AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3898
RESEARCH ARTICLE

Bioprinting with superelastic and fatigue-resistant bioinks for large-sized tissue delivery

Ruoyu Chen1,2 Yijun Su1 Dazhi Chen1 Yinying Lu1 Jinghua Zhao3 Yali Zhang3 Quan Yuan3 Mingen Xu4* Rui Yao1,2*
Show Less
1 Department of Mechanical Engineering, Tsinghua University, Beijing, China
2 Institute of Zoology, Chinese Academy of Sciences, Beijing, China
3 State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, Fujian, China
4 Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang
Submitted: 8 June 2024 | Accepted: 11 July 2024 | Published: 20 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

3D bioprinting technology is advancing rapidly to construct multi-scale preformed architectures that satisfy the demands of tissue regeneration. However, challenges remain in accurately delivering large-sized preformed architectures to the defect sites without being damaged by the mechanical environment in vivo. In this study, we proposed a versatile bioprinting strategy to fabricate large-sized architectures with remarkable injection capacity for geometry-independent minimally invasive tissue delivery. We design a novel hydrogel by mixing gelatin methacryloyl with poly(ethylene glycol) diacrylate (PEGDA) and photocrosslinking the mixture under a white light source. The hydrogel forms a reinforced crosslinking network, exhibiting superelasticity and fatigue resistance. We infer that the flexible chains of high-molecular-weight PEGDA and interconnected macropores of hydrogel contribute to the reinforcement mechanisms. With a decoupled bioprinting strategy, the bioink can be 3D printed into large-sized architectures with different geometries and tunable Poisson’s ratio. The printing architectures displayed excellent deformation and shape recovery capacity by compressing to less than 1% of the original size and fully recovering after injection. The injection capacity is geometry-independent, indicating the intrinsic properties of the hydrogel and allowing higher freedom for the structural design and geometry size of the architectures. The bioprinting process is compatible with genome-edited hepatic cells with high cell-bioprinting suitability, demonstrating high cell viability, a minimally altered transcriptomic profile after bioprinting, and a biocompatible microenvironment that supports cell survival and hepatic function maintenance. The cell-laden architectures express uncompromised injection capacity with unaffected cell viability after injection. This study presents a generalizable strategy for preparing and bioprinting with superelastic and fatigue-resistant bioinks into customized cell-laden architectures to facilitate minimally invasive large-sized tissue delivery.

Keywords
Tissue delivery
Bioprinting
Superelasticity
Fatigue resistance
Minimally invasive
Hepatic cells
Funding
The authors are sincerely grateful for the funding from the National Key Research and Development Program of China (2022YFA1104600 and 2018YFA0109000).
Conflict of interest
Mingen Xu is a shareholder of Regenovo Biotechnology Co. Ltd, China. The other authors declare no competing financial interest.
References
  1. Zhang J, Eyisoylu H, Qin XH, Rubert M, Muller R. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomater. 2021;121:637-652. doi: 10.1016/j.actbio.2020.12.026
  2. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4(4):370-380. doi: 10.1038/s41551-019-0471-7
  3. Chen A, Wang W, Mao Z, et al. Multimaterial 3D and 4D bioprinting of heterogenous constructs for tissue engineering. Adv Mater. 2023:e2307686. doi: 10.1002/adma.202307686
  4. Eggermont LJ, Rogers ZJ, Colombani T, Memic A, Bencherif SA. Injectable cryogels for biomedical applications. Trends Biotechnol. 2020;38(4):418-431. doi: 10.1016/j.tibtech.2019.09.008
  5. Zarrintaj P, Khodadadi YM, Youssefi AM, et al. Injectable cell-laden hydrogels for tissue engineering: recent advances and future opportunities. Tissue Eng Part A. 2021; 27(11-12):821-843. doi: 10.1089/ten.TEA.2020.0341
  6. Chen R, Li L, Feng L, et al. Biomaterial-assisted scalable cell production for cell therapy. Biomaterials. 2020;230:119627. doi: 10.1016/j.biomaterials.2019.119627
  7. Huang X, Ma Y, Li Y, Han F, Lin W. Targeted drug delivery systems for kidney diseases. Front Bioeng Biotechnol. 2021;9:683247. doi: 10.3389/fbioe.2021.683247
  8. Ercan H, Durkut S, Koc-Demir A, Elcin AE, Elcin YM. Clinical applications of injectable biomaterials. Adv Exp Med Biol. 2018;1077:163-182. doi: 10.1007/978-981-13-0947-2_10
  9. Yao R, Zhang R, Lin F, Luan J. Biomimetic injectable HUVEC-adipocytes/collagen/alginate microsphere co-cultures for adipose tissue engineering. Biotechnol Bioeng. 2013;110(5):1430-1443. doi: 10.1002/bit.24784
  10. Yao R, Alkhawtani A, Chen R, Luan J, Xu M. Rapid and efficient in vivo angiogenesis directed by electro-assisted bioprinting of alginate/collagen microspheres with human umbilical vein endothelial cell coating layer. Int J Bioprint. 2019;5(2.1):194. doi: 10.18063/ijb.v5i2.1.194
  11. Chen TC, Wong CW, Hsu SH. Three-dimensional printing of chitosan cryogel as injectable and shape recoverable scaffolds. Carbohydr Polym. 2022;285:119228. doi: 10.1016/j.carbpol.2022.119228
  12. Beduer A, Piacentini N, Aeberli L, et al. Additive manufacturing of hierarchical injectable scaffolds for tissue engineering. Acta Biomater. 2018;76:71-79. doi: 10.1016/j.actbio.2018.05.056
  13. Ying G, Jiang N, Parra C, et al. Bioprinted injectable hierarchically porous gelatin methacryloyl hydrogel constructs with shape-memory properties. Adv Funct Mater. 2020;30(46):2003740. doi: 10.1002/adfm.202003740
  14. Porto ST, Cejas CM, Cunha RL. Microfluidics as a tool to assess and induce emulsion destabilization. Soft Matter. 2022;18(4):698-710. doi: 10.1039/d1sm01588e
  15. Tilton M, Camilleri ET, Astudillo PM, et al. Visible light-induced 3D bioprinted injectable scaffold for minimally invasive tissue regeneration. Biomater Adv. 2023;153:213539. doi: 10.1016/j.bioadv.2023.213539
  16. Jian X, Wang H, Jian X, et al. A flexible adhesive hydrogel dressing of embedded structure with pro-angiogenesis activity for wound repair at moving parts inspired by commercial adhesive bandages. Mater Today Adv. 2024;21:100452. doi: 10.1016/j.mtadv.2023.100452
  17. Lewis JB, Wataha JC, Messer RL, Caughman GB, Yamamoto T, Hsu SD. Blue light differentially alters cellular redox properties. J Biomed Mater Res B Appl Biomater. 2005;72(2):223-229. doi: 10.1002/jbm.b.30126
  18. Zhang MD, Huang X, Li Z, et al. White-light-induced synthesis of injectable alginate-based composite hydrogels for rapid hemostasis. Mil Med Res. 2023;10(1):47. doi: 10.1186/s40779-023-00483-7
  19. Feng L, Liang S, Zhou Y, et al. Three-dimensional printing of hydrogel scaffolds with hierarchical structure for scalable stem cell culture. Acs Biomater Sci Eng. 2020;6(5):2995-3004. doi: 10.1021/acsbiomaterials.9b01825
  20. Kumar A, Lee Y, Kim D, et al. Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. Int J Biol Macromol. 2017;95:962-973. doi: 10.1016/j.ijbiomac.2016.10.085
  21. Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther. 2021;6(1):122. doi: 10.1038/s41392-021-00512-8
  22. Ghavaminejad A, Ashammakhi N, Wu XY, Khademhosseini A. Crosslinking strategies for 3D bioprinting of polymeric hydrogels. Small. 2020;16(35):e2002931. doi: 10.1002/smll.202002931
  23. Yue K, Trujillo-De SG, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271. doi: 10.1016/j.biomaterials.2015.08.045
  24. Sharifi S, Sharifi H, Akbari A, Chodosh J. Systematic optimization of visible light-induced crosslinking conditions of gelatin methacryloyl (GelMA). Sci Rep. 2021; 11(1):23276. doi: 10.1038/s41598-021-02830-x
  25. Bahney CS, Lujan TJ, Hsu CW, Bottlang M, West JL, Johnstone B. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur Cell Mater. 2011;22:43-55. doi: 10.22203/ecm.v022a04
  26. Bryant SJ, Nuttelman CR, Anseth KS. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed. 2000;11(5):439-457. doi: 10.1163/156856200743805
  27. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater. 2009;21(32-33):3307-3329. doi: 10.1002/adma.200802106
  28. Wang Z, Kumar H, Tian Z, et al. Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Appl Mater Interfaces. 2018;10(32):26859-26869. doi: 10.1021/acsami.8b06607
  29. Wang Y, Ma M, Wang J, et al. Development of a photo-crosslinking, biodegradable GelMA/PEGDA hydrogel for guided bone regeneration materials. Materials (Basel). 2018;11(8):1345. doi: 10.3390/ma11081345
  30. Nguyen AK, Goering PL, Reipa V, Narayan RJ. Toxicity and photosensitizing assessment of gelatin methacryloyl-based hydrogels photoinitiated with lithium phenyl- 2,4,6-trimethylbenzoylphosphinate in human primary renal proximal tubule epithelial cells. Biointerphases. 2019;14(2):021007. doi: 10.1116/1.5095886
  31. Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 2019;364(6439):458-464. doi: 10.1126/science.aav9750
  32. He B, Wang J, Xie M, et al. 3D printed biomimetic epithelium/ stroma bilayer hydrogel implant for corneal regeneration. Bioact Mater. 2022;17:234-247. doi: 10.1016/j.bioactmat.2022.01.034
  33. Li W, Hu X, Liu H, et al. 3D light-curing printing to construct versatile octopus-bionic patches. J Mater Chem B. 2023;11(22):5010-5020. doi: 10.1039/d3tb00590a
  34. Qiu L, Liu JZ, Chang SLY, Wu Y, Li D. Biomimetic superelastic graphene-based cellular monoliths. Nat Commun. 2012;3:1241. doi: 10.1038/ncomms2251
  35. Zhao Y, Li Y, Mao S, Sun W, Yao R. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication. 2015;7(4):45002. doi: 10.1088/1758-5090/7/4/045002
  36. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):35020. doi: 10.1088/1758-5090/8/3/035020
  37. Gripon P, Rumin S, Urban S, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci USA. 2002;99(24):15655–15660. doi: 10.1073/pnas.232137699
  38. Roulot D, Czernichow S, Le Clesiau H, Costes JL, Vergnaud AC, Beaugrand M. Liver stiffness values in apparently healthy subjects: influence of gender and metabolic syndrome. J Hepatol. 2008;48(4):606-613. doi: 10.1016/j.jhep.2007.11.020
  39. Tringides CM, Vachicouras N, de Lazaro I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat Nanotechnol. 2021;16(9):1019-1029. doi: 10.1038/s41565-021-00926-z
  40. Han D, Dara L, Win S, et al. Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci. 2013;34(4):243-253. doi: 10.1016/j.tips.2013.01.009
  41. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018;24(7):927-930. doi: 10.1038/s41591-018-0049-z
  42. Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Nanotechnology. 2018;29(18):185101. doi: 10.1088/1361-6528/aaafa1
  43. Duan J, Cao Y, Shen Z, et al. 3D bioprinted GelMA/ PEGDA hybrid scaffold for establishing an in vitro model of melanoma. J Microbiol Biotechn. 2022;32(4):531-540. doi: 10.4014/jmb.2111.11003
  44. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication. 2015;7(4):45009. doi: 10.1088/1758-5090/7/4/045009

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing