Characterization of biological and mechanical properties of 3D-bioprinted osteochondral plugs
Three-dimensional (3D) bioprinting offers significant potential for the repair of articular cartilage by engineering functional osteochondral tissue. However, progress has been hindered by a lack of printable bioinks that promote the development of bone and chondral tissue while also maintaining sufficient cytocompatibility and mechanical strength. Herein, we designed a biphasic osteochondral plug with distinct chondral and bone regions and developed suitable bioinks for each tissue using photorheology and compression testing. The chondral region consisted of human bone marrow-derived mesenchymal stem cells (hbMSCs) encapsulated in a chondral bioink composed of methacrylated hyaluronic acid and high molecular weight hyaluronic acid. The bone region was 3D bioprinted from an hbMSC-laden methacrylated gelatin (GelMA) bioink and a biodegradable thermoplastic and ceramic lattice that provided mechanical strength. The viability and functionality of hbMSC encapsulated in the bioinks were confirmed through live/dead assays, histology, biochemical assays, and fluorescence microscopy. Over 56 days of culture in a chondrogenic medium, hbMSCs encapsulated in chondral bioink deposited cartilage-like extracellular matrix components, such as type II collagen and glycosaminoglycans. Similarly, cells encapsulated in the bone bioink and cultured in osteogenic medium deposited hydroxyapatite, a key component of bone. These findings provide promising initial results for using 3D-bioprinted plugs to repair osteochondral defects in articular cartilage.
- Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461-468. doi: 10.1177/1941738109350438
- Shepherd DE, Seedhom BB. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis. 1999;58(1):27-34. doi: 10.1136/ard.58.1.27
- Primorac D, Molnar V, Rod E, et al. Knee osteoarthritis: a review of pathogenesis and state-of-the-art non-operative therapeutic considerations. Genes (Basel). 2020;11(8):854. doi: 10.3390/genes11080854
- Athanasiou KA, Darling EM, Hu JC, DuRaine GD, Reddi AH. Articular Cartilage. 2nd ed. Boca Raton: CRC Press; 2017. doi: 10.1201/9781315194158
- Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465-480.
- Hvid I. Mechanical strength of trabecular bone at the knee. Dan Med Bull. 1988;35(4):345-365.
- Martin JA, Buckwalter JA. Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J. 2001;21:1-7.
- Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr Cartil. 2009;17:971-979. doi: 10.1016/j.joca.2009.03.002
- Spector TD, MacGregor AJ. Risk factors for osteoarthritis genetics. Osteoarthritis Cartilage. 2004;12(Suppl):S39-S44. doi: 10.1016/j.joca.2003.09.005
- Martin JA, Coleman M, Buckwalter JA. Articular cartilage injury. In: Lanza R, Langer R, Vacanti JP, Atala A, eds. Princ. Tissue Eng. 5th ed. Academic Press; 2020:967-977. doi: 10.1016/b978-0-12-818422-6.00054-x
- Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006;20(10):739-744. doi: 10.1097/01.bot.0000246468.80635.ef.
- Thomas AC, Hubbard-Turner T, Wikstrom EA, Palmieri- Smith RM. Epidemiology of posttraumatic osteoarthritis. J Athl Train. 2017;52(6):491-496. doi: 10.4085/1062-6050-51.5.08
- Roos H, Adalberth T, Dahlberg L, Lohmander LS. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthritis Cartilage. 1995;3(4):261-267. doi: 10.1016/s1063-4584(05)80017-2
- Cameron KL, Hsiao MS, Owens BD, Burks R, Svoboda SJ. Incidence of physician-diagnosed osteoarthritis among active duty United States military service members. Arthritis Rheum. 2011;63(10):2974-2982. doi: 10.1002/art.30498
- Murphy LB, Helmick CG, Allen KD, et al. Arthritis among veterans. Morb Mortal Wkly Rep Arthritis. 2014;63: 999-1003. http://www.cdc.gov/brfss/annual_data/annual_data.htm. † A d d i t i o n a l i n f o r ma t i o n a v a i l a b l e a t http://www.cdc.gov/ nchs/data/statnt/statnt20.pdf.
- Tveit M, Rosengren BE, Nilsson JÅ, Karlsson MK. Former male elite athletes have a higher prevalence of osteoarthritis and arthroplasty in the hip and knee than expected. Am J Sports Med. 2012;40(3):527-533. doi: 10.1177/0363546511429278
- Rivera JC, Wenke JC, Buckwalter JA, Ficke JR, Johnson AE. Posttraumatic osteoarthritis caused by battlefield injuries: the primary source of disability in warriors. J Am Acad Orthop Surg. 2012;20(Suppl 1):S64-S69. doi: 10.5435/JAAOS-20-08-S64
- Patzkowski JC, Rivera JC, Ficke JR, Wenke JC. The changing face of disability in the US Army: the operation enduring freedom and operation Iraqi freedom effect. J Am Acad Orthop Surg. 2012;20(Suppl 1):S23-S30. doi: 10.5435/JAAOS-20-08-S23
- Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther. 1998;28(4):192-202. doi: 10.2519/jospt.1998.28.4.192
- Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75(4):532-553. doi: 10.2106/00004623-199304000-00009
- Athanasiou KA, Darling EM, Hu JC. Articular Cartilage Tissue Engineering; Cham, Switzerland: Springer; 2009. doi: 10.2200/s00212ed1v01y200910tis003
- Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053-2063. doi: 10.1177/0363546508328414
- Kreuz PC, Steinwachs MR, Erggelet C, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006;14(11):1119-1125. doi: 10.1016/j.joca.2006.05.003
- Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):670-706. doi: 10.1007/s00167-019-05359-9
- Hangody L, Vásárhelyi G, Hangody LR, et al. Autologous osteochondral grafting--technique and long-term results. Injury. 2008;39(Suppl 1):S32-S39. doi: 10.1016/j.injury.2008.01.041
- Gomoll AH, Filardo G, de Girolamo L, et al. Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc. 2012;20(3):450-466. doi: 10.1007/s00167-011-1780-x
- Davies RL, Kuiper NJ. Regenerative medicine: a review of the evolution of autologous chondrocyte implantation (ACI) therapy. Bioengineering (Basel). 2019;6(1):22. doi: 10.3390/bioengineering6010022
- Boushell MK, Hung CT, Hunziker EB, Strauss EJ, Lu HH. Current strategies for integrative cartilage repair. Connect Tissue Res. 2017;58(5):393-406. doi: 10.1080/03008207.2016.1231180
- Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338(6109): 917-921. doi: 10.1126/science.1222454
- Robert H. Chondral repair of the knee joint using mosaicplasty. Orthop Traumatol Surg Res. 2011;97(4): 418-429. doi: 10.1016/j.otsr.2011.04.001
- Torrie AM, Kesler WW, Elkin J, Gallo RA. Osteochondral allograft. Curr Rev Musculoskelet Med. 2015;8(4):413-422. doi: 10.1007/s12178-015-9298-3
- Giannini S, Buda R, Ruffilli A, et al. Failures in bipolar fresh osteochondral allograft for the treatment of end-stage knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2015;23(7):2081-2089. doi: 10.1007/s00167-014-2961-1
- Angele P, Niemeyer P, Steinwachs M, et al. Chondral and osteochondral operative treatment in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2016;24(6): 1743-1752. doi: 10.1007/s00167-016-4047-8
- Görtz S, Bugbee WD. Allografts in articular cartilage repair. Instr Course Lect. 2007;56:469-480.
- Chartrain NA, Williams CB, Whittington AR. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater. 2018;74:90-111. doi: 10.1016/j.actbio.2018.05.010
- Gibson I, Rosen D, Stucker B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. New York: Springer; 2015. doi: 10.1007/978-1-4939-2113-3
- Murphy S, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–785. doi: 10.1038/nbt.2958
- Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D bioprinting for cartilage and osteochondral tissue engineering. Adv Healthc Mater. 2017;6(22):1700298. doi: 10.1002/adhm.201700298
- Kang HW, Lee S, Ko I, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34:312-319. doi: 10.1038/nbt.3413
- Galarraga JH, Kwon MY, Burdick JA. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Sci Rep. 2019;9(1):19987. doi: 10.1038/s41598-019-56117-3
- Critchley S, Sheehy EJ, Cunniffe G, et al. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater. 2020;113:130-143. doi: 10.1016/j.actbio.2020.05.040
- Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;83:195-201. doi: 10.1016/j.msec.2017.09.002
- Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng. 2016;2(10):1800-1805. doi: 10.1021/acsbiomaterials.6b00288
- Allen NB, Abar B, Johnson L, Burbano J, Danilkowicz RM, Adams SB. 3D-bioprinted GelMA-gelatin-hydroxyapatite osteoblast-laden composite hydrogels for bone tissue engineering. Bioprinting. 2022;26:e00196. doi: 10.1016/j.bprint.2022.e00196
- Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication. 2014;6(2):024103. doi: 10.1088/1758-5082/6/2/024103
- Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. doi: 10.1038/ncomms4935
- Husen M, Custers RJH, Hevesi M, Krych AJ, Saris DBF. Size of cartilage defects and the need for repair: a systematic review. J Cartil Jt Preserv. 2022;2(3):100049. doi: 10.1016/j.jcjp.2022.100049
- Kabir W, Di Bella C, Choong PF, O’Connell CD. Assessment of native human articular cartilage: a biomechanical protocol. Cartilage. 202;13(2):427S-37S. doi: 10.1177/1947603520973240
- Chartrain NA, Gilchrist KH, Ho VB, Klarmann GJ. 3D bioprinting for the repair of articular cartilage and osteochondral tissue. Bioprinting. 2022;28:e00239. doi: 10.1016/j.bprint.2022.e00239
- Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F. Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol. 2000;35(10): 581-588. doi: 10.1097/00004424-200010000-00004
- Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23:4. doi: 10.1186/s40824-018-0149-3
- Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech. 1990;23(11):1103-1113. doi: 10.1016/0021-9290(90)90003-l
- Goldstein SA. The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech. 1987;20(11-12):1055-1061. doi: 10.1016/0021-9290(87)90023-6
- Goldring MB. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis. 2012;4(4):269-285. doi: 10.1177/1759720X12448454
- Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9(7): 7081-7092. doi: 10.1016/j.actbio.2013.03.005
- Erickson IE, Huang AH, Sengupta S, Kestle S, Burdick JA, Mauck RL. Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthritis Cartilage. 2009;17(12):1639-1648. doi: 10.1016/j.joca.2009.07.003
- Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials. 2009;30(35):6702-6707. doi: 10.1016/j.biomaterials.2009.08.055
- Nguyen AK, Goering PL, Reipa V, Narayan RJ. Toxicity and photosensitizing assessment of gelatin methacryloyl-based hydrogels photoinitiated with lithium phenyl- 2,4,6-trimethylbenzoylphosphinate in human primary renal proximal tubule epithelial cells. Biointerphases. 2019;14(2):021007. doi: 10.1116/1.5095886
- Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication. 2016;8(4):045002. doi: 10.1088/1758-5090/8/4/045002
- Anderson DE, Johnstone B. Dynamic mechanical compression of chondrocytes for tissue engineering: a critical review. Front Bioeng Biotechnol. 2017;5:76. doi: 10.3389/fbioe.2017.00076
- Tsanaktsidou E, Kammona O, Labude N, et al. Biomimetic cell-laden MeHA hydrogels for the regeneration of cartilage tissue. Polymers (Basel). 2020;12(7):1598. doi: 10.3390/polym12071598
- Shim JH, Jang KM, Hahn SK, et al. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication. 2016;8(1):014102. doi: 10.1088/1758-5090/8/1/014102
- Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev. 2010;16(1):105-115. doi: 10.1089/ten.TEB.2009.0452
- Moran CJ, Ramesh A, Brama PA, O’Byrne JM, O’Brien FJ, Levingstone TJ. The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthop. 2016;3(1):1. doi: 10.1186/s40634-015-0037-x
- Medina G, Görtz S. Osteochondral techniques: where are we now? J Cartil Jt Preserv. 2023;3(1):100105. doi: 10.1016/j.jcjp.2023.100105
- Andrade R, Vasta S, Pereira R, et al. Knee donor-site morbidity after mosaicplasty - a systematic review. J Exp Orthop. 2016;3(1):31. doi: 10.1186/s40634-016-0066-0
- Feczkó P, Hangody L, Varga J, et al. Experimental results of donor site filling for autologous osteochondral mosaicplasty. Arthroscopy. 2003;19(7):755-761. doi: 10.1016/s0749-8063(03)00402-x