Paediatric Regulation - State of Paediatric Medicines in the EU; 2017. Accessed April 20, 2021. https://health.ec.europa.eu/system/files/2017-11/2017_ childrensmedicines_report_en_0.pdf
- Kaguelidou F, Ouèdraogo M, Treluyer JM, et al. Développement des médicaments en pédiatrie: défis existants et recommandations. Therapies. 2023;78(1): 95-104. doi: 10.1016/j.therap.2022.12.002
- Vieira I, Sousa JJ, Vitorino C. Paediatric medicines – regulatory drivers, restraints, opportunities and challenges. J Pharm Sci. 2021;110(4):1545-1556. doi: 10.1016/j.xphs.2020.12.036
- Huss G, Barak S, Reali L, et al. Drug Shortages in Pediatrics in Europe: the position of the European Pediatric Societies. J Pediatr. 2023;261:113472 doi: 10.1016/j.jpeds.2023.11347
- Atif M, Sehar A, Malik I, Mushtaq I, Ahmad N, Babar ZUD. What impact does medicines shortages have on patients? A qualitative study exploring patients’ experience and views of healthcare professionals. BMC Health Serv Res. 2021;21(1):827. doi: 10.1186/s12913-021-06812-7
- ASHP Expert Panel on Drug Product Shortages, Fox ER, Birt A, et al. ASHP guidelines on managing drug product shortages in hospitals and health systems. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm. 2009;66(15):1399-1406. doi: 10.2146/ajhp090026
- Butterfield L, Cash J, Pham K, Advocacy Committee for the Pediatric Pharmacy Advocacy Group. Drug shortages and implications for pediatric patients. J Pediatr Pharmacol Ther JPPT Off J PPAG. 2015;20(2):149-152. doi: 10.5863/1551-6776-20.2.149
- Metzger ML, Billett A, Link MP. The impact of drug shortages on children with cancer--the example of mechlorethamine. N Engl J Med. 2012;367(26):2461-2463. doi: 10.1056/NEJMp1212468
- Allen HC, Garbe MC, Lees J, et al. Off-label medication use in children, more common than we think: a systematic review of the literature. J Okla State Med Assoc. 2018; 111(8):776-783.
- Balan S, Hassali MAA, Mak VSL. Two decades of off-label prescribing in children: a literature review. World J Pediatr WJP. 2018;14(6):528-540. doi: 10.1007/s12519-018-0186-y
- Koszma EIA, Bispo AJB, Santana IA de O, dos Santos CNODB. Use of off-label medications in a neonatal intensive care unit. Rev Paul Pediatr. 2021;39:e2020063. doi: 10.1590/1984-0462/2021/39/2020063
- Meng M, Lv M, Wang L, et al. Off-label use of drugs in pediatrics: a scoping review. Eur J Pediatr. 2022;181(9):3259-3269. doi: 10.1007/s00431-022-04515-7
- Meng M, Zhou Q, Lei W, et al. Recommendations on off-label drug use in pediatric guidelines. Front Pharmacol. 2022;13:892574. doi: 10.3389/fphar.2022.892574
- Richey RH, Craig JV, Shah UU, et al. MODRIC - Manipulation of drugs in children. Int J Pharm. 2013;457(1):339-341. doi: 10.1016/j.ijpharm.2013.08.061
- Kirkevold Ø, Engedal K. Concealment of drugs in food and beverages in nursing homes: cross sectional study. BMJ. 2005;330(7481):20. doi: 10.1136/bmj.38268.579097.55
- Mercovich N, Kyle GJ, Naunton M. Safe to crush? A pilot study into solid dosage form modification in aged care. Australas J Ageing. 2014;33(3):180-184. doi: 10.1111/ajag.12037
- Kelly J, Wright D. Administering medication to adult patients with dysphagia. Nurs Stand R Coll Nurs G B 1987. 2009;23(29):62-68. doi: 10.7748/ns2009.03.23.29.62.c6928
- Lemarchand C, Bienaymé H, Rieutord A, Abbou S, Annereau M, Bastid J. Dispensing oral temozolomide in children: precision and stability of a novel and ready to use liquid formulation in comparison with capsule derived mixtures. Pharmaceutics. 2023;15(12):2711. doi: 10.3390/pharmaceutics15122711
- ANSM. Monographie Préparation magistrale Amoxicilline 125 mg, 250 mg et 500 mg, gélules réalisées à partir de MPUP d’Amoxicilline trihydratée; 2023. Accessed December 12, 2023. https://ansm.sante.fr/uploads/2023/12/26/20231226- amoxicilline-trihydratee-monographie.pdf
- EDS Form Group. Aprépitant : avis d’expert sur les formulations extemporanées;2024. Accessed May 16, 2024. https://www.edqm.eu/documents/52006/1912832/ A p r % C 3 % A 9 p i t a n t % 2 0 - % 2 0 A v i s % 2 0 d%E2%80%99expert%20sur%20les%20formulations%20 extemporan%C3%A9es.pdf/02dc9885-c08b-e8f3- 4554-b46bec47014a?t=1713795079735
- Otsokolhich M, Annereau M, Bauters T, et al. SIOPE and ESOP recommendations for extemporaneous compounding of oral liquid medicine formulations in paediatric oncology. EJC Paediatr Oncol. 2024;3:100163. doi: 10.1016/j.ejcped.2024.100163
- Annereau M, Toussaint B, Dufaÿ Wojcicki A, Dufaÿ S, Diaz Salmeron R, Boudy V. [2D-3D printing in hospital pharmacies, what roles and challenges?]. Ann Pharm Fr. 2021;79(4):361-374. doi: 10.1016/j.pharma.2021.01.002
- Tagami T, Ito E, Kida R, Hirose K, Noda T, Ozeki T. 3D printing of gummy drug formulations composed of gelatin and an HPMC-based hydrogel for pediatric use. Int J Pharm. 2021;594:120118. doi: 10.1016/j.ijpharm.2020.120118
- Thabet Y, Klingmann V, Breitkreutz J. Drug formulations: standards and novel strategies for drug administration in pediatrics. J Clin Pharmacol. 2018;58(S10):S26-S35. doi: 10.1002/jcph.1138
- Vijayavenkataraman S, Fuh JYH, Lu WF. 3D printing and 3d bioprinting in pediatrics. Bioengineering. 2017;4(3):63. doi: 10.3390/bioengineering4030063
- Lafeber I, Ruijgrok EJ, Guchelaar HJ, Schimmel KJM. 3D printing of pediatric medication: the end of bad tasting oral liquids?—A scoping review. Pharmaceutics. 2022;14(2):416. doi: 10.3390/pharmaceutics14020416
- Sukanya VS, Panigrahy N, Rath SN. Recent approaches in clinical applications of 3D printing in neonates and pediatrics. Eur J Pediatr. 2021;180(2):323-332. doi: 10.1007/s00431-020-03819-w
- Taylor S, Glass BD. Altering dosage forms for older adults. Aust Prescr. 2018;41(6):191-193. doi: 10.18773/austprescr.2018.063
- Gauthier P. État des lieux des besoins en préparation magistrale gériatrique pour la voie orale; 2021. Accessed May 25, 2022. https://dumas.ccsd.cnrs.fr/dumas-03736513
- Thakar N, Rajab I, Moozhayil S. Extemporaneous compounding of amoxicillin suspensions during national shortage. Pharmacy Times. https://www.pharmacytimes.com/view/extemporaneous-compounding-of-amoxicillin-suspensions-during-national-shortage. Published 2023. Accessed April 4, 2024.
- Watson CP, Tyler KL, Bickers DR, Millikan LE, Smith S, Coleman E. A randomized vehicle-controlled trial of topical capsaicin in the treatment of postherpetic neuralgia. Clin Ther. 1993;15(3):510-526.
- Ashley DD. FDA Revises Hospital and Health System Compounding Guidance to Help Preserve Patient Access to Compounded Drugs; 2021. Accessed May 10, 2024. https://www.fda.gov/news-events/press-announcements/ fda-revises-hospital-and-health-system-compounding-guidance-help-preserve-patient-access-compounded
- ANSM. Bonnes Pratiques de Préparation; 2022. Accessed September 20, 2022. https://ansm.sante.fr/documents/reference/bonnes-pratiques-de-preparation
- Beer N, Hegger I, Kaae S, et al. Scenarios for 3D printing of personalized medicines - a case study. Explor Res Clin Soc Pharm. 2021;4:100073. doi: 10.1016/j.rcsop.2021.100073
- Warsi MH, Yusuf M, Robaian MA, Khan M, Muheem A, Khan S. 3D printing methods for pharmaceutical manufacturing: opportunity and challenges. Curr Pharm Des. 2023;24(42):4949-4956. Accessed January 5, 2023. https://www.eurekaselect.com/article/95074
- International Organization for Standardization [ISO]. ISO/ ASTM 52900:2021(Fr), Fabrication Additive — Principes Généraux — Fondamentaux et Vocabulaire; 2021. Accessed November 22, 2022. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed- 2:v1:fr
- Barlier C, Bernard A. Fabrication Additive : Du Prototypage Rapide à l’impression 3D Ed. 2. Dunod; 2020.
- Laverne F, Segonds F, Dubois P. Fabrication Additive - Principes Généraux. Editions T.I.; 2016.
- Gibson I, Rosen D, Stucker B. Additive Manufacturing Technologies. 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. 2nded. Springer; 2015.
- International Organization for Standardization [ISO]. Norme internationale ISO/ASTM 52900 Fabrication additive — Principes généraux — Fondamentaux et vocabulaire. Accessed July 26, 2022. https://www.iso.org/cms/render/live/fr/sites/isoorg/ contents/data/standard/07/45/74514.html
- Auriemma G, Tommasino C, Falcone G, Esposito T, Sardo C, Aquino RP. Additive manufacturing strategies for personalized drug delivery systems and medical devices: fused filament fabrication and semi solid extrusion. Molecules. 2022;27(9):2784. doi: 10.3390/molecules27092784
- Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440-451. doi: 10.1016/j.tips.2018.02.006
- Pou J, Riveiro A, Davim JP. Additive Manufacturing. Elsevier Science; 2021.
- Dumpa N, Butreddy A, Wang H, Komanduri N, Bandari S, Repka MA. 3D printing in personalized drug delivery: an overview of hot-melt extrusion-based fused deposition modeling. Int J Pharm. 2021;600:120501. doi: 10.1016/j.ijpharm.2021.120501
- Dotchev K, Yusoff W. Recycling of polyamide 12 based powders in the laser sintering process. Rapid Prototyp J. 2009;15(3):192-203. doi: 10.1108/13552540910960299
- Kellens K, Renaldi R, Dewulf W, Kruth J pierre, Duflou JR. Environmental impact modeling of selective laser sintering processes. Rapid Prototyp J. 2014;20(6):459-470. doi: 10.1108/RPJ-02-2013-0018
- ZipDose Technology | Spritam | Aprecia. Accessed December 15, 2022. https://www.aprecia.com/technology/zipdose
- Melocchi A, Briatico-Vangosa F, Uboldi M, et al. Quality considerations on the pharmaceutical applications of fused deposition modeling 3D printing. Int J Pharm. 2021;592:119901. doi: 10.1016/j.ijpharm.2020.119901
- Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: fFrom hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553-575. doi: 10.1016/j.addr.2021.05.003
- Xu X, Awad A, Robles-Martinez P, Gaisford S, Goyanes A, Basit AW. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Controlled Release. 2021;329:743-757. doi: 10.1016/j.jconrel.2020.10.008
- Uddin MJ, Hassan J, Douroumis D. Thermal inkjet printing: prospects and applications in the development of medicine. Technologies. 2022;10(5):108. doi: 10.3390/technologies10050108
- Carou-Senra P, Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Inkjet printing of pharmaceuticals. Adv Mater. 2024;36(11):2309164. doi: 10.1002/adma.202309164
- Académie de Pharmacie. Dictionnaire de l’académie de Pharmacie. https://dictionnaire.acadpharm.org/w/Extrusion
- Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B, Soulairol I. Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines. J Controlled Release. 2021;330:821-841. doi: 10.1016/j.jconrel.2020.10.056
- Cano-Vicent A, Tambuwala MM, Hassan SkS, et al. Fused deposition modelling: Current status, methodology, applications and future prospects. Addit Manuf. 2021;47:102378. doi: 10.1016/j.addma.2021.102378
- Eleftheriadis GK, Ritzoulis C, Bouropoulos N, et al. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: in vitro and ex vivo evaluation. Eur J Pharm Biopharm. 2019;144:180-192. doi: 10.1016/j.ejpb.2019.09.018
- Goyanes A, Allahham N, Trenfield SJ, Stoyanov E, Gaisford S, Basit AW. Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process. Int J Pharm. 2019;567:118471. doi: 10.1016/j.ijpharm.2019.118471
- Isreb A, Baj K, Wojsz M, Isreb M, Peak M, Alhnan MA. 3D printed oral theophylline doses with innovative ‘radiator-like’ design: Impact of polyethylene oxide (PEO) molecular weight. Int J Pharm. 2019;564:98-105. doi: 10.1016/j.ijpharm.2019.04.017
- Nober C, Manini G, Carlier E, et al. Feasibility study into the potential use of fused-deposition modeling to manufacture 3D-printed enteric capsules in compounding pharmacies. Int J Pharm. 2019;569:118581. doi: 10.1016/j.ijpharm.2019.118581
- Parulski C, Jennotte O, Lechanteur A, Evrard B. Challenges of fused deposition modeling 3D printing in pharmaceutical applications: where are we now? Adv Drug Deliv Rev. 2021;175:113810. doi: 10.1016/j.addr.2021.05.020
- Quodbach J, Bogdahn M, Breitkreutz J, et al. Quality of FDM 3D printed medicines for pediatrics: considerations for formulation development, filament extrusion, printing process and printer design. Ther Innov Regul Sci. 2022;56(6):910-928. doi: 10.1007/s43441-021-00354-0
- Tagami T, Yoshimura N, Goto E, Noda T, Ozeki T. Fabrication of muco-adhesive oral films by the 3D printing of hydroxypropyl methylcellulose-based catechin-loaded formulations. Biol Pharm Bull. 2019;42(11): 1898-1905. doi: 10.1248/bpb.b19-00481
- Parulski C, Bya LA, Goebel J, Servais AC, Lechanteur A, Evrard B. Development of 3D printed mini-waffle shapes containing hydrocortisone for children’s personalized medicine. Int J Pharm. 2023;642:123131. doi: 10.1016/j.ijpharm.2023.123131
- Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: personalised solutions for healthcare challenges. J Controlled Release. 2021;332:367-389. doi: 10.1016/j.jconrel.2021.02.027
- Díaz-Torres E, Rodríguez-Pombo L, Ong JJ, et al. Integrating pressure sensor control into semi-solid extrusion 3D printing to optimize medicine manufacturing. Int J Pharm X. 2022;4:100133. doi: 10.1016/j.ijpx.2022.100133
- Roche A, Sanchez-Ballester NM, Aubert A, Rossi JC, Begu S, Soulairol I. Preliminary Study on the development of caffeine oral solid form 3D printed by semi-solid extrusion for application in neonates. AAPS PharmSciTech. 2023;24(5):122. doi: 10.1208/s12249-023-02582-z
- Koshovyi O, Vlasova I, Laur H, et al. Chemical composition and insulin-resistance activity of arginine-loaded american cranberry (Vaccinium macrocarpon Aiton, Ericaceae) Leaf Extracts. Pharmaceutics. 2023;15(11):2528. doi: 10.3390/pharmaceutics15112528
- Lyousoufi M, Lafeber I, Kweekel D, et al. Development and bioequivalence of 3D-printed medication at the point-of-care: bridging the gap toward personalized medicine. Clin Pharmacol Ther. 2023;113(5):1125-1131. doi: 10.1002/cpt.2870
- Chatzitaki AT, Eleftheriadis G, Tsongas K, et al. Fabrication of 3D-printed octreotide acetate-loaded oral solid dosage forms by means of semi-solid extrusion printing. Int J Pharm. 2023;632:122569. doi: 10.1016/j.ijpharm.2022.122569
- Teoh XY, Zhang B, Belton P, Chan SY, Qi S. The effects of solid particle containing inks on the printing quality of porous pharmaceutical structures fabricated by 3d semi-solid extrusion printing. Pharm Res. 2022;39(6):1267-1279. doi: 10.1007/s11095-022-03299-7
- de Oliveira TV, de Oliveira RS, dos Santos J, Funk NL, Petzhold CL, Beck RCR. Redispersible 3D printed nanomedicines: an original application of the semisolid extrusion technique. Int J Pharm. 2022;624:122029. doi: 10.1016/j.ijpharm.2022.122029
- Falcone G, Mazzei P, Piccolo A, et al. Advanced printable hydrogels from pre-crosslinked alginate as a new tool in semi solid extrusion 3D printing process. Carbohydr Polym. 2022;276:118746. doi: 10.1016/j.carbpol.2021.118746
- Lopez-Vidal L, Real JP, Real DA, et al. Nanocrystal-based 3D-printed tablets: semi-solid extrusion using melting solidification printing process (MESO-PP) for oral administration of poorly soluble drugs. Int J Pharm. 2022;611:121311. doi: 10.1016/j.ijpharm.2021.121311
- Zhang B, Belton P, Teoh XY, Gleadall A, Bibb R, Qi S. An investigation into the effects of ink formulations of semi-solid extrusion 3D printing on the performance of printed solid dosage forms. J Mater Chem B. 2023;12(1):131-144. doi: 10.1039/D3TB01868G
- Chen P, Liu J, Zhang K, et al. Preparation of clarithromycin floating core-shell systems (CSS) using multi-nozzle semi-solid extrusion-based 3D printing. Int J Pharm. 2021;605:120837. doi: 10.1016/j.ijpharm.2021.120837
- Falcone G, Saviano M, Aquino RP, Del Gaudio P, Russo P. Coaxial semi-solid extrusion and ionotropic alginate gelation: a successful duo for personalized floating formulations via 3D printing. Carbohydr Polym. 2021;260:117791. doi: 10.1016/j.carbpol.2021.117791
- Lafeber I, Tichem JM, Ouwerkerk N, et al. 3D printed furosemide and sildenafil tablets: Innovative production and quality control. Int J Pharm. 2021;603:120694. doi: 10.1016/j.ijpharm.2021.120694
- Yang HS, Kim DW. Fabrication of gastro-floating famotidine tablets: hydroxypropyl methylcellulose-based semisolid extrusion 3D printing. Pharmaceutics. 2023; 15(2):316. doi: 10.3390/pharmaceutics15020316
- Real JP, Real DA, Lopez-Vidal L, et al. 3D-printed gastroretentive tablets loaded with niclosamide nanocrystals by the melting solidification printing process (MESO-PP). Pharmaceutics. 2023;15(5):1387. doi: 10.3390/pharmaceutics15051387
- Falcone G, Real JP, Palma SD, et al. Floating ricobendazole delivery systems: a 3D printing method by co-extrusion of sodium alginate and calcium chloride. Int J Mol Sci. 2022;23(3):1280. doi: 10.3390/ijms23031280
- Ganatra P, Jyothish L, Mahankal V, Sawant T, Dandekar P, Jain R. Drug-loaded vegan gummies for personalized dosing of simethicone: a feasibility study of semi-solid extrusion-based 3D printing of pectin-based low-calorie drug gummies. Int J Pharm. 2024;651:123777. doi: 10.1016/j.ijpharm.2024.123777
- Rodríguez-Pombo L, de Castro-López MJ, Sánchez-Pintos P, et al. Paediatric clinical study of 3D printed personalised medicines for rare metabolic disorders. Int J Pharm. 2024;657:124140. doi: 10.1016/j.ijpharm.2024.124140
- Johannesson J, Pathare MM, Johansson M, Bergström CAS, Teleki A. Synergistic stabilization of emulsion gel by nanoparticles and surfactant enables 3D printing of lipid-rich solid oral dosage forms. J Colloid Interface Sci. 2023;650:1253-1264. doi: 10.1016/j.jcis.2023.07.055
- Rouaz-El Hajoui K, Herrada-Manchón H, Rodríguez- González D, et al. Pellets and gummies: seeking a 3D printed gastro-resistant omeprazole dosage for paediatric administration. Int J Pharm. 2023;643:123289. doi: 10.1016/j.ijpharm.2023.123289
- Chatzitaki AT, Mystiridou E, Bouropoulos N, Ritzoulis C, Karavasili C, Fatouros DG. Semi-solid extrusion 3D printing of starch-based soft dosage forms for the treatment of paediatric latent tuberculosis infection. J Pharm Pharmacol. 2022;74(10):1498-1506. doi: 10.1093/jpp/rgab121
- Han X, Kang D, Liu B, et al. Feasibility of developing hospital preparation by semisolid extrusion 3D printing: personalized amlodipine besylate chewable tablets. Pharm Dev Technol. 2022;27(2):164-174. doi: 10.1080/10837450.2022.2027965
- Zhu C, Tian Y, Zhang E, et al. Semisolid extrusion 3D printing of propranolol hydrochloride gummy chewable tablets: an innovative approach to prepare personalized medicine for pediatrics. AAPS PharmSciTech. 2022;23(5):166. doi: 10.1208/s12249-022-02304-x
- Wang F, Li L, Zhu X, Chen F, Han X. Development of pH-responsive polypills via semi-solid extrusion 3D printing. Bioengineering. 2023;10(4):402. doi: 10.3390/bioengineering10040402
- Korelc K, Larsen BS, Heintze AL, et al. Towards personalized drug delivery via semi-solid extrusion: exploring poly(vinyl alcohol-co-vinyl acetate) copolymers for hydrochlorothiazide-loaded films. Eur J Pharm Sci. 2024;192:106645. doi: 10.1016/j.ejps.2023.106645
- Yi S, Xie J, Chen L, Xu F. Preparation of loratadine orally disintegrating tablets by semi-solid extrusion 3D printing. Curr Drug Deliv. 2023;20(6):818-829. doi: 10.2174/1567201819666221011094913
- Koshovyi O, Heinämäki J, Raal A, et al. Pharmaceutical 3D-printing of nanoemulsified eucalypt extracts and their antimicrobial activity. Eur J Pharm Sci. 2023;187:106487. doi: 10.1016/j.ejps.2023.106487
- Schmidt LM, dos Santos J, de Oliveira TV, et al. Drug-loaded mesoporous silica on carboxymethyl cellulose hydrogel:Development of innovative 3D printed hydrophilic films. Int J Pharm. 2022;620:121750. doi: 10.1016/j.ijpharm.2022.121750
- Panraksa P, Rachtanapun P, Thipchai P, et al. Sustainable 3D printing of oral films with tunable characteristics using CMC-based inks from durian rind wastes. Eur J Pharm Biopharm. 2023;186:30-42. doi: 10.1016/j.ejpb.2023.03.006
- 110 Mathiyalagan R, Sjöholm E, Manandhar S, et al. Personalizing oral delivery of nanoformed piroxicam by semi-solid extrusion 3D printing. Eur J Pharm Sci. 2023; 188:106497. doi: 10.1016/j.ejps.2023.106497
- Johannesson J, Wu M, Johansson M, Bergström CAS. Quality attributes for printable emulsion gels and 3D-printed tablets: towards production of personalized dosage forms. Int J Pharm. 2023;646:123413. doi: 10.1016/j.ijpharm.2023.123413
- Suárez-González J, Magariños-Triviño M, Díaz-Torres E, Cáceres-Pérez AR, Santoveña-Estévez A, Fariña JB. Individualized orodispersible pediatric dosage forms obtained by molding and semi-solid extrusion by 3D printing: a comparative study for hydrochlorothiazide. J Drug Deliv Sci Technol. 2021;66:102884. doi: 10.1016/j.jddst.2021.102884
- Hu J, Fitaihi R, Abukhamees S, Abdelhakim HE. Formulation and characterisation of carbamazepine orodispersible 3D-printed mini-tablets for paediatric use. Pharmaceutics. 2023;15(1):250. doi: 10.3390/pharmaceutics15010250
- Elbl J, Veselý M, Blaháčková D, et al. Development of 3D printed multi-layered orodispersible films with porous structure applicable as a substrate for inkjet printing. Pharmaceutics. 2023;15(2):714. doi: 10.3390/pharmaceutics15020714
- Janigová N, Elbl J, Pavloková S, Gajdziok J. Effects of various drying times on the properties of 3D printed orodispersible films. Pharmaceutics. 2022;14(2):250. doi: 10.3390/pharmaceutics14020250
- Panraksa P, Zhang B, Rachtanapun P, Jantanasakulwong K, Qi S, Jantrawut P. ‘Tablet-in-Syringe’: a novel dosing mechanism for dysphagic patients containing fast-disintegrating tablets fabricated using semisolid extrusion 3D printing. Pharmaceutics. 2022;14(2):443. doi: 10.3390/pharmaceutics14020443
- Abdella S, Afinjuomo F, Song Y, Upton R, Garg S. 3D printed bilayer mucoadhesive buccal film of estradiol: Impact of design on film properties, release kinetics and predicted in vivo performance. Int J Pharm. 2022;628:122324. doi: 10.1016/j.ijpharm.2022.122324
- Takashima H, Tagami T, Kato S, Pae H, Ozeki T, Shibuya Y. Three-dimensional printing of an apigenin-loaded mucoadhesive film for tailored therapy to oral leukoplakia and the chemopreventive effect on a rat model of oral carcinogenesis. Pharmaceutics. 2022;14(8):1575. doi: 10.3390/pharmaceutics14081575
- Munoz-Perez E, Rubio-Retama J, Cussó L, Igartua M, Hernandez RM, Santos-Vizcaino E. 3D-printed Laponite/ Alginate hydrogel-based suppositories for versatile drug loading and release. Drug Deliv Transl Res. 2024. doi: 10.1007/s13346-023-01506-5
- Awad A, Hollis E, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed multi-drug-loaded suppositories for acute severe ulcerative colitis. Int J Pharm X. 2023; 5:100165. doi: 10.1016/j.ijpx.2023.100165
- Awad A, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed infliximab suppositories for rectal biologic delivery. Int J Pharm X. 2023;5:100176. doi: 10.1016/j.ijpx.2023.100176
- Utomo E, Domínguez-Robles J, Anjani QK, et al. Development of 3D-printed vaginal devices containing metronidazole for alternative bacterial vaginosis treatment. Int J Pharm X. 2022;5:100142. doi: 10.1016/j.ijpx.2022.100142
- Teworte S, Aleandri S, Weber JR, Carone M, Luciani P. Mucoadhesive 3D printed vaginal ovules to treat endometriosis and fibrotic uterine diseases. Eur J Pharm Sci. 2023;188:106501. doi: 10.1016/j.ejps.2023.106501
- Pérez Gutiérrez CL, Cottone F, Pagano C, et al. The Optimization of Pressure-Assisted Microsyringe (PAM) 3D printing parameters for the development of sustainable starch-based patches. Polymers. 2023;15(18):3792. doi: 10.3390/polym15183792
- Kyser AJ, Mahmoud MY, Herold SE, et al. Formulation and characterization of pressure-assisted microsyringe 3D-printed scaffolds for controlled intravaginal antibiotic release. Int J Pharm. 2023;641:123054. doi: 10.1016/j.ijpharm.2023.123054
- Archana M, Rubini D, Dharshini KP, et al. Development of an anti-infective urinary catheter composed of polyvinyl alcohol/sodium alginate/methylcellulose/polyethylene glycol by using a pressure-assisted 3D-printing technique. Int J Biol Macromol. 2023;249:126029. doi: 10.1016/j.ijbiomac.2023.126029
- Conceição J, Farto-Vaamonde X, Goyanes A, et al. Hydroxypropyl-β-cyclodextrin-based fast dissolving carbamazepine printlets prepared by semisolid extrusion 3D printing. Carbohydr Polym. 2019;221:55-62. doi: 10.1016/j.carbpol.2019.05.084
- Rahman J, Quodbach J. Versatility on demand – the case for semi-solid micro-extrusion in pharmaceutics. Adv Drug Deliv Rev. 2021;172:104-126. doi: 10.1016/j.addr.2021.02.013
- Elbadawi M, Gustaffson T, Gaisford S, Basit AW. 3D printing tablets: predicting printability and drug dissolution from rheological data. Int J Pharm. 2020; 590:119868. doi: 10.1016/j.ijpharm.2020.119868
- Suárez-González J, Díaz-Torres E, Monzón-Rodríguez CN, Santoveña-Estévez A, Fariña JB. Revolutionizing three-dimensional printing: enhancing quality assurance and point-of-care integration through instrumentation. Pharmaceutics. 2024;16(3):408. doi: 10.3390/pharmaceutics16030408
- Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643-650. doi: 10.1016/j.ijpharm.2015.07.067
- Haring AP, Tong Y, Halper J, Johnson BN. Programming of multicomponent temporal release profiles in 3D printed polypills via core–shell, multilayer, and gradient concentration profiles. Adv Healthc Mater. 2018;7(16):1800213. doi: 10.1002/adhm.201800213
- Borges AF, Silva C, Coelho JFJ, Simões S. Outlining critical quality attributes (CQAs) as guidance for the development of orodispersible films. Pharm Dev Technol. 2017;22(2):237-245. doi: 10.1080/10837450.2016.1199567
- El Aita I, Breitkreutz J, Quodbach J. On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing. Eur J Pharm Biopharm. 2019;134:29-36. doi: 10.1016/j.ejpb.2018.11.008
- Pluta P. Compounding overview: primary considerations for the workplace. Pharm Technol. 2024;48(2):18-22. Accessed April 10, 2024. https://www.pharmtech.com/view/compounding-overview-primary-considerations-for-the-workplace
- European Medicines Agency. ICH guideline Q10 on pharmaceutical quality system; 2007. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human_en.pdf
- European Medicines Agency. ICH guideline Q8 (R2) on pharmaceutical development; 2004. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-11.pdf
- Seoane-Viaño I, Xu X, Ong JJ, et al. A case study on decentralized manufacturing of 3D printed medicines. Int J Pharm X. 2023;5:100184. doi: 10.1016/j.ijpx.2023.100184
- Section 503A of the Federal Food, Drug, and Cosmetic Act. FDA; 2018. Accessed April 12, 2024. https://www.fda.gov/drugs/human-drug-compounding/ section-503a-federal-food-drug-and-cosmetic-act
- Beitler BG, Abraham PF, Glennon AR, et al. Interpretation of regulatory factors for 3D printing at hospitals and medical centers, or at the point of care. 3D Print Med. 2022;8(1):7. doi: 10.1186/s41205-022-00134-y
- Jørgensen AK, Ong JJ, Parhizkar M, Goyanes A, Basit AW. Advancing non-destructive analysis of 3D printed medicines. Trends Pharmacol Sci. 2023;44(6):379-393. doi: 10.1016/j.tips.2023.03.006
- Miller GF, Coffield E, Leroy Z, Wallin R. Prevalence and costs of five chronic conditions in children. J Sch Nurs Off Publ Natl Assoc Sch Nurses. 2016;32(5):357-364. doi: 10.1177/1059840516641190
- Bg PK, Mehrotra S, Marques SM, Kumar L, Verma R. 3D printing in personalized medicines: a focus on applications of the technology. Mater Today Commun. 2023;35:105875. doi: 10.1016/j.mtcomm.2023.105875
- ClinicalTrials.gov. Metronomic Chemotherapy in Wilms Tumor (MetroWilms-1906) (MetroWilms); 2022. Accessed April 30, 2024. https://classic.clinicaltrials.gov/ct2/show/NCT05384821
- Binson G, Sanchez C, Waton K, et al. Accuracy of dose administered to children using off-labelled or unlicensed oral dosage forms. Pharmaceutics. 2021;13(7):1014. doi: 10.3390/pharmaceutics13071014
- Curti C, Brandin T, Kabac T, et al. Contrôle qualité des préparations magistrales en officine: contraintes réglementaires et pistes d’amélioration. Pharm Hosp Clin. 2020;55(3):268-274. doi: 10.1016/j.phclin.2020.04.009
- Zheng Z, Lv J, Yang W, et al. Preparation and application of subdivided tablets using 3D printing for precise hospital dispensing. Eur J Pharm Sci. 2020;149:105293. doi: 10.1016/j.ejps.2020.105293
- Cui M, Pan H, Fang D, Sun H, Qiao S, Pan W. Exploration and evaluation of dynamic dose-control platform for pediatric medicine based on Drop-on-Powder 3D printing technology. Int J Pharm. 2021;596:120201. doi: 10.1016/j.ijpharm.2021.120201
- Park BJ, Choi HJ, Moon SJ, et al. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Investig. 2019;49:575-585. doi: 10.1007/s40005-018-00414-y
- de Groot MCH, van Puijenbroek EP. Clindamycin and taste disorders. Br J Clin Pharmacol. 2007;64(4):542-545. doi: 10.1111/j.1365-2125.2007.02908.x
- Shinotsuka H, Mizutani N, Aikawa S, Kimura G. Palatability evaluation of sulfamethoxazole/trimethoprim wit sweetener using the two-bottle choice test. Chem Pharm Bull (Tokyo). 2023;71(12):906-908. doi: 10.1248/cpb.c23-00428
- Protopapa C, Siamidi A, Kolipaka SS, Junqueira LA, Douroumis D, Vlachou M. In vitro profile of hydrocortisone release from three-dimensionally printed paediatric mini-tablets. Pharmaceutics. 2024;16(3):385. doi: 10.3390/pharmaceutics16030385
- Herrada-Manchón H, Rodríguez-González D, Alejandro Fernández M, et al. 3D printed gummies: personalized drug dosage in a safe and appealing way. Int J Pharm. 2020;587:119687. doi: 10.1016/j.ijpharm.2020.119687
- Godoi FC, Prakash S, Bhandari BR. 3d printing technologies applied for food design: Status and prospects. J Food Eng. 2016;179:44-54. doi: 10.1016/j.jfoodeng.2016.01.025
- Schmidt CM, Knief A, Deuster D, Matulat P, Zehnhoff- Dinnesen A. Melatonin is a useful alternative to sedation in children undergoing brainstem audiometry with an age dependent success rate - a field report of 250 investigations. Neuropediatrics. 2007;38:2-4. doi: 10.1055/s-2007-981467
- Seoane-Viaño I, Ong JJ, Luzardo-Álvarez A, et al. 3D printed tacrolimus suppositories for the treatment of ulcerative colitis. Asian J Pharm Sci. 2021;16(1):110-119. doi: 10.1016/j.ajps.2020.06.003
- Chakka LRJ, Chede S. 3D printing of pharmaceuticals for disease treatment. Front Med Technol. 2023;4: 1040052. doi: 10.3389/fmedt.2022.1040052
- Heitman T, Day AJ, Bassani AS. Pediatric compounding pharmacy: taking on the responsibility of providing quality customized prescriptions. Children. 2019;6(5):66. doi: 10.3390/children6050066
- Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11-17. doi: 10.1016/j.ejps.2014.11.009