3D bioprinting of colon organoids in ultrashort self-assembling and decorated peptide matrices
Research into bioinks for organoid culture has the potential to revolutionize our understanding of organ development, function, and disease. Organoids are three-dimensional (3D) cultures of source tissue grown in a support matrix and specialized media. However, the use of animal-derived matrices has limited the potential of organoids in research and therapy. To overcome this limitation, researchers have turned to biofunctional synthetic hydrogel networks to reproduce parameters that govern organoid formation. This study aims to investigate RGD- and YIGSR-decorated ultrashort self-assembling peptides as a modular synthetic hydrogel for organoid culture and 3D bioprinting. Using these motifs, we derived fibronectin (FIB)- and laminin (LAM)-decorated peptides, which self-assemble into nanofibrous hydrogels. We assessed the physicochemical properties of various peptide mixtures. Our findings confirmed the biocompatibility of these formulations and their organoid-forming potential. Subsequently, we identified the most effective scaffolds for organoid formation. We assessed the polarity, differentiation, and functionality of organoids cultured within these scaffolds. We also characterized the properties of a bioprinted construct. This study identifies two formulations, FIB (low) and LAM (high), that favor cell polarization within the cultured organoids as early as day 4. Moreover, these scaffolds were able to induce a gene expression profile resembling the organoids cultured in Matrigel. These peptides were also demonstrated to be suitable for bioprinting at various concentrations without compromising cell viability. Overall, this study demonstrates the promise of modular RGD- and YIGSR-decorated ultrashort self-assembling peptides as effective synthetic hydrogels for organoid culture and 3D bioprinting. These biofunctional peptides provide scaffold effectiveness for advanced organoid manipulation.
- Alsanea N, Abduljabbar AS, Alhomoud S, et al. Colorectal cancer in Saudi Arabia: incidence, survival, demographics and implications for national policies. Ann Saudi Med. 2015;35(3):196-202. doi: 10.5144/0256-4947.2015.196
- Alsanea N, Almadi MA, Abduljabbar AS, et al. National Guidelines for Colorectal Cancer Screening in Saudi Arabia with strength of recommendations and quality of evidence. Ann Saudi Med. 2015;35(3):189-195. doi: 10.5144/0256-4947.2015.189
- Favoriti P, Carbone G, Greco M, Pirozzi F, Pirozzi RE, Corcione F. Worldwide burden of colorectal cancer: a review. Updates Surg. 2016;68(1):7-11. doi: 10.1007/s13304-016-0359-y
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492
- Vu JV, Sommovilla J. The molecular genetics of colorectal cancer, hereditary colorectal cancer syndromes, and early-onset colorectal cancer. Digest Dis Interv. 2023;07(01): 058-070. doi: 10.1055/s-0042-1757325
- Kim SE, Paik HY, Yoon H, Lee JE, Kim N, Sung MK. Sex-and gender-specific disparities in colorectal cancer risk. World J Gastroenterol. 2015;21(17):5167-5175. doi: 10.3748/wjg.v21.i17.5167
- Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350-1356. doi: 10.1038/nm.3967
- Sepulveda AR, Hamilton SR, Allegra CJ, et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology. J Clin Oncol. 2017;35(13):1453-1486. doi: 10.1200/JCO.2016.71.9807
- Lipkin M, Reddy B, Newmark H, Lamprecht SA. Dietary factors in human colorectal cancer. Annu Rev Nutr. 1999;19:545-586. doi: 10.1146/annurev.nutr.19.1.545
- Labianca R, Beretta GD, Kildani B, et al. Colon cancer. Crit Rev Oncol Hematol. 2010;74(2):106-133. doi: 10.1016/j.critrevonc.2010.01.010
- Linnekamp JF, Hooff SRV, Prasetyanti PR, et al. Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models. Cell Death Differ. 2018;25(3): 616-633. doi: 10.1038/s41418-017-0011-5
- Sveen A, Bruun J, Eide PW, et al. Colorectal cancer consensus molecular subtypes translated to preclinical models uncover potentially targetable cancer cell dependencies. Clin Cancer Res. 2018;24(4):794-806. doi: 10.1158/1078-0432.CCR-17-1234
- Idris M, Alves MM, Hofstra RMW, Mahe MM, Melotte V. Intestinal multicellular organoids to study colorectal cancer. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188586. doi: 10.1016/j.bbcan.2021.188586
- Varga OE, Hansen AK, Sandøe P, Olsson IA. Validating animal models for preclinical research: a scientific and ethical discussion. Altern Lab Anim. 2010;38(3):245-248. doi: 10.1177/026119291003800309
- Date S, Sato T. Mini-gut organoids: reconstitution of the stem cell niche. Annu Rev Cell Dev Biol. 2015;31:269-289. doi: 10.1146/annurev-cellbio-100814-125218
- Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762-1772. doi: 10.1053/j.gastro.2011.07.050
- Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18:407-418. doi: 10.1038/s41568-018-0007-6
- Maharjan S, Ma C, Singh B, et al. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev. 2024;208:115237. doi: 10.1016/j.addr.2024.115237
- De Stefano P, Briatico-Vangosa F, Bianchi E, et al. Bioprinting of matrigel scaffolds for cancer research. Polymers (Basel). 2021;13(12):2026. doi: 10.3390/polym13122026
- Lotz O, McKenzie DR, Bilek MM, Akhavan B. Biofunctionalized 3D printed structures for biomedical applications: a critical review of recent advances and future prospects. Prog Mater Sci. 2023;137:101124. doi: 10.1016/j.pmatsci.2023.101124
- GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. Crosslinking strategies for 3D bioprinting of polymeric hydrogels. Small. 2020;16(35):2002931. doi: 10.1002/smll.202002931
- Hauser CA, Deng R, Mishra A, et al. Natural tri- to hexapeptides self-assemble in water to amyloid beta-type fiber aggregates by unexpected alpha-helical intermediate structures. Proc Natl Acad Sci U S A. 2011;108(4):1361-1366. doi: 10.1073/pnas.1014796108
- Loo Y, Zhang S, Hauser CAE. From short peptides to nanofibers to macromolecular assemblies in biomedicine. Biotechnol Adv. 2012;30:593-603. doi: 10.1016/j.biotechadv.2011.10.004
- Liu Y, Zhang L, Wei W. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release. Int J Nanomedicine. 2017;12:659-670. doi: 10.2147/IJN.S124523
- Abdelrahman S, Alsanie WF, Khan ZN, et al. A Parkinson’s disease model composed of 3D bioprinted dopaminergic neurons within a biomimetic peptide scaffold. Biofabrication. 2022;14(4):044103. doi: 10.1088/1758-5090/ac7eec
- Abdelrahman S, Ge R, Susapto HH, et al. The impact of mechanical cues on the metabolomic and transcriptomic profiles of human dermal fibroblasts cultured in ultrashort self-assembling peptide 3D scaffolds. ACS Nano. 2023;17(15):14508-14531. doi: 10.1021/acsnano.3c01176
- Alzanbaki H, Moretti M, Hauser CAE. Engineered microgels-their manufacturing and biomedical applications. Micromachines (Basel). 2021;12(1):45. doi: 10.3390/mi12010045
- Pérez-Pedroza R, Ávila-Ramirez A, Khan Z, Moreti M, Hauser CAE. Supramolecular biopolymers for tissue engineering. Adv Polym Technol. 2021;2021:1-23. doi: 10.1155/2021/8815006
- Wang Y, Liu X, Ge R, et al. Peptide gel electrolytes for stabilized zn metal anodes. ACS Nano. 2024;18(1):164-177. doi: 10.1021/acsnano.3c04414
- Bilalis P, Alrashoudi AΑ, Susapto HH, et al. Dipeptide-based photoreactive instant glue for environmental and biomedical applications. ACS Appl Mater Interfaces. 2023;15(40): 46710-46720. doi: 10.1021/acsami.3c10726
- Moretti M, Hountondji M, Ge R, et al. Selectively positioned catechol moiety supports ultrashort self-assembling peptide hydrogel adhesion for coral restoration. Langmuir. 2023;39(49):17903-17920. doi: 10.1021/acs.langmuir.3c02553
- Alhattab DM, Isaioglou I, Alshehri S, Khan ZN. Fabrication of a three-dimensional bone marrow niche-like acute myeloid Leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system. Biomater Res. 2023;27(1):111. doi: 10.1186/s40824-023-00457-9
- Loo Y, Chan YS, Szczerbinska I, et al. A chemically well-defined, self-assembling 3D substrate for long-term culture of human pluripotent stem cells. ACS Appl Bio Mater. 2019;2(4):1406-1412. doi: 10.1021/acsabm.8b00686
- Loo Y, Lakshmanan A, Ni M, Toh LL, Wang S, Hauser CA. Peptide bioink: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures. Nano Lett. 2015;15(10):6919-6925. doi: 10.1021/acs.nanolett.5b02859
- Alshehri S, Susapto HH, Hauser CAE. Scaffolds from self-assembling tetrapeptides support 3D spreading, osteogenic differentiation, and angiogenesis of mesenchymal stem cells. Biomacromolecules. 2021;22(5):2094-2106. doi: 10.1021/acs.biomac.1c00205
- Susapto HH, Alhattab D, Abdelrahman S, et al. Ultrashort peptide bioinks support automated printing of large-scale constructs assuring long-term survival of printed tissue constructs. Nano Lett. 2021;21(7):2719-2729. doi: 10.1021/acs.nanolett.0c04426
- Pérez-Pedroza R, Al-Jalih F, Xu J, Moretti M, Briola GR, Hauser CAE. Fabrication of lumen-forming colorectal cancer organoids using a newly designed laminin-derived bioink. Int J Bioprint. 2022;9(1):633. doi: 10.18063/ijb.v9i1.633
- Peng G, Yao D, Niu Y, Liu H, Fan Y. Surface modification of multiple bioactive peptides to improve endothelialization of vascular grafts. Macromol Biosci. 2019;19(5):e1800368. doi: 10.1002/mabi.201800368
- Ali S, Saik JE, Gould DJ, Dickinson ME, West JL. Immobilization of cell-adhesive laminin peptides in degradable PEGDA hydrogels influences endothelial cell tubulogenesis. Biores Open Access. 2013;2(4):241-249. doi: 10.1089/biores.2013.0021
- Bellis SL. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 2011;32(18):4205-4210. doi: 10.1016/j.biomaterials.2011.02.029
- Yamada Y, Onda T, Hagiuda A, et al. RGDX1 X2 motif regulates integrin αvβ5 binding for pluripotent stem cell adhesion. FASEB J. 2022;36(7):e22389. doi: 10.1096/fj.202200317R
- Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 2016;539(7630):560-564. doi: 10.1038/nature20168
- Rezakhani S, Gjorevski N, Lutolf MP. Extracellular matrix requirements for gastrointestinal organoid cultures. Biomaterials. 2021;276:121020. doi: 10.1016/j.biomaterials.2021.121020
- Kim S, Min S, Choi YS, et al. Tissue extracellular matrix hydrogels as alternatives to matrigel for culturing gastrointestinal organoids. Nat Commun. 2022;13(1):1692. doi: 10.1038/s41467-022-29279-4
- Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18(1):100-106. doi: 10.1038/s41592-020-01018-x.
- Pachitariu M, Stringer C. Cellpose 2.0: how to train your own model. Nat Methods. 2022;19(12):1634-1641. doi: 10.1038/s41592-022-01663-4
- Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929-958. doi: 10.1146/annurev.biochem.77.032207.120833
- Zhang P, Moretti M, Allione M, et al. A droplet reactor on a super-hydrophobic surface allows control and characterization of amyloid fibril growth. Commun Biol. 2020;3:457. doi: 10.1038/s42003-020-01187-7
- Moretti M, Allione M, Marini M, et al. Confined laminar flow on a super-hydrophobic surface drives the initial stages of tau protein aggregation. Microelectron Eng. 2018;191: 54-59. doi: 10.1016/j.mee.2018.01.025
- Moretti M, Allione M, Marini M, et al. Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow. Microelectron Eng. 2017;178:194-198. doi: 10.1016/ j.mee.2017.05.045
- Xu ZY, Huang JJ, Liu Y, et al. Extracellular matrix bioink boosts stemness and facilitates transplantation of intestinal organoids as a biosafe Matrigel alternative. Bioeng Transl Med. 2022;8(1):e10327. doi: 10.1002/btm2.10327
- DiMarco RL, Dewi RE, Bernal G, Kuo C, Heilshorn SC. Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids. Biomater Sci. 2015;3(10):1376-1385. doi: 10.1039/c5bm00108k
- Almdal K, Hvidt DS, Kramer O. Towards a phenomenological definition of the term ‘gel’. Polymer Gels Netw. 1993; 1(1):5-17. doi: 10.1016/0966-7822(93)90020-I
- Yeung T, Georges PC, Flanagan LA, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005;60(1):24-34. doi: 10.1002/cm.20041
- Maldonado M, Wong LY, Echeverria C, et al. The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells. Biomaterials. 2015;50:10-19. doi: 10.1016/j.biomaterials.2015.01.037
- Hushka EA, Yavitt FM, Brown TE, Dempsey PJ, Anseth KS. Relaxation of extracellular matrix forces directs crypt formation and architecture in intestinal organoids. Adv Healthc Mater. 2020;9(8):e1901214. doi: 10.1002/adhm.201901214
- Ruiter FAA, Morgan FLC, Roumans N, et al. Soft, dynamic hydrogel confinement improves kidney organoid lumen morphology and reduces epithelial-mesenchymal transition in culture. Adv Sci (Weinh). 2022;9(20): e2200543. doi: 10.1002/advs.202200543.
- Luca AC, Mersch S, Deenen R, et al. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One. 2013;8(3):e59689. doi: 10.1371/journal.pone.0059689.
- Kenny PA, Lee GY, Myers CA, et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol. 2007;1(1):84-96. doi: 10.1016/j.molonc.2007.02.004
- Ng S, Tan WJ, Pek MMX, Tan MH, Kurisawa M. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials. 2019;219:119400. doi: 10.1016/j.biomaterials.2019.119400