AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3525
REVIEW

A perspective on transformative bioprinting

Chee Kai Chua1* Jia An1 Shiyuan Fan2 Xuening Zhang2 Liliang Ouyang2* Haofan Liu3 Li Zhang3 Ya Ren3 Maling Gou3* Wei Long Ng4 Wai Yee Yeong4* Hui Zhu5,6 Zijie Meng5,6 Jiankang He5,6*
Show Less
1 Centre for Healthcare Education, Entrepreneurship and Research @ SUTD (CHEERS) University of Technology and Design, Singapore
2 Department of Mechanical Engineering, Tsinghua University, Beijing, China
3 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
4 Singapore Centre for 3D Printing, Nanyang Technological University, Singapore
5 State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
6 NMPA Key Lab for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, Shaanxi, China
Submitted: 29 April 2024 | Accepted: 21 June 2024 | Published: 15 August 2024
© 2024 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Our understanding of bioprinting originated from tissue engineering and 3D printing. Over the last two decades, 3D printing has been serving tissue engineering to fulfill its goal of solving the worldwide challenge of human organ shortage. Fundamental research and translation to clinical settings are currently the mainstream and have led to the emergence of translational bioprinting. However, as bioprinting evolves with more refined capabilities such as spatial and temporal controls of multiple biological materials at the microscale, perhaps it is time to reflect on a reciprocal approach, i.e., tissue engineering, to serve 3D printing with the hope to address problems more than or other than organ shortage. Recent examples of cultivated meat, digital bioprinting, bioelectronics, and space exploration may have just revealed the tip of the iceberg, though some still overlap with the goal of tissue engineering. Whenever a new material is introduced to the realm of 3D printing and becomes printable, it always leads to versatile or even unforeseen applications. This has happened to metals, ceramics, composite, and electronics. Although it has been known for a long time that biological cells are 3D-printable, the application of such concept has been always perceived from the angle of tissue engineering with human organ shortage as the sole motivation. Therefore, in this review based on existing evidence, we offer an innovative perspective of bioprinting, termed “transformative bioprinting,” to emphasize the role of an enabling tool of bioprinting and its alternative motivations.

Keywords
Additive manufacturing
Bioprinting
Tissue engineering
In situ bioprinting
Cultivated meat
Bioelectronics
Conflict of interest
All authors declare that there is no financial conflict of interest during the preparation of this manuscript.
References
  1. Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22(12):643-652. doi: 10.1016/j.tibtech.2004.10.004
  2. Yeong W, Sudarmadji N, Yu H, et al. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6(6):2028-2034. doi: 10.1016/j.actbio.2009.12.033
  3. Mironov V, Kasyanov V, Drake C, Markwald RR. Organ printing: promises and challenges Regen Med. 2008; 3(1):93-103. doi: 10.2217/17460751.3.1.93
  4. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21(4):157-161. doi: 10.1016/S0167-7799(03)00033-7
  5. Ng WL, An J, Chua CK. Process, material, and regulatory considerations for 3D printed medical devices and tissue constructs. Engineering. 2024. doi: 10.1016/j.eng.2024.01.028
  6. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4(4):370-380. doi: 10.1038/s41551-019-0471-7
  7. O’Connell CD, Dalton PD, Hutmacher DW. Why bioprinting in regenerative medicine should adopt a rational technology readiness assessment. Trends Biotechnol. 2024. doi: 10.1016/j.tibtech.2024.03.006
  8. He J, Mao M, Li X, Chua CK. Bioprinting of 3D functional tissue constructs. Int J Bioprint. 2021;7(3):1-2. doi: 10.18063/ijb.v7i3.395
  9. Bertassoni LE. Bioprinting of complex multicellular organs with advanced functionality—recent progress and challenges ahead. Adv Mater. 2022;34(3):e2101321. doi: 10.1002/adma.202101321
  10. Lee J, Park D, Seo Y, Chung JJ, Jung Y, Kim SH. Organ‐level functional 3D tissue constructs with complex compartments and their preclinical applications. Adv Mater. 2020;32(51):e2002096. doi: 10.1002/adma.202002096
  11. Dutta SD, Ganguly K, Jeong M-S, et al. Bioengineered lab-grown meat-like constructs through 3D bioprinting of antioxidative protein hydrolysates. ACS Appl Mater Interfaces. 2022;14(30):34513-34526. doi: 10.1021/acsami.2c10620
  12. Beckwith AL, Borenstein JT, Velásquez-García LF. Physical, mechanical, and microstructural characterization of novel, 3D-printed, tunable, lab-grown plant materials generated from Zinnia elegans cell cultures. Mater Today. 2022;54:27-41. doi: 10.1016/j.mattod.2022.02.012
  13. Simon DT, Gabrielsson EO, Tybrandt K, Berggren M. Organic bioelectronics: bridging the signaling gap between biology and technology. Chem. Rev. 2016;116(21): 13009-13041. doi: 10.1021/acs.chemrev.6b00146
  14. Zhang H, Wen H, Zhu J, Xia Z, Zhang Z. 3D printing dielectric elastomers for advanced functional structures: a mini‐review. J Appl Polym Sci. 2024; 141(15):e55015. doi: 10.1002/app.55015
  15. Sarabi MR, Yetisen AK, Tasoglu S. Magnetic levitation for space exploration. Trends Biotechnol. 2022;40(8):915-917. doi: 10.1016/j.tibtech.2022.03.010
  16. Landerneau S, Lemarié L, Marquette C, Petiot E. Green 3D bioprinting of plant cells: a new scope for 3D bioprinting. Bioprinting. 2022;27:e00216. doi: 10.1016/j.bprint.2022.e00216
  17. Whenish R, Ramakrishna S, Jaiswal AK, Manivasagam G. A framework for the sustainability implications of 3D bioprinting through nature-inspired materials and structures. Bio-Design Manuf. 2022;5(2):412-423. doi: 10.1007/s42242-021-00168-x
  18. Zhou D, Dou B, Kroh F, Wang C, Ouyang L. Biofabrication strategies with single-cell resolution: a review. Int J Extreme Manuf. 2023;5(4):042005. doi: 10.1088/2631-7990/ace863
  19. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi: 10.1126/sciadv.1500758
  20. Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting of complex living‐tissue constructs within seconds. Adv Mater. 2019;31(42):e1904209. doi: 10.1002/adma.201904209
  21. Ouyang L. Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Trends Biotechnol. 2022;40(7):891-902. doi: 10.1016/j.tibtech.2022.01.001
  22. Wu Y, Yang X, Gupta D, et al. Dissecting the interplay mechanism among process parameters toward the biofabrication of high-quality shapes in embedded bioprinting. Adv Funct Mater. 2024;34(21):2313088. doi: 10.1002/adfm.202313088
  23. Highley CB, Song KH, Daly AC, Burdick JA. Jammed microgel inks for 3D printing applications. Adv Sci. 2019;6(1):1801076. doi: 10.1002/advs.201801076
  24. Yuan X, Wang Z, Che L, et al. Recent developments and challenges of 3D bioprinting technologies. Int J Bioprinting. 2024;10(2):1752. doi: doi.org/10.36922/ijb.1752
  25. Pitacco P, Sadowska JM, O’Brien FJ, Kelly DJ. 3D bioprinting of cartilaginous templates for large bone defect healing. Acta Biomater. 2023;156:61-74. doi: 10.1016/j.actbio.2022.07.037
  26. Xie M, Shi Y, Zhang C, et al. In situ 3D bioprinting with bioconcrete bioink. Nature communications. 2022;13(1):3597. doi: 10.1038/s41467-022-30997-y
  27. Sun Y, You Y, Jiang W, Wang B, Wu Q, Dai K. 3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration. Sci Adv. 2020;6(37):eaay1422. doi: 10.1126/sciadv.aay1422
  28. Zhang X, Liu Y, Zuo Q, et al. 3D bioprinting of biomimetic bilayered scaffold consisting of decellularized extracellular matrix and silk fibroin for osteochondral repair. Int J Bioprint. 2021;7(4):401. doi: 10.18063/ijb.v7i4.401
  29. Albanna M, Binder KW, Murphy SV, et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Rep. 2019;9(1):1856. doi: 10.1038/s41598-018-38366-w
  30. Yang Y, Xu R, Wang C, Guo Y, Sun W, Ouyang L. Recombinant human collagen-based bioinks for the 3D bioprinting of full-thickness human skin equivalent. Int J Bioprint. 2022;8(4):611. doi: 10.18063/ijb.v8i4.611
  31. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci. 2019;6(11):1900344. doi: 10.1002/advs.201900344
  32. Lee A, Hudson A, Shiwarski D, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365(6452):482-487. doi: 10.1126/science.aav9051
  33. Lammers A, Hsu H-H, Sundaram S, et al. Rapid tissue perfusion using sacrificial percolation of anisotropic networks. Matter. 2024;7(6):2184-2204. doi: 10.1016/j.matt.2024.04.001
  34. Ouyang L, Armstrong JP, Chen Q, Lin Y, Stevens MM. Void‐free 3D bioprinting for in situ endothelialization and microfluidic perfusion. Adv Funct Mater. 2020;30(1):1908349. doi: 10.1002/adfm.201908349
  35. Lawlor KT, Vanslambrouck JM, Higgins JW, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2021;20(2):260-271. doi: 10.1038/s41563-020-00853-9
  36. Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat Mater. 2021;20(1):22-29. doi: 10.1038/s41563-020-00803-5
  37. Ayan B, Heo DN, Zhang Z, et al. Aspiration-assisted bioprinting for precise positioning of biologics. Sci Adv. 2020;6(10):eaaw5111. doi: 10.1126/sciadv.aaw5111
  38. Daly AC, Davidson MD, Burdick JA. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun. 2021;12(1):753. doi: 10.1038/s41467-021-21029-2
  39. Egawa N, Kitaoka S, Tsukita K, et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med. 2012;4(145):145ra104. doi: 10.1126/scitranslmed.3004052
  40. Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3): 211-224. doi: 10.1038/nrm1858
  41. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287-309. doi: 10.1146/annurev.cellbio.22.010305.104315
  42. Nie J, Gao Q, Fu J, He Y. Grafting of 3D bioprinting to in vitro drug screening: a review. Adv Healthc Mater. 2020;9(7):1901773. doi: 10.1002/adhm.201901773
  43. Miller KL, Sit I, Xiang Y, et al. Evaluation of CuO nanoparticle toxicity on 3D bioprinted human iPSC-derived cardiac tissues. Bioprinting. 2023;32:e00284. doi: 10.1016/j.bprint.2023.e00284
  44. Zhao Y, Yao R, Ouyang L, et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication. 2014;6(3):035001. doi: 10.1088/1758-5082/6/3/035001
  45. Dai X, Ma C, Lan Q, Xu T. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication. 2016;8(4):045005. doi: 10.1088/1758-5090/8/4/045005
  46. Wang Y, Shi W, Kuss M, et al. 3D bioprinting of breast cancer models for drug resistance study. ACS Biomater Sci Eng. 2018;4(12):4401-4411. doi: 10.1021/acsbiomaterials.8b01277
  47. Wu M, Zhou H, Hu J, et al. Decellularized porcine kidney-incorporated hydrogels for cell-laden bioprinting of renal cell carcinoma model. Int J Bioprint. 2024; 10(2):1413. doi: 10.36922/ijb.1413
  48. Huang B, Wei X, Chen K, Wang L, Xu M. Bioprinting of hydrogel beads to engineer pancreatic tumor-stroma microtissues for drug screening. Int J Bioprint. 2023; 9(3):676. doi: 10.18063/ijb.676
  49. Gu Z, Xie M, Lv S, et al. Perfusable vessel-on-a-chip for antiangiogenic drug screening with coaxial bioprinting. Int J Bioprint. 2022;8(4):619. doi: 10.18063/ijb.v8i4.619
  50. Fang L, Liu Y, Qiu J, Wan W. Bioprinting and its use in tumor-on-a-chip technology for cancer drug screening: a review. Int J Bioprint. 2022;8(4):603. doi: 10.18063/ijb.v8i4.603
  51. Liu C, Chen Y, Chen H, Zhang P. Droplet-based bioprinting for fabrication of tumor spheroids. Int J Bioprint. 2024;10(1):1214. doi: 10.36922/ijb.1214
  52. Maizels L, Huber I, Arbel G, et al. Patient-specific drug screening using a human induced pluripotent stem cell model of catecholaminergic polymorphic ventricular tachycardia type 2. Circ Arrhythm Electrophysiol. 2017;10(6):e004725. doi: 10.1161/CIRCEP.116.004725
  53. Akbari M, Khademhosseini A. Tissue bioprinting for biology and medicine. Cell. 2022;185(15):2644-2648. doi: 10.1016/j.cell.2022.06.015
  54. Fonseca AC, Melchels FP, Ferreira MJ, et al. Emulating human tissues and organs: a bioprinting perspective toward personalized medicine. Chem Rev. 2020;120(19): 11093-11139. doi: 10.1021/acs.chemrev.0c00342
  55. Wang Z, Liang X, Wang G, Wang X, Chen Y. Emerging bioprinting for wound healing. Adv Mater. 2023:e2304738. doi: 10.1002/adma.202304738
  56. Liu H, He L, Kuzmanović M, et al. Advanced nanomaterials in medical 3D printing. Small Methods. 2024;8(3):e2301121. doi: 10.1002/smtd.202301121
  57. Eisenstein M. First 3D-printed pill. Nat Biotechnol. 2015;33:1014. doi: 10.1038/nbt1015-1014a
  58. Loh JM, Lim YJL, Tay JT, Cheng HM, Tey HL, Liang K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioactive Mater. 2024;32:222-241. doi: 10.1016/j.bioactmat.2023.09.022
  59. Li R, Liu X, Yuan X, et al. Fast customization of hollow microneedle patches for insulin delivery. Int J Bioprint. 2022;8(2):553. doi: 10.18063/ijb.v8i2.553
  60. Wang Z, Fu R, Han X, et al. Shrinking fabrication of a glucose‐responsive glucagon microneedle patch. Adv Sci. 2022;9(28):2203274. doi: 10.1002/advs.202203274
  61. Joo SH, Kim J, Hong J, Fakhraei Lahiji S, Kim YH. Dissolvable self‐locking microneedle patches integrated with immunomodulators for cancer immunotherapy. Adv Mater. 2023;35(10):2209966. doi: 10.1002/adma.202209966
  62. Li R, Zhang L, Jiang X, et al. 3D-printed microneedle arrays for drug delivery. J Control Release. 2022;350:933-948. doi: 10.1016/j.jconrel.2022.08.022
  63. Yadid M, Oved H, Silberman E, Dvir T. Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol. 2022;19(2):83-99. doi: 10.1038/s41569-021-00603-7
  64. Tao J, Liu H, Wu W, et al. 3D‐printed nerve conduits with live platelets for effective peripheral nerve repair. Adv Funct Mater. 2020;30(42):2004272. doi: 10.1002/adfm.202004272
  65. Choi S, Lee KY, Kim SL, et al. Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles. Nat Mater. 2023;22(8):1039-1046. doi: 10.1038/s41563-023-01611-3
  66. Chen S, Luo J, Shen L, et al. 3D printing mini-capsule device for islet delivery to treat type 1 diabetes. ACS Appl Mater Interfaces. 2022;14(20):23139-23151. doi: 10.1021/acsami.2c02487
  67. Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SC. Self-healing injectable hydrogels for tissue regeneration. Chem Rev. 2022;123(2):834-873. doi: 10.1021/acs.chemrev.2c00179
  68. Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020;5(1):20-43. doi: 10.1038/s41578-019-0148-6.
  69. Liu X, Tao J, Liu J, et al. 3D printing enabled customization of functional microgels. ACS Appl Mater Interfaces. 2019;11(13):12209-12215. doi: 10.1021/acsami.8b18701.
  70. Muir VG, Qazi TH, Weintraub S, Torres Maldonado BO, Arratia PE, Burdick JA. Sticking together: injectable granular hydrogels with increased functionality via dynamic covalent inter‐particle crosslinking. Small. 2022;18(36):e2201115. doi: 10.1002/smll.202201115
  71. Tang M, Xie Q, Gimple RC, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res. 2020;30(10):833-853. doi: 10.1038/s41422-020-0338-1.
  72. Prendergast ME, Burdick JA. Recent advances in enabling technologies in 3D printing for precision medicine. Adv Mater. 2020;32(13):e1902516. doi: 10.1002/adma.201902516
  73. Wen X, Zhang B, Wang W, et al. 3D-printed silica with nanoscale resolution. Nat Mater. 2021;20(11):1506-1511. doi: 10.1038/s41563-021-01111-2
  74. You S, Xiang Y, Hwang HH, et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci Adv. 2023;9(8):eade7923. doi: 10.1126/sciadv.ade7923

 

  1. Guan J, You S, Xiang Y, et al. Compensating the cell-induced light scattering effect in light-based bioprinting using deep learning. Biofabrication. 2021;14(1):015011. doi: 10.1088/1758-5090/ac3b92.
  2. Bauer J, Crook C, Baldacchini T. A sinterless, low-temperature route to 3D print nanoscale optical-grade glass. Science. 2023;380(6648):960-966. doi: 10.1126/science.abq3037
  3. Zhang Y, Su Y, Zhao Y, Wang Z, Wang C. Two‐photon 3D printing in metal–organic framework single crystals. Small. 2022;18(18):e2200514. doi: 10.1002/smll.202200514
  4. Xu H-Q, Liu J-C, Zhang Z-Y, Xu C-X. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res. 2022;9(1):70. doi: 10.1186/s40779-022-00429-5
  5. Lipkowitz G, Samuelsen T, Hsiao K, et al. Injection continuous liquid interface production of 3D objects. Sci Adv. 2022;8(39):eabq3917. doi: 10.1126/sciadv.abq3917
  6. Regehly M, Garmshausen Y, Reuter M, et al. Xolography for linear volumetric 3D printing. Nature. 2020;588(7839): 620-624. doi: 10.1038/s41586-020-3029-7
  7. Stüwe L, Geiger M, Röllgen F, et al. Continuous volumetric 3D printing: xolography in flow. Adv Mater. 2024;36(4):e2306716. doi: 10.1002/adma.202306716
  8. Cheng J, Wang R, Sun Z, et al. Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects. Nat Commun. 2022;13(1):7931. doi: 10.1038/s41467-022-35622-6
  9. Larson NM, Mueller J, Chortos A, Davidson ZS, Clarke DR, Lewis JA. Rotational multimaterial printing of filaments with subvoxel control. Nature. 2023;613(7945):682-688. doi: 10.1038/s41586-022-05490-7
  10. Buchner TJ, Rogler S, Weirich S, et al. Vision-controlled jetting for composite systems and robots. Nature. 2023;623(7987):522-530. doi: 10.1038/s41586-023-06684-3
  11. Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D printing strategies for next‐generation tissue regeneration and medical devices. Adv Mater. 2022;34(20):e2109198. doi: 10.1002/adma.202109198
  12. Bedell ML, Navara AM, Du Y, Zhang S, Mikos AG. Polymeric systems for bioprinting. Chem Rev. 2020;120(19): 10744-10792. doi: 10.1021/acs.chemrev.9b00834
  13. Hao XP, Xu Z, Li CY, Hong W, Zheng Q, Wu ZL. Kirigami‐design‐enabled hydrogel multimorphs with application as a multistate switch. Adv Mater. 2020;32(22):e2000781. doi: 10.1002/adma.202000781
  14. Cui H, Miao S, Esworthy T, et al. A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Res. 2019;12:1381-1388. doi: 10.1007/s12274-019-2340-9
  15. Miao S, Cui H, Esworthy T, et al. 4D self‐morphing culture substrate for modulating cell differentiation. Adv Sci. 2020;7(6):1902403. doi: 10.1002/advs.201902403
  16. Zhang F, Wang L, Zheng Z, Liu Y, Leng J. Magnetic Programming of 4D Printed Shape Memory Composite Structures. Elsevier. 2019;125:105571. doi: 10.1016/j.compositesa.2019.105571
  17. Bai Y, Zhang J, Wen D, et al. A reconfigurable, self-healing and near infrared light responsive thermoset shape memory polymer. Compos Sci Technol. 2020;187:107940. doi: 10.1016/j.compscitech.2019.107940
  18. Lee YB, Jeon O, Lee SJ, Ding A, Wells D, Alsberg E. Induction of four‐dimensional spatiotemporal geometric transformations in high cell density tissues via shape‐changing hydrogels. Adv Funct Mater. 2021;31(24):2010104. doi: 10.1002/adfm.202010104.
  19. Samandari M, Mostafavi A, Quint J, Memić A, Tamayol A. In situ bioprinting: intraoperative implementation of regenerative medicine. Trends Biotechnol. 2022;40(10):1229-1247. doi: 10.1016/j.tibtech.2022.03.009
  20. Duchi S, Onofrillo C, O’Connell CD, et al. Handheld co-axial bioprinting: application to in situ surgical cartilage repair. Sci Rep. 2017;7(1):5837. doi: 10.1038/s41598-017-05699-x
  21. Li W, Wang M, Mille LS, et al. A smartphone‐enabled portable digital light processing 3D printer. Adv Mater. 2021;33(35):e2102153. doi: 10.1002/adma.202102153
  22. Thai MT, Phan PT, Tran HA, et al. Advanced soft robotic system for in situ 3D bioprinting and endoscopic surgery. Adv Sci. 2023;10(12):2205656. doi: 10.1002/advs.202205656
  23. Chen Y, Zhang J, Liu X, et al. Noninvasive in vivo 3D bioprinting. Sci Adv. 2020;6(23):eaba7406. doi: 10.1126/sciadv.aba7406
  24. Urciuolo A, Poli I, Brandolino L, et al. Intravital three-dimensional bioprinting. Nat Biomed Eng. 2020;4(9):901-915. doi: 10.1038/s41551-020-0568-z
  25. Zhou C, Yang Y, Wang J, et al. Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat Commun. 2021;12(1):5072. doi: 10.1038/s41467-021-25386-w
  26. Kuang X, Rong Q, Belal S, et al. Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing. Science. 2023;382(6675):1148-1155. doi: 10.1126/science.adi1563
  27. Post MJ, Levenberg S, Kaplan DL, et al. Scientific, sustainability and regulatory challenges of cultured meat. Nat Food. 2020;1(7):403-415. doi: 10.1038/s43016-020-0112-z
  28. Su L, Jing L, Zeng X, et al. 3D‐printed prolamin scaffolds for cell‐based meat culture. Adv Mater. 2023;35(2):2207397. doi: 10.1002/adma.202207397
  29. Ianovici I, Zagury Y, Redenski I, Lavon N, Levenberg S. 3D-printable plant protein-enriched scaffolds for cultivated meat development. Biomaterials. 2022;284:121487. doi: 10.1016/j.biomaterials.2022.121487
  30. David S, Ianovici I, Guterman Ram G, Shaulov Dvir Y, Lavon N, Levenberg S. Pea protein‐rich scaffolds support 3D bovine skeletal muscle formation for cultivated meat application. Adv Sustain Syst. 2024;8(6):2300499. doi: 10.1002/adsu.202300499
  31. Kang D-H, Louis F, Liu H, et al. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat Commun. 2021;12(1):5059. doi: 10.1038/s41467-021-25236-9
  32. Xu E, Niu R, Lao J, et al. Tissue-like cultured fish fillets through a synthetic food pipeline. NPJ Sci Food. 2023;7(1):17. doi: 10.1038/s41538-023-00194-2
  33. Jeong D, Seo JW, Lee HG, Jung WK, Park YH, Bae H. Efficient myogenic/adipogenic transdifferentiation of bovine fibroblasts in a 3D bioprinting system for steak‐type cultured meat production. Adv Sci. 2022;9(31):2202877. doi: 10.1002/advs.202202877
  34. Ng WL, Tan JS. Application of machine learning in 3D bioprinting of cultivated meat. Int J AI Mater Design. 2024;1(1):2279. doi: 10.36922/ijamd.2279
  35. Ng WL, Goh GL, Goh GD, Sheuan TJJ, Yeong WY. Progress and opportunities for machine learning in materials and processes of additive manufacturing. Adv Mater. 2024:202310006. doi: 10.1002/adma.202310006
  36. Nikkhah A, Rohani A, Zarei M, et al. Toward sustainable culture media: Using artificial intelligence to optimize reduced-serum formulations for cultivated meat. Sci Total Environ. 2023;894:164988. doi: 10.1016/j.scitotenv.2023.164988
  37. Cosenza Z, Block DE, Baar K. Optimization of muscle cell culture media using nonlinear design of experiments. Biotechnol J. 2021;16(11):2100228. doi: 10.1002/biot.202100228
  38. Ji H, Pu D, Yan W, Zhang Q, Zuo M, Yuyu Z. Recent advances and application of machine learning in food flavor prediction and regulation. Trends Food Sci Technol. 2023;138:738-751. doi: 10.1016/j.tifs.2023.07.012
  39. Soni A, Dixit Y, Reis MM, Brightwell G. Hyperspectral imaging and machine learning in food microbiology: developments and challenges in detection of bacterial, fungal, and viral contaminants. Compr Rev Food Sci Food Saf. 2022;21(4):3717-3745. doi: 10.1111/1541-4337.12983
  40. Huang X, Ng WL, Yeong WY. Predicting the number of printed cells during inkjet-based bioprinting process based on droplet velocity profile using machine learning approaches. J Intell Manuf. 2023;35(5). doi: 10.1007/s10845-023-02167-4
  41. Wang J, Ding S, Da C, et al. Morphology-based prediction of proliferation and differentiation potencies of porcine muscle stem cells for cultured meat production. J Agric Food Chem. 2023;71(47):18613-18621. doi: 10.1021/acs.jafc.3c06919
  42. Axpe E, Oyen ML. Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci. 2016;17(12):1976. doi: 10.3390/ijms17121976
  43. Jia J, Richards DJ, Pollard S, et al. Engineering alginate as bioink for bioprinting. Acta Biomater. 2014;10(10):4323-4331. doi: 10.1016/j.actbio.2014.06.034
  44. Gao Q, Kim B-S, Gao G. Advanced strategies for 3D bioprinting of tissue and organ analogs using alginate hydrogel bioinks. Marine Drugs. 2021;19(12):708. doi: 10.3390/md19120708
  45. López-Marcial GR, Zeng AY, Osuna C, Dennis J, García JM, O’Connell GD. Agarose-based hydrogels as suitable bioprinting materials for tissue engineering. ACS Biomater Sci Eng. 2018;4(10):3610-3616. doi: 10.1021/acsbiomaterials.8b00903
  46. Wang X, Wang Q, Xu C. Nanocellulose-based inks for 3d bioprinting: key aspects in research development and challenging perspectives in applications—a mini review. Bioengineering. 2020;7(2):40. doi: 10.3390/bioengineering7020040
  47. Athukoralalage SS, Balu R, Dutta NK, Roy Choudhury N. 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: a brief review. Polymers. 2019;11(5):898. doi: 10.3390/polym11050898
  48. Saji S, Hebden A, Goswami P, Du C. A brief review on the development of alginate extraction process and its sustainability. Sustainability. 2022;14(9):5181. doi: 10.3390/su14095181
  49. Chew KW, Juan JC, Phang SM, Ling TC, Show PL. An overview on the development of conventional and alternative extractive methods for the purification of agarose from seaweed. Sep Sci Technol. 2018;53(3):467-480. doi: 10.1080/01496395.2017.1394881
  50. Youssouf L, Lallemand L, Giraud P, et al. Ultrasound-assisted extraction and structural characterization by NMR of alginates and carrageenans from seaweeds. Carbohydr Polymers. 2017;166:55-63. doi: 10.1016/j.carbpol.2017.01.041
  51. Yuan Y, Macquarrie DJ. Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept. Bioresourc Technol. 2015;198:819-827. doi: 10.1016/j.biortech.2015.09.090
  52. Torabi P, Hamdami N, Keramat J. Microwave-assisted extraction of sodium alginate from brown macroalgae Nizimuddinia zanardini, optimization and physicochemical properties. Sep Sci Technol. 2022;57(6):872-885. doi: 10.1080/01496395.2021.1954020
  53. Sugiono S, Masruri M, Estiasih T, Widjanarko SB. Optimization of extrusion-assisted extraction parameters and characterization of alginate from brown algae (Sargassum cristaefolium). J Food Sci Technol. 2019;56(8):3687-3696. doi: 10.1007/s13197-019-03829-z
  54. Din SS, Chew KW, Chang Y-K, Show PL, Phang SM, Juan JC. Extraction of agar from Eucheuma cottonii and Gelidium amansii seaweeds with sonication pretreatment using autoclaving method. J Oceanol Limnol. 2019;37(3):871-880. doi: 10.1007/s00343-019-8145-6
  55. Sharma M, Chaudhary JP, Mondal D, Meena R, Prasad K. A green and sustainable approach to utilize bio-ionic liquids for the selective precipitation of high purity agarose from an agarophyte extract. Green Chem. 2015;17(5):2867-2873. doi: 10.1039/C4GC02498B
  56. Rieland JM, Love BJ. Ionic liquids: a milestone on the pathway to greener recycling of cellulose from biomass. Resources Conserv Recycl. 2020;155:104678. doi: 10.1016/j.resconrec.2019.104678
  57. Chen H, Xiao Q, Weng H, Zhang Y, Yang Q, Xiao A. Extraction of sulfated agar from Gracilaria lemaneiformis using hydrogen peroxide-assisted enzymatic method. Carbohydr Polym. 2020;232:115790. doi: 10.1016/j.carbpol.2019.115790
  58. de Aguiar J, Bondancia TJ, Claro PIC, Mattoso LHC, Farinas CS, Marconcini JM. Enzymatic deconstruction of sugarcane bagasse and straw to obtain cellulose nanomaterials. ACS Sustain Chem Eng. 2020;8(5):2287-2299. doi: 10.1021/acssuschemeng.9b06806
  59. Morimura S, Nagata H, Uemura Y, Fahmi A, Shigematsu T, Kida K. Development of an effective process for utilization of collagen from livestock and fish waste. Process Biochem. 2002;37(12):1403-1412. doi: 10.1016/S0032-9592(02)00024-9
  60. Ahmed M, Verma AK, Patel R. Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: a review. Sustain Chem Pharm. 2020;18:100315. doi: 10.1016/j.scp.2020.100315
  61. Noorzai S, Verbeek CJR, Lay MC, Swan J. Collagen extraction from various waste bovine hide sources. Waste Biomass Valoriz. 2020;11:5687-5698. doi: 10.1007/s12649-019-00843-2
  62. Lee JM, Suen SKQ, Ng WL, Ma WC, Yeong WY. Bioprinting of collagen: considerations, potentials, and applications. Macromolecular Biosci. 2020;21(1):2000280. doi: 10.1002/mabi.202000280
  63. Taghizadeh M, Taghizadeh A, Yazdi MK, et al. Chitosan-based inks for 3D printing and bioprinting. Green Chem. 2022;24(1):62-101. doi: 10.1039/d1gc01799c
  64. Chawla S, Midha S, Sharma A, Ghosh S. Silk‐based bioinks for 3D bioprinting. Adv Healthc Mater. 2018;7(8): 1701204. doi: 10.1002/adhm.201701204
  65. Yu K-F, Lu T-Y, Li Y-CE, et al. Design and synthesis of stem cell-laden keratin/glycol chitosan methacrylate bioinks for 3D bioprinting. Biomacromolecules. 2022;23(7): 2814-2826. doi: 10.1021/acs.biomac.2c00191
  66. Brodin E, Boehmer M, Prentice A, et al. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents. Biomed Mater. 2022;17(5):055006. doi: 10.1088/1748-605X/ac7f15
  67. Navarro J, Clohessy RM, Holder RC, et al. In vivo evaluation of three-dimensional printed, keratin-based hydrogels in a porcine thermal burn model. Tissue Eng Part A. 2020; 26(5-6):265-278. doi: 10.1089/ten.tea.2019.0181
  68. Aramwit P, Siritientong T, Srichana T. Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Manage Res. 2012;30(3):217-224. doi: 10.1177/0734242X11404733
  69. Reddy R, Jiang Q, Aramwit P, Reddy N. Litter to leaf: the unexplored potential of silk byproducts. Trends Biotechnol. 2021;39(7):706-718. doi: 10.1016/j.tibtech.2020.11.001
  70. Shavandi A, Silva TH, Bekhit AA, Bekhit AE-DA. Keratin: dissolution, extraction and biomedical application. Biomater Sci. 2017;5(9):1699-1735. doi: 10.1039/C7BM00411G
  71. Wang Z, Yang Y, Gao Y, Xu Z, Yang S, Jin M. Establishing a novel 3D printing bioinks system with recombinant human collagen. Int J Biol Macromol. 2022;211:400-409. doi: 10.1016/j.ijbiomac.2022.05.088
  72. Tytgat L, Dobos A, Markovic M, et al. High-resolution 3D bioprinting of photo-cross-linkable recombinant collagen to serve tissue engineering applications. Biomacromolecules. 2020;21(10):3997-4007. doi: 10.1021/acs.biomac.0c00386
  73. Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171:57-71. doi: 10.1016/j.biomaterials.2018.04.034
  74. Dai M, Belaïdi J-P, Fleury G, et al. Elastin-like polypeptide-based bioink: a promising alternative for 3D bioprinting. Biomacromolecules. 2021;22(12):4956-4966. doi: 10.1021/acs.biomac.1c00861
  75. Lechner A, Trossmann VT, Scheibel T. Impact of cell loading of recombinant spider silk based bioinks on gelation and printability. Macromol Biosci. 2022;22(3):2100390. doi: 10.1002/mabi.202100390
  76. Schacht K, Jüngst T, Schweinlin M, Ewald A, Groll J, Scheibel T. Biofabrication of cell‐loaded 3D spider silk constructs. Angew Chemie Int Ed. 2015;54(9):2816-2820. doi: 10.1002/anie.201409846
  77. Buechter DD, Paolella DN, Leslie BS, Brown MS, Mehos KA, Gruskin EA. Co-translational incorporation of trans-4- hydroxyproline into recombinant proteins in bacteria. J Biol Chem. 2003;278(1):645-650. doi: 10.1074/jbc.M209364200
  78. Toman PD, Chisholm G, McMullin H, et al. Production of recombinant human type I procollagen trimers using a four-gene expression system in the yeast Saccharomyces cerevisiae. J Biol Chem. 2000;275(30):23303-23309. doi: 10.1074/jbc.M002284200
  79. Vaughan PR, Galanis M, Richards KM, Tebb TA, Ramshaw JA, Werkmeister JA. Production of recombinant hydroxylated human type III collagen fragment in Saccharomyces cerevisiae. DNA Cell Biol. 1998;17(6): 511-518. doi: 10.1089/dna.1998.17.511
  80. Barnes LM, Bentley CM, Dickson AJ. Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng. 2003;81(6):631-639. doi: 10.1002/bit.10517
  81. Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009;27(3):297-306. doi: 10.1016/j.biotechadv.2009.01.008
  82. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-444. doi: 10.1038/nature14539
  83. Ng WL, Chan A, Ong YS, Chua CK. Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual Phys Prototyping. 2020;15(3):340-358. doi: 10.1080/17452759.2020.1771741
  84. Zhuang P, Ng WL, An J, Chua CK, Tan LP. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. PLoS One. 2019;14(6):e0216776. doi: 10.1371/journal.pone.0216776
  85. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
  86. Ng WL, Yeong WY, Naing MW. Potential of bioprinted films for skin tissue engineering. In: Proceedings of the 1st International Conference on Progress in Additive Manufacturing; 2014:441-446. doi: 10.3850/978-981-09-0446-3_065
  87. Ng WL, Yeong WY, Naing MW. Development of polyelectrolyte chitosan-gelatin hydrogels for skin bioprinting. Procedia CIRP. 2016;49:105-112. doi: 10.1016/j.procir.2015.09.002
  88. Suntornnond R, Ng WL, Huang X, Yeow ECH, Yeong WY. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications via saponification and heat treatment process. J Mater Chem B. 2022;10(31): 5989-6000. doi: 10.1039/D2TB00442A
  89. Ng WL, Yeong WY, Naing MW. Microvalve bioprinting of cellular droplets with high resolution and consistency. Proc Int Conf Prog Additive Manuf. 2016; 2016:397-402. doi: 10.3850/2424-8967_V02-236
  90. Ng WL, Lee JM, Yeong WY, Win Naing M. Microvalve-based bioprinting – process, bio-inks and applications. Biomater Sci. 2017;5(4):632-647. doi: 10.1039/C6BM00861E
  91. Li W, Mille LS, Robledo JA, Uribe T, Huerta V, Zhang YS. Recent advances in formulating and processing biomaterial inks for vat polymerization‐based 3D printing. Adv Healthc Mater. 2020;9(15):2000156. doi: 10.1002/adhm.202000156
  92. Ng WL, Chua CK, Shen Y-F. Print me an organ! Why we are not there yet. Prog Polymer Sci. 2019;97:101145. doi: 10.1016/j.progpolymsci.2019.101145
  93. Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From shape to function: the next step in bioprinting. Adv Mater. 2020;32(12):1906423. doi: 10.1002/adma.201906423
  94. Ng WL, Wang S, Yeong WY, Naing MW. Skin bioprinting: impending reality or fantasy? Trends Biotechnol. 2016;34 (9):689-699. doi: 10.1016/j.tibtech.2016.04.006
  95. Lee JM, Ng WL, Yeong WY. Resolution and shape in bioprinting: strategizing towards complex tissue and organ printing. Appl Phys Rev. 2019;6(1):011307. doi: 10.1063/1.5053909
  96. Ng WL, Lee JM, Zhou M, Yeong WY. Hydrogels for 3-D bioprinting-based tissue engineering. In: Narayan R, ed. Rapid Prototyping of Biomaterials. Elsevier; 2020: 183-204. doi: 10.1016/B978-0-08-102663-2.00008-3
  97. Ng WL, Tan ZQ, Yeong WY, Naing MW. Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication. 2018;10(2):025005. doi: 10.1088/1758-5090/aa9e1e
  98. Lu Y, Rai R, Nitin N. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing. Food Res Int. 2023;173:113384. doi: 10.1016/j.foodres.2023.113384
  99. Chen H, Liu Y, Balabani S, Hirayama R, Huang J. Machine learning in predicting printable biomaterial formulations for direct ink writing. Research. 2023;6:0197. doi: 10.34133/research.0197
  100. Han S, Kim CM, Jin S, Kim TY. Study of the process-induced cell damage in forced extrusion bioprinting. Biofabrication. 2021;13(3):035048. doi: 10.1088/1758-5090/ac0415
  101. Fischer L, Nosratlo M, Hast K, et al. Calcium supplementation of bioinks reduces shear stress-induced cell damage during bioprinting. Biofabrication. 2022;14(4):045005. doi: 10.1088/1758-5090/ac84af
  102. Ng WL, Shkolnikov V. Optimizing cell deposition for inkjet-based bioprinting. Int J Bioprint. 2024;10(2):2135. doi: 10.36922/ijb.2135
  103. Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016; 5(3):326-333. doi: 10.1002/adhm.201500677
  104. Ng WL, Huang X, Shkolnikov V, Goh GL, Suntornnond R, Yeong WY. Controlling droplet impact velocity and droplet volume: key factors to achieving high cell viability in sub-nanoliter droplet-based bioprinting. Int J Bioprint. 2022;8(1):424. doi: 10.18063/ijb.v8i1.424
  105. Ng WL, Huang X, Shkolnikov V, Suntornnond R, Yeong WY. Polyvinylpyrrolidone-based bioink: influence of bioink properties on printing performance and cell proliferation during inkjet-based bioprinting. Bio-Design Manufacturing. 2023;6:676-690. doi: 10.1007/s42242-023-00245-3
  106. Ng WL, Yeong WY, Naing MW. Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing. Materials. 2017;10(2):190. doi: 10.3390/ma10020190
  107. Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based bioprinting–process, materials, applications and regulatory challenges. Biofabrication. 2020;12(2):022001. doi: 10.1088/1758-5090/ab6034
  108. Mohammadrezaei D, Podina L, De Silva J, Kohandel M. Cell viability prediction and optimization in extrusion-based bioprinting via neural network-based Bayesian optimization models. Biofabrication. 2024;16(2). doi: 10.1088/1758-5090/ad17cf
  109. Xu H, Liu Q, Casillas J, et al. Prediction of cell viability in dynamic optical projection stereolithography-based bioprinting using machine learning. J Intell Manuf. 2022;33(4):995-1005. doi: 10.1007/s10845-020-01708-5
  110. Ruberu K, Senadeera M, Rana S, et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl Mater Today. 2021;22:100914. doi: 10.1016/j.apmt.2020.100914
  111. Fu Z, Angeline V, Sun W. Evaluation of printing parameters on 3D extrusion printing of pluronic hydrogels and machine learning guided parameter recommendation. Int J Bioprint. 2021;7(4):434. doi: 10.18063/ijb.v7i4.434
  112. Oh D, Shirzad M, Kim MC, Chung E-J, Nam SY. Rheology-informed hierarchical machine learning model for the prediction of printing resolution in extrusion-based bioprinting. Int J Bioprinting. 2023;9(6):1280. doi: 10.36922/ijb.1280
  113. Hales S, Tokita E, Neupane R, et al. 3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology. 2020;31(17):172001. doi: 10.1088/1361-6528/ab5f29
  114. Kong YL, Gupta MK, Johnson BN, McAlpine MC. 3D printed bionic nanodevices. Nano Today. 2016;11(3): 330-350. doi: 10.1016/j.nantod.2016.04.007
  115. Gao C, Li Y, Liu X, Huang J, Zhang Z. 3D bioprinted conductive spinal cord biomimetic scaffolds for promoting neuronal differentiation of neural stem cells and repairing of spinal cord injury. Chem Eng J. 2023;451:138788. doi: 10.1016/j.cej.2022.138788
  116. Mannoor MS, Jiang Z, James T, et al. 3D printed bionic ears. Nano Lett. 2013;13(6):2634-2639. doi: 10.1021/nl4007744
  117. Zips S, Grob L, Rinklin P, et al. Fully printed μ-needle electrode array from conductive polymer ink for bioelectronic applications. ACS Appl Mater Interfaces. 2019;11(36):32778-32786. doi: 10.1021/acsami.9b11774.
  118. Su C-K, Chen J-C. One-step three-dimensional printing of enzyme/substrate–incorporated devices for glucose testing. Anal Chim Acta. 2018;1036:133-140. doi: 10.1016/j.aca.2018.06.073
  119. Hussain A, Abbas N, Ali A. Inkjet printing: a viable technology for biosensor fabrication. Chemosensors. 2022;10(3):103. doi: 10.3390/chemosensors10030103
  120. Tomaskovic‐Crook E, Zhang P, Ahtiainen A, et al. Human neural tissues from neural stem cells using conductive biogel and printed polymer microelectrode arrays for 3D electrical stimulation. Adv Healthc Mater. 2019;8(15):1900425. doi: 10.1002/adhm.201900425
  121. Moya A, Ortega-Ribera M, Guimerà X, et al. Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system. Lab Chip. 2018;18(14):2023-2035. doi: 10.1039/C8LC00456K
  122. Rothbauer M, Eilenberger C, Spitz S, et al. Recent advances in additive manufacturing and 3D bioprinting for organs-on-a-chip and microphysiological systems. Review. Front Bioeng Biotechnol. 2022;10. doi: 10.3389/fbioe.2022.837087
  123. Lind JU, Busbee TA, Valentine AD, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater. 2017;16(3):303-308. doi: 10.1038/nmat4782
  124. Liu Z, Zhang Y, Xu S, et al. A 3D printed smartphone optosensing platform for point-of-need food safety inspection. Anal Chim Acta. 2017;966:81-89. doi: 10.1016/j.aca.2017.02.022
  125. Dufil G, Bernacka-Wojcik I, Armada-Moreira A, Stavrinidou E. Plant bioelectronics and biohybrids: the growing contribution of organic electronic and carbon-based materials. Chem Rev. 2022;122(4):4847-4883. doi: 10.1021/acs.chemrev.1c00525
  126. Yamashita T, Yamashita Y, Takano M, Sato N, Nakano S, Yokoyama H. 3D printed lattice-structured metal electrodes for enhanced current production in bioelectrochemical systems. Environ Technol. 2023;44(21):3229-3235. doi: 10.1080/09593330.2022.2056083
  127. Baş F, Kaya MF. 3D printed anode electrodes for microbial electrolysis cells. Fuel. 2022;317(6):123560. doi: 10.1016/j.fuel.2022.123560
  128. Hoffmann M, Elwany A. In-space additive manufacturing: a review. J Manuf Sci Eng. 2023;145(2). doi: 10.1115/1.4055603
  129. Rezapour Sarabi M, Yetisen AK, Tasoglu S. Bioprinting in microgravity. ACS Biomater Sci Eng. 2023;9(6):3074-3083. doi: 10.1021/acsbiomaterials.3c00195
  130. Yang J-Q, Jiang N, Li Z-P, et al. The effects of microgravity on the digestive system and the new insights it brings to the life sciences. Life Sci Space Res. 2020;27:74-82. doi: 10.1016/j.lssr.2020.07.009
  131. Mao M, Meng Z, Huang X, et al. 3D printing in space: from mechanical structures to living tissues. Int J Extreme Manuf. 2024;6(2):023001. doi: 10.1088/2631-7990/ad23ef
  132. Parfenov VA, Khesuani YD, Petrov SV, et al. Magnetic levitational bioassembly of 3D tissue construct in space. Sci Adv. 2020;6(29):eaba4174. doi: 10.1126/sciadv.aba4174
  133. Tabury K, Rehnberg E, Baselet B, Baatout S, Moroni L. Bioprinting of cardiac tissue in space: where are we? Adv Healthc Mater. 2023;12(23): 2203338. doi: 10.1002/adhm.202203338
  134. Chang CC, Boland ED. 3D bioprinting aboard the international space station using the techshot biofabrication facility. In: Hessel V, Stoudemire J, Miyamoto H, Fisk I D, eds. In‐Space Manufacturing and Resources; 2022:303-317. doi: 10.1002/9783527830909.ch16
  135. Mo XW, Zhang YM, Wang ZX, et al. Satellite-based on-orbit printing of 3D tumor models. Adv Mater. 2023: e2309618. doi: 10.1002/adma.202309618
  136. Averesch NJH, Berliner AJ, Nangle SN, et al. Microbial biomanufacturing for space-exploration—what to take and when to make. Nat Commun. 2023;14(1):2311. doi: 10.1038/s41467-023-37910-1
  137. Duraj-Thatte AM, Manjula-Basavanna A, Rutledge J, et al. Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nat Commun. 2021;12(1):6600. doi: 10.1038/s41467-021-26791-x
  138. Heveran CM, Williams SL, Qiu J, et al. Biomineralization and successive regeneration of engineered living building materials. Matter. 2020;2(2):481-494. doi: 10.1016/j.matt.2019.11.016
  139. Gantenbein S, Colucci E, Käch J, et al. Three-dimensional printing of mycelium hydrogels into living complex materials. Nat Mater. 2022;22(1):128-134. doi: 10.1038/s41563-022-01429-5

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing