AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3033
RESEARCH ARTICLE

3D bioprinting of colon organoids in ultrashort self-assembling and decorated peptide matrices

Jiayi Xu1,2 Rosario Pérez-Pedroza1,2 Manola Moretti1,2,3 Dana Alhattab1,2 Alexander Valle-Pérez1,2 Alexander Valle-Pérez1,2 Jezabel García-Parra1,2 Antonio Cárdenas-Calvario1,2 Diana Eveline Sanchez-Amador1,2 Charlotte A. E. Hauser1,2,3*
Show Less
1 Laboratory for Nanomedicine, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
2 Computational Bioscience Research Center, BESE, KAUST, Thuwal, Saudi Arabia
3 Red Sea Research Center, BESE, KAUST, Thuwal, Saudi Arabia
IJB 2024, 10(5), 3033 https://doi.org/10.36922/ijb.3033
Submitted: 27 February 2024 | Accepted: 11 May 2024 | Published: 16 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Research into bioinks for organoid culture has the potential to revolutionize our understanding of organ development, function, and disease. Organoids are three-dimensional (3D) cultures of source tissue grown in a support matrix and specialized media. However, the use of animal-derived matrices has limited the potential of organoids in research and therapy. To overcome this limitation, researchers have turned to biofunctional synthetic hydrogel networks to reproduce parameters that govern organoid formation. This study aims to investigate RGD- and YIGSR-decorated ultrashort self-assembling peptides as a modular synthetic hydrogel for organoid culture and 3D bioprinting. Using these motifs, we derived fibronectin (FIB)- and laminin (LAM)-decorated peptides, which self-assemble into nanofibrous hydrogels. We assessed the physicochemical properties of various peptide mixtures. Our findings confirmed the biocompatibility of these formulations and their organoid-forming potential. Subsequently, we identified the most effective scaffolds for organoid formation. We assessed the polarity, differentiation, and functionality of organoids cultured within these scaffolds. We also characterized the properties of a bioprinted construct. This study identifies two formulations, FIB (low) and LAM (high), that favor cell polarization within the cultured organoids as early as day 4. Moreover, these scaffolds were able to induce a gene expression profile resembling the organoids cultured in Matrigel. These peptides were also demonstrated to be suitable for bioprinting at various concentrations without compromising cell viability. Overall, this study demonstrates the promise of modular RGD- and YIGSR-decorated ultrashort self-assembling peptides as effective synthetic hydrogels for organoid culture and 3D bioprinting. These biofunctional peptides provide scaffold effectiveness for advanced organoid manipulation.

Keywords
3D bioprinting
Colorectal organoid
Scaffold
Biofunctional self-assembling peptides
Laminin
Fibronectin
Funding
This work was financially supported by KAUST: Seed Fund Grant and Innovation Fund by KAUST’s Innovation and Economic Development; and funding from the Computational Bioscience Research Center, KAUST.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Alsanea N, Abduljabbar AS, Alhomoud S, et al. Colorectal cancer in Saudi Arabia: incidence, survival, demographics and implications for national policies. Ann Saudi Med. 2015;35(3):196-202. doi: 10.5144/0256-4947.2015.196
  2. Alsanea N, Almadi MA, Abduljabbar AS, et al. National Guidelines for Colorectal Cancer Screening in Saudi Arabia with strength of recommendations and quality of evidence. Ann Saudi Med. 2015;35(3):189-195. doi: 10.5144/0256-4947.2015.189
  3. Favoriti P, Carbone G, Greco M, Pirozzi F, Pirozzi RE, Corcione F. Worldwide burden of colorectal cancer: a review. Updates Surg. 2016;68(1):7-11. doi: 10.1007/s13304-016-0359-y
  4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492
  5. Vu JV, Sommovilla J. The molecular genetics of colorectal cancer, hereditary colorectal cancer syndromes, and early-onset colorectal cancer. Digest Dis Interv. 2023;07(01): 058-070. doi: 10.1055/s-0042-1757325
  6. Kim SE, Paik HY, Yoon H, Lee JE, Kim N, Sung MK. Sex-and gender-specific disparities in colorectal cancer risk. World J Gastroenterol. 2015;21(17):5167-5175. doi: 10.3748/wjg.v21.i17.5167
  7. Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350-1356. doi: 10.1038/nm.3967
  8. Sepulveda AR, Hamilton SR, Allegra CJ, et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology. J Clin Oncol. 2017;35(13):1453-1486. doi: 10.1200/JCO.2016.71.9807
  9. Lipkin M, Reddy B, Newmark H, Lamprecht SA. Dietary factors in human colorectal cancer. Annu Rev Nutr. 1999;19:545-586. doi: 10.1146/annurev.nutr.19.1.545
  10. Labianca R, Beretta GD, Kildani B, et al. Colon cancer. Crit Rev Oncol Hematol. 2010;74(2):106-133. doi: 10.1016/j.critrevonc.2010.01.010
  11. Linnekamp JF, Hooff SRV, Prasetyanti PR, et al. Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models. Cell Death Differ. 2018;25(3): 616-633. doi: 10.1038/s41418-017-0011-5
  12. Sveen A, Bruun J, Eide PW, et al. Colorectal cancer consensus molecular subtypes translated to preclinical models uncover potentially targetable cancer cell dependencies. Clin Cancer Res. 2018;24(4):794-806. doi: 10.1158/1078-0432.CCR-17-1234
  13. Idris M, Alves MM, Hofstra RMW, Mahe MM, Melotte V. Intestinal multicellular organoids to study colorectal cancer. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188586. doi: 10.1016/j.bbcan.2021.188586
  14. Varga OE, Hansen AK, Sandøe P, Olsson IA. Validating animal models for preclinical research: a scientific and ethical discussion. Altern Lab Anim. 2010;38(3):245-248. doi: 10.1177/026119291003800309
  15. Date S, Sato T. Mini-gut organoids: reconstitution of the stem cell niche. Annu Rev Cell Dev Biol. 2015;31:269-289. doi: 10.1146/annurev-cellbio-100814-125218
  16. Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762-1772. doi: 10.1053/j.gastro.2011.07.050
  17. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18:407-418. doi: 10.1038/s41568-018-0007-6
  18. Maharjan S, Ma C, Singh B, et al. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev. 2024;208:115237. doi: 10.1016/j.addr.2024.115237
  19. De Stefano P, Briatico-Vangosa F, Bianchi E, et al. Bioprinting of matrigel scaffolds for cancer research. Polymers (Basel). 2021;13(12):2026. doi: 10.3390/polym13122026
  20. Lotz O, McKenzie DR, Bilek MM, Akhavan B. Biofunctionalized 3D printed structures for biomedical applications: a critical review of recent advances and future prospects. Prog Mater Sci. 2023;137:101124. doi: 10.1016/j.pmatsci.2023.101124
  21. GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. Crosslinking strategies for 3D bioprinting of polymeric hydrogels. Small. 2020;16(35):2002931. doi: 10.1002/smll.202002931
  22. Hauser CA, Deng R, Mishra A, et al. Natural tri- to hexapeptides self-assemble in water to amyloid beta-type fiber aggregates by unexpected alpha-helical intermediate structures. Proc Natl Acad Sci U S A. 2011;108(4):1361-1366. doi: 10.1073/pnas.1014796108
  23. Loo Y, Zhang S, Hauser CAE. From short peptides to nanofibers to macromolecular assemblies in biomedicine. Biotechnol Adv. 2012;30:593-603. doi: 10.1016/j.biotechadv.2011.10.004
  24. Liu Y, Zhang L, Wei W. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release. Int J Nanomedicine. 2017;12:659-670. doi: 10.2147/IJN.S124523
  25. Abdelrahman S, Alsanie WF, Khan ZN, et al. A Parkinson’s disease model composed of 3D bioprinted dopaminergic neurons within a biomimetic peptide scaffold. Biofabrication. 2022;14(4):044103. doi: 10.1088/1758-5090/ac7eec
  26. Abdelrahman S, Ge R, Susapto HH, et al. The impact of mechanical cues on the metabolomic and transcriptomic profiles of human dermal fibroblasts cultured in ultrashort self-assembling peptide 3D scaffolds. ACS Nano. 2023;17(15):14508-14531. doi: 10.1021/acsnano.3c01176
  27. Alzanbaki H, Moretti M, Hauser CAE. Engineered microgels-their manufacturing and biomedical applications. Micromachines (Basel). 2021;12(1):45. doi: 10.3390/mi12010045
  28. Pérez-Pedroza R, Ávila-Ramirez A, Khan Z, Moreti M, Hauser CAE. Supramolecular biopolymers for tissue engineering. Adv Polym Technol. 2021;2021:1-23. doi: 10.1155/2021/8815006
  29. Wang Y, Liu X, Ge R, et al. Peptide gel electrolytes for stabilized zn metal anodes. ACS Nano. 2024;18(1):164-177. doi: 10.1021/acsnano.3c04414
  30. Bilalis P, Alrashoudi AΑ, Susapto HH, et al. Dipeptide-based photoreactive instant glue for environmental and biomedical applications. ACS Appl Mater Interfaces. 2023;15(40): 46710-46720. doi: 10.1021/acsami.3c10726
  31. Moretti M, Hountondji M, Ge R, et al. Selectively positioned catechol moiety supports ultrashort self-assembling peptide hydrogel adhesion for coral restoration. Langmuir. 2023;39(49):17903-17920. doi: 10.1021/acs.langmuir.3c02553
  32. Alhattab DM, Isaioglou I, Alshehri S, Khan ZN. Fabrication of a three-dimensional bone marrow niche-like acute myeloid Leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system. Biomater Res. 2023;27(1):111. doi: 10.1186/s40824-023-00457-9
  33. Loo Y, Chan YS, Szczerbinska I, et al. A chemically well-defined, self-assembling 3D substrate for long-term culture of human pluripotent stem cells. ACS Appl Bio Mater. 2019;2(4):1406-1412. doi: 10.1021/acsabm.8b00686
  34. Loo Y, Lakshmanan A, Ni M, Toh LL, Wang S, Hauser CA. Peptide bioink: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures. Nano Lett. 2015;15(10):6919-6925. doi: 10.1021/acs.nanolett.5b02859
  35. Alshehri S, Susapto HH, Hauser CAE. Scaffolds from self-assembling tetrapeptides support 3D spreading, osteogenic differentiation, and angiogenesis of mesenchymal stem cells. Biomacromolecules. 2021;22(5):2094-2106. doi: 10.1021/acs.biomac.1c00205
  36. Susapto HH, Alhattab D, Abdelrahman S, et al. Ultrashort peptide bioinks support automated printing of large-scale constructs assuring long-term survival of printed tissue constructs. Nano Lett. 2021;21(7):2719-2729. doi: 10.1021/acs.nanolett.0c04426
  37. Pérez-Pedroza R, Al-Jalih F, Xu J, Moretti M, Briola GR, Hauser CAE. Fabrication of lumen-forming colorectal cancer organoids using a newly designed laminin-derived bioink. Int J Bioprint. 2022;9(1):633. doi: 10.18063/ijb.v9i1.633
  38. Peng G, Yao D, Niu Y, Liu H, Fan Y. Surface modification of multiple bioactive peptides to improve endothelialization of vascular grafts. Macromol Biosci. 2019;19(5):e1800368. doi: 10.1002/mabi.201800368
  39. Ali S, Saik JE, Gould DJ, Dickinson ME, West JL. Immobilization of cell-adhesive laminin peptides in degradable PEGDA hydrogels influences endothelial cell tubulogenesis. Biores Open Access. 2013;2(4):241-249. doi: 10.1089/biores.2013.0021
  40. Bellis SL. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 2011;32(18):4205-4210. doi: 10.1016/j.biomaterials.2011.02.029
  41. Yamada Y, Onda T, Hagiuda A, et al. RGDX1 X2 motif regulates integrin αvβ5 binding for pluripotent stem cell adhesion. FASEB J. 2022;36(7):e22389. doi: 10.1096/fj.202200317R
  42. Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 2016;539(7630):560-564. doi: 10.1038/nature20168
  43. Rezakhani S, Gjorevski N, Lutolf MP. Extracellular matrix requirements for gastrointestinal organoid cultures. Biomaterials. 2021;276:121020. doi: 10.1016/j.biomaterials.2021.121020
  44. Kim S, Min S, Choi YS, et al. Tissue extracellular matrix hydrogels as alternatives to matrigel for culturing gastrointestinal organoids. Nat Commun. 2022;13(1):1692. doi: 10.1038/s41467-022-29279-4
  45. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18(1):100-106. doi: 10.1038/s41592-020-01018-x.
  46. Pachitariu M, Stringer C. Cellpose 2.0: how to train your own model. Nat Methods. 2022;19(12):1634-1641. doi: 10.1038/s41592-022-01663-4
  47. Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929-958. doi: 10.1146/annurev.biochem.77.032207.120833
  48. Zhang P, Moretti M, Allione M, et al. A droplet reactor on a super-hydrophobic surface allows control and characterization of amyloid fibril growth. Commun Biol. 2020;3:457. doi: 10.1038/s42003-020-01187-7
  49. Moretti M, Allione M, Marini M, et al. Confined laminar flow on a super-hydrophobic surface drives the initial stages of tau protein aggregation. Microelectron Eng. 2018;191: 54-59. doi: 10.1016/j.mee.2018.01.025
  50. Moretti M, Allione M, Marini M, et al. Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow. Microelectron Eng. 2017;178:194-198. doi: 10.1016/ j.mee.2017.05.045
  51. Xu ZY, Huang JJ, Liu Y, et al. Extracellular matrix bioink boosts stemness and facilitates transplantation of intestinal organoids as a biosafe Matrigel alternative. Bioeng Transl Med. 2022;8(1):e10327. doi: 10.1002/btm2.10327
  52. DiMarco RL, Dewi RE, Bernal G, Kuo C, Heilshorn SC. Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids. Biomater Sci. 2015;3(10):1376-1385. doi: 10.1039/c5bm00108k
  53. Almdal K, Hvidt DS, Kramer O. Towards a phenomenological definition of the term ‘gel’. Polymer Gels Netw. 1993; 1(1):5-17. doi: 10.1016/0966-7822(93)90020-I
  54. Yeung T, Georges PC, Flanagan LA, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005;60(1):24-34. doi: 10.1002/cm.20041
  55. Maldonado M, Wong LY, Echeverria C, et al. The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells. Biomaterials. 2015;50:10-19. doi: 10.1016/j.biomaterials.2015.01.037
  56. Hushka EA, Yavitt FM, Brown TE, Dempsey PJ, Anseth KS. Relaxation of extracellular matrix forces directs crypt formation and architecture in intestinal organoids. Adv Healthc Mater. 2020;9(8):e1901214. doi: 10.1002/adhm.201901214
  57. Ruiter FAA, Morgan FLC, Roumans N, et al. Soft, dynamic hydrogel confinement improves kidney organoid lumen morphology and reduces epithelial-mesenchymal transition in culture. Adv Sci (Weinh). 2022;9(20): e2200543. doi: 10.1002/advs.202200543.
  58. Luca AC, Mersch S, Deenen R, et al. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One. 2013;8(3):e59689. doi: 10.1371/journal.pone.0059689.
  59. Kenny PA, Lee GY, Myers CA, et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol. 2007;1(1):84-96. doi: 10.1016/j.molonc.2007.02.004
  60. Ng S, Tan WJ, Pek MMX, Tan MH, Kurisawa M. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials. 2019;219:119400. doi: 10.1016/j.biomaterials.2019.119400

 

 




Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing