AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4075
RESEARCH ARTICLE

Effect of graphene and graphene oxide addition on crosslinking and mechanical properties of photocurable resins for stereolithography

S. Lopez de Armentia1* R. Giménez2 J.C. del Real1 B. Serrano2 J.C. Cabanelas2 E. Paz1
Show Less
1 Institute for Research in Technology/Mechanical Engineering Department, Universidad Pontificia Comillas, Madrid, Spain
2 Department of Materials Science and Engineering and Chemical Engineering, Instituto Tecnológico de Química y Materiales Álvaro Alonso Barba, University Carlos III of Madrid, Leganés, Spain
Submitted: 28 June 2024 | Accepted: 14 August 2024 | Published: 15 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The mechanical properties of the resins used in stereolithography are often inadequate, prompting studies on their enhancement with nanofillers such as graphene-based nanomaterials (GBNs). GBNs hold promise for enhancing the mechanical performance of photocurable resins, yet their incorporation often leads to unexpected alterations that impact the final nanocomposite. The full spectrum of GBN effects on these resins remains incompletely understood, with many studies reporting suboptimal improvements. This study aims to elucidate the influence of graphene (G) and graphene oxide (GO) on the mechanical properties and polymer structure of an acrylic photocurable resin used in stereolithography. The novelty of this research lies in examining how GBNs affect the polymer structure during polymerization and the degree of crosslinking—parameters that have not been sufficiently explored—and correlating these effects with photopolymerization outcomes. Stereolithography is particularly valuable in biomedicine thanks to not only its exceptional precision in creating patient-specific models, functional parts, implant devices or scaffolds for tissue engineering, but also various other innovative uses across different industries. Through comprehensive tensile tests, dynamic mechanical thermal analysis, differential scanning calorimetry, Fourier-transformed infrared spectroscopy, and microscopy analyses, it was found that GO enhances tensile strength but reduces the crosslinking degree, thus hindering overall improvements. These findings highlight the critical roles of nanomaterial dispersion, matrix-polymer interaction, and reinforcement in affecting proper crosslinking. Future studies should investigate the impact of varying nanoparticle sizes on crosslinking to further validate these hypotheses.

Keywords
Graphene-based nanomaterials
Photocurable resin
Stereolithography
Dynamic mechanical thermal analysis
Crosslinking
Funding
This work was supported by Comillas Pontifical University (grant number PP2020_08).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Pazhamannil RV, Govindan P. Current state and future scope of additive manufacturing technologies via vat photopolymerization. Mater Today Proc. 2021;43:130-136. doi: 10.1016/j.matpr.2020.11.225
  2. Alifui-Segbaya F. Biomedical photopolymers in 3D printing. RPJ. 2019;26:437-444. doi: 10.1108/RPJ-10-2018-0268
  3. Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121-6130. doi: 10.1016/j.biomaterials.2010.04.050
  4. Al Rashid A, Ahmed W, Khalid MY, Koç M. Vat photopolymerization of polymers and polymer composites: processes and applications. Addit Manuf. 2021; 47:102279. doi: 10.1016/j.addma.2021.102279
  5. Shebeeb CM, Afif MB, Jacob L, Choi D, Butt H. Vat photopolymerisation 3D printing of graphene-based materials. Virt Phys Prototyping. 2013;18:e2276250. doi: 10.1080/17452759.2023.2276250
  6. Al Rashid A, Khan SA, Al-Ghamdi SG, Koç M. Additive manufacturing of polymer nanocomposites: needs and challenges in materials, processes, and applications. J Mater Res Technol. 2021;14:910-941. doi: 10.1016/j.jmrt.2021.07.016
  7. Alsaadi M, Hinchy EP, McCarthy CT, Moritz VF, Portela A, Devine DM. 3D printing of photocurable resin reinforced by functionalised graphene nanoplatelets. Mater Proc. 2023;14:20. doi: 10.3390/IOCN2023-14540
  8. Paz E, Forriol F, del Real JC, Dunne N. Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications. Mater Sci Eng C. 2017;77:1003-1011. doi: 10.1016/j.msec.2017.03.269
  9. He S, Petkovich ND, Liu K, Qian Y, Macosko CW, Stein A. Unsaturated polyester resin toughening with very low loadings of GO derivatives. Polymer. 2017;110:149-157. doi: 10.1016/j.polymer.2016.12.057
  10. Zhang G, Song D, Jiang J, et al. Electrically assisted continuous vat photopolymerization 3D printing for fabricating high-performance ordered graphene/polymer composites. Compos B Eng. 2023;250:110449. doi: 10.1016/j.compositesb.2022.110449
  11. Liang A, Jiang X, Hong X, Jiang Y, Shao Z, Zhu D. Recent developments concerning the dispersion methods and mechanisms of graphene. Coatings. 2018;8:33. doi: 10.3390/coatings8010033
  12. Markandan K, Lai CQ. Enhanced mechanical properties of 3D printed graphene-polymer composite lattices at very low graphene concentrations. Compos A: Appl Sci Manuf. 2020;129:105726. doi: 10.1016/j.compositesa.2019.105726
  13. de Armentia SL, Fernández-Villamarín S, Ballesteros Y, Del Real JC, Dunne N, Paz E. 3D printing of a graphene-modified photopolymer using stereolithography for biomedical applications: a study of the polymerization reaction. Int J Bioprint. 2022;8:503. doi: 10.18063/ijb.v8i1.503
  14. Holt BD, Wright ZM, Arnold AM, Sydlik SA. Graphene oxide as a scaffold for bone regeneration. WIREs Nanomed Nanobiotechnol. 2017;9:e1437. doi: 10.1002/wnan.1437
  15. Salgado H, Fialho J, Marques M, Vaz M, Figueiral MH, Mesquita P. Mechanical and surface properties of a 3D-printed dental resin reinforced with graphene. J Rpemd. 2023;64:12-19. doi: 10.24873/j.rpemd.2023.03.1050
  16. Hanon MM, Ghaly A, Zsidai L, Szakál Z, Szabó I, Kátai L. Investigations of the mechanical properties of DLP 3D printed graphene/resin composites. Acta Polytech Hung. 2021;18(8):143-161. doi: 10.12700/APH.18.8.2021.8.8
  17. Lopez De Armentia S, Abenojar J, Ballesteros Y, Del Real JC, Dunne N, Paz E. Polymerization kinetics of acrylic photopolymer loaded with graphene-based nanomaterials for additive manufacturing. Nanomaterials. 2022;12:4498. doi: 10.3390/nano12244498
  18. Mendes-Felipe C, Patrocinio D, Laza JM, Ruiz-Rubio L, Vilas-Vilela JL. Evaluation of postcuring process on the thermal and mechanical properties of the Clear02TM resin used in stereolithography. Polymer Test. 2018;72:115-121. doi: 10.1016/j.polymertesting.2018.10.018
  19. Cingesar IK, Marković M-P, Vrsaljko D. Effect of post-processing conditions on polyacrylate materials used in stereolithography. Addit Manuf. 2022;55:102813. doi: 10.1016/j.addma.2022.102813
  20. Markandan K, Seetoh IP, Lai CQ. Mechanical anisotropy of graphene nanocomposites induced by graphene alignment during stereolithography 3D printing. J Mater Res. 2021;36:4262-4274. doi: 10.1557/s43578-021-00400-5
  21. Lai CQ, Markandan K, Luo B, Lam YC, Chung WC, Chidambaram A. Viscoelastic and high strain rate response of anisotropic graphene-polymer nanocomposites fabricated with stereolithographic 3D printing. Addit Manuf. 2021;37:101721. doi: 10.1016/j.addma.2020.101721
  22. Jančovičová V, Mikula M, Havlínová B, Jakubíková Z. Influence of UV-curing conditions on polymerization kinetics and gloss of urethane acrylate coatings. Prog Organic Coat. 2013;76:432-438. doi: 10.1016/j.porgcoat.2012.10.010
  23. Arias-Ferreiro G, Ares-Pernas A, Lasagabáster-Latorre A, et al. Printability study of a conductive polyaniline/acrylic formulation for 3D printing. Polymers. 2021;13:2068. doi: 10.3390/polym13132068
  24. ISO 527-2:2012. Plastics – Determination of Tensile Properties – Part 2: Test Conditions for Moulding and Extrusion Plastics.
  25. Quantifying Polymer Crosslinking Density Using Rheology and DMA – TA Instruments. Available at: https://www. tainstruments.com/applications-notes/quantifying-polymer-crosslinking-density-using-rheology-and-dma/ (accessed March 26, 2024).
  26. Zheng J, Png ZM, Ng SH, et al. Vitrimers: Current research trends and their emerging applications. Mater Today. 2021;51:586-625. doi: 10.1016/j.mattod.2021.07.003
  27. Ryu SH, Sin JH, Shanmugharaj AM. Study on the effect of hexamethylene diamine functionalized graphene oxide on the curing kinetics of epoxy nanocomposites. Eur Polymer J. 2014;52:88-97. doi: 10.1016/j.eurpolymj.2013.12.014
  28. Berlanga Duarte ML, Reyna Medina LA, Torres Reyes P, Esparza González SC, Herrera González AM. Dental restorative composites containing methacrylic spiroorthocarbonate monomers as antishrinking matrixes. J Appl Polym Sci. 2019;136:47114. doi: 10.1002/app.47114
  29. Alifui-Segbaya F, Bowman J, White AR, George R, Fidan I. Characterization of the double bond conversion of acrylic resins for 3D printing of dental prostheses. Compend Contin Educ Dent. 2019;40:e7-e11.
  30. Ahmadi-Moghadam B, Sharafimasooleh M, Shadlou S, Taheri F. Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater Design (1980-2015). 2015;66:142-149. doi: 10.1016/j.matdes.2014.10.047
  31. Hawkins DA, Haque A. Fracture toughness of carbon-graphene/epoxy hybrid nanocomposites. Procedia Eng. 2014;90:176-181. doi: 10.1016/j.proeng.2014.11.833
  32. Guo W, Yang Y, Liu C, et al. 3D printed TPMS structural PLA/GO scaffold: process parameter optimization, porous structure, mechanical and biological properties. J Mech Behav Biomed Mater. 2023;142:105848. doi: 10.1016/j.jmbbm.2023.105848
  33. Sharma A, Pan X, Bjuggren JM, et al. Probing the relationship between molecular structures, thermal transitions, and morphology in polymer semiconductors using a woven glass-mesh-based DMTA technique. Chem Mater. 2019;31:6740-6749. doi: 10.1021/acs.chemmater.9b01213
  34. Jiménez-Suárez A, Moriche R, Prolongo SG, Sánchez M, Ureña A. GNPs reinforced epoxy nanocomposites used as thermal interface materials. JNanoR. 2016;38:18-25. doi: 10.4028/www.scientific.net/JNanoR.38.18
  35. Putz KW, Palmeri MJ, Cohn RB, Andrews R, Brinson LC. Effect of cross-link density on interphase creation in polymer nanocomposites. Macromolecules. 2008;41:6752-6756. doi: 10.1021/ma800830p
  36. Vilas JL, Laza JM, Garay MT, Rodríguez M, León LM. Unsaturated polyester resins cure: kinetic, rheologic, and mechanical dynamical analysis. II. The glass transition in the mechanical dynamical spectrum of polyester networks. J Polym Sci B: Polym Phys. 2001;39:146-152. doi: 10.1002/1099-0488(20010101)39:1<146::AID-POLB130>3.0.CO;2-A
  37. La LBT, Nguyen H, Tran LC, et al. Exfoliation and dispersion of graphene nanoplatelets for epoxy nanocomposites. Adv Nanocompos. 2024;1:39-51. doi: 10.1016/j.adna.2023.10.001
  38. Tang L-C, Wan Y-J, Yan D, et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon. 2013;60:16-27. doi: 10.1016/j.carbon.2013.03.050
  39. Paz E, Ballesteros Y, Abenojar J, Dunne N, del Real JC. Advanced G-MPS-PMMA bone cements: influence of graphene silanisation on fatigue performance, thermal properties and biocompatibility. Nanomaterials. 2021;11:139. doi: 10.3390/nano11010139
  40. Hu K, Kulkarni DD, Choi I, Tsukruk VV. Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci. 2014;39:1934-1972. doi: 10.1016/j.progpolymsci.2014.03.001
  41. Surnova A, Balkaev D, Musin D, Amirov R, Dimiev AM. Fully exfoliated graphene oxide accelerates epoxy resin curing, and results in dramatic improvement of the polymer mechanical properties. Compos B: Eng. 2019;162:685-691. doi: 10.1016/j.compositesb.2019.01.020
  42. Nielsen LE. Cross-linking–effect on physical properties of polymers. J Macromol Sci C. 1969;3:69-103. doi: 10.1080/15583726908545897
  43. Shokuhfar A, Arab B. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J Mol Model. 2013;19:3719-3731. doi: 10.1007/s00894-013-1906-9
  44. Gao C, Liu T, Shuai C, Peng S. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance. Sci Rep. 2014; 4:4712. doi: 10.1038/srep04712
  45. Sharif M, Pourabbas B, Sangermano M, et al. The effect of graphene oxide on UV curing kinetics and properties of SU8 nanocomposites. Polym Int. 2017;66: 405-417. doi: 10.1002/pi.5271
  46. Moriche R, Artigas J, Reigosa L, Sánchez M, Prolongo SG, Ureña A. Modifications induced in photocuring of Bis- GMA/TEGDMA by the addition of graphene nanoplatelets for 3D printable electrically conductive nanocomposites. Compos Sci Technol. 2019;184:107876. doi: 10.1016/j.compscitech.2019.107876
  47. Wan Y-J, Tang L-C, Yan D, et al. Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Compos Sci Technol. 2013;82:60-68. doi: 10.1016/j.compscitech.2013.04.009
  48. Borella PS, Alvares LAS, Ribeiro MTH, et al. Das neves, physical and mechanical properties of four 3D-printed resins at two different thick layers: an in vitro comparative study. Dental Mater. 2023;39:686-692. doi: 10.1016/j.dental.2023.06.002
  49. Uysal E, Çakir M, Ekici B. Graphene oxide/epoxy acrylate nanocomposite production via SLA and importance of graphene oxide surface modification for mechanical properties. Rapid Prototyping J. 2021;27:682-691. doi: 10.1108/RPJ-06-2020-0114
  50. Alexopoulos ND, Paragkamian Z, Poulin P, Kourkoulis SK. Fracture related mechanical properties of low and high graphene reinforcement of epoxy nanocomposites. Compos Sci Technol. 2017;150:194-204. doi: 10.1016/j.compscitech.2017.07.030

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing