AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3871
RESEARCH ARTICLE

Amphiphobic encapsulation for biodegradable electronics

Daeun Sung1 Yerim Lee1,2 Seunghun Han1,2 Sumin Kim1,2 Bon Jekal1,2 Minki Hong1,2 Keunhong Jeong3 Jahyun Koo1,2*
Show Less
1 Department of Physics and Chemistry, School of Biomedical Engineering, Korea University, Seoul, South Korea
2 Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea
3 Department of Chemistry, Korea Military Academy, Seoul, South Korea
IJB 2024, 10(5), 3871 https://doi.org/10.36922/ijb.3871
Submitted: 5 June 2024 | Accepted: 4 July 2024 | Published: 14 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Biodegradable electronics, capable of degradation and resorption in biological environments, require an encapsulation layer for precise lifetime control to perform versatile sensing and actuation in various clinical scenarios. Recent advances in biodegradable polymer chemistry have enabled the development of photocurable encapsulation of biodegradable electronics. However, challenges, such as nonuniform irradiation and incomplete crosslinking due to the limited penetration depth of the light source, restrict their long-term implantable operation. In this study, a 50-μm layer-by-layer three-dimensional (3D) printing approach was adopted for a photocurable encapsulation layer to enhance the lifetime of biodegradable electronics through predictable and homogeneous crosslinking of the encapsulation material. The waterproof and mechanical properties of the 3D-printed polybutanedithiol 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione pentenoic anhydride (PBTPA) polymer are analyzed and compared with at-once UV-cured PBTPAs. Our study also investigates the enhanced waterproofing properties of the binary hydrophobic polyanhydride, known for its amphiphobic structure. This structure combines both water-trapping and repulsion mechanisms, supported by a high-density network of hydrogen bonding, that create a barrier against water penetration. The 50-μm layer-by-layer 3D printing approach enables controlled irradiation, thereby improving the lifetime of biodegradable electronics and enhancing their mechanical properties. These advancements broaden the scope of biodegradable electronic applications in various fields.

 

Graphical abstract
Keywords
3D printing
Additive manufacturing
Biodegradable electronics
Amphi¬phobic
Encapsulation
Funding
This work was supported by the National Research Foundation of Korea (NRF) grant (RS-2024-00345402), Korea Health Industry Development Institute (KHIDI) (Grant No. RS-2022-KH125686, HI23C0982), and Korea University grants (K2323201, K2109981). Following are results of a study on the “Leaders in INdustry-university Cooperation 3.0” Project, supported by the Ministry of Education and National Research Foundation of Korea.
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Shim JS, Rogers JA, Kang SK. Physically transient electronic materials and devices. Mater Sci Eng R Rep. 2021; 145:100624. doi: 10.1016/j.mser.2021.100624
  2. Bae H, Lee BH, Lee D, et al. Physically transient memory on a rapidly dissoluble paper for security application. Sci Rep. 2016;6(1):38324. doi: 10.1038/srep38324
  3. Tran H, Feig VR, Liu K, et al. Stretchable and fully degradable semiconductors for transient electronics. ACS Cent Sci. 2019;5(11):1884-1891. doi: 10.1021/acscentsci.9b00850
  4. Hu W, Jiang J, Xie D, et al. Transient security transistors self-supported on biodegradable natural-polymer membranes for brain-inspired neuromorphic applications. Nanoscale. 2018;10:14893-14901. doi: 10.1039/c8nr04136a
  5. Lee G, Choi YS, Yoon HJ, Rogers JA. Advances in physicochemically stimuli-responsive materials for on-demand transient electronic systems. Matter. 2020;3(4):1031-1052. doi: 10.1016/j.matt.2020.08.021
  6. Kang SK, Yin L, Bettinger C. The emergence of transient electronic devices. MRS Bull. 2020;45(2):87-95. doi: 10.1557/mrs.2020.19
  7. Jamshidi R, Taghavimehr M, Chen Y, Hashemi N, Montazami R. Transient electronics as sustainable systems: from fundamentals to applications. Adv Sustain Syst. 2022;6(2):2100057. doi: 10.1002/adsu.202100057
  8. Kim KS, Yoo J, Shim JS, et al. Biodegradable molybdenum/ polybutylene adipate terephthalate conductive paste for flexible and stretchable transient electronics. Adv Mater Technol. 2022;7(2):2001297. doi: 10.1002/admt.202001297
  9. Kim KS, Maeng WY, Kim S, et al. Isotropic conductive paste for bioresorbable electronics. Mater Today Bio. 2023;18:100541. doi: 10.1016/j.mtbio.2023.100541
  10. Choi Y, Koo J, Rogers JA. Inorganic materials for transient electronics in biomedical applications. MRS Bull. 2020;45(2):103-112. doi: 10.1557/mrs.2020.25
  11. Li R, Wang L, Kong D, Yin L. Recent progress on biodegradable materials and transient electronics. Bioact Mater. 2018;3(3):322-333. doi: 10.1016/j.bioactmat.2017.12.001
  12. Fanelli A, Ghezzi D. Transient electronics: new opportunities for implantable neurotechnology. Curr Opin Biotechnol. 2021;72:22-28. doi: 10.1016/j.copbio.2021.08.011
  13. Lee J, Cho HR, Cha GD, et al. Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat Commun. 2019;10(1):5205. doi: 10.1038/s41467-019-13198-y
  14. Benhabbour SR, Kovarova M, Jones C, et al. Ultra-long-acting tunable biodegradable and removable controlled release implants for drug delivery. Nat Commun. 2019;10(1):4324. doi: 10.1038/s41467-019-12141-5
  15. Koo J, Kim SB, Choi YS, et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci Adv. 2020;6(35):eabb1093. doi: 10.1126/sciadv.abb1093
  16. Pal RK, Farghaly AA, Wang C, Collinson MM, Kundu SC, Yadavalli VK. Conducting polymer-silk biocomposites for flexible and biodegradable electrochemical sensors. Biosens Bioelectron. 2016;81:294-302. doi: 10.1016/j.bios.2016.03.010
  17. Li R, Qi H, Ma Y, et al. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat Commun. 2020;11(1):3207. doi: 10.1038/s41467-020-17008-8
  18. Kim HS, Yang SM, Jang TM, Oh N, Kim HS, Hwang SW. Bioresorbable silicon nanomembranes and iron catalyst nanoparticles for flexible, transient electrochemical dopamine monitors. Adv Healthc Mater. 2018;7(24):e1801071. doi: 10.1002/adhm.201801071
  19. Lu D, Yan Y, Deng Y, et al. Bioresorbable wireless sensors as temporary implants for in vivo measurements of pressure. Adv Funct Mater. 2020;30(40):2003754. doi: 10.1002/adfm.202003754
  20. Shin J, Yan Y, Bai W, et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat Biomed Eng. 2019;3(1):37-46. doi: 10.1038/s41551-018-0300-4
  21. Shin J, Liu Z, Bai W, et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci Adv. 2019;5(7):eaaw1899. doi: 10.1126/sciadv.aaw1899
  22. Lee G, Ray E, Yoon HJ, et al. A bioresorbable peripheral nerve stimulator for electronic pain block. Sci Adv. 2022;8(40):eabp9169. doi: 10.1126/sciadv.abp9169
  23. Koo J, MacEwan MR, Kang SK, et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat Med. 2018;24(12): 1830-1836. doi: 10.1038/s41591-018-0196-2
  24. Choi YS, Hsueh YY, Koo J, et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat Commun. 2020;11(1):5990. doi: 10.1038/s41467-020-19660-6
  25. Maeng WY, Tseng WL, Li S, Koo J, Hsueh YY. Electroceuticals for peripheral nerve regeneration. Biofabrication. 2022;14(4):042002. doi: 10.1088/1758-5090/ac8baa
  26. Kim G, Hong M, Lee Y, Koo J. Biodegradable materials and devices for neuroelectronics. MRS Bull. 2023;48(5): 518-530. doi: 10.1557/s43577-023-00529-0
  27. Choi YS, Yin RT, Pfenniger A, et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat Biotechnol. 2021;39(10):1228-1238. doi: 10.1038/s41587-021-00948-x
  28. Park CW, Kang SK, Hernandez HL, et al. Thermally triggered degradation of transient electronic devices. Adv Mater. 2015;27(25):3783-3788. doi: 10.1002/adma.201501180
  29. Gao Y, Zhang Y, Wang X, et al. Moisture-triggered physically transient electronics. Sci Adv. 2017;3(9):e1701222. doi: 10.1126/sciadv.1701222
  30. Choi YS, Koo J, Lee YJ, et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv Funct Mater. 2020;30(31):2000941. doi: 10.1002/adfm.202000941
  31. Kim SY, Han G, Hwang DB, et al. Design and usability evaluations of a 3D-printed implantable drug delivery device for acute liver failure in preclinical settings. Adv Healthc Mater. 2021;10(14):e2100497. doi: 10.1002/adhm.202100497
  32. Won SM, Koo J, Crawford KE, et al. Natural wax for transient electronics. Adv Funct Mater. 2018;28(32):1801819. doi: 10.1002/adfm.201801819
  33. Kang SK, Hwang SW, Cheng H, et al. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv Funct Mater. 2014;24(28):4427-4434. doi: 10.1002/adfm.201304293
  34. Han G, Lee H, Kang JM, et al. 3D-printed NIR-responsive bullets as multifunctional nanodrug platforms for image-guided local chemo-photothermal therapy. Chem Eng J. 2023;477:147083. doi: 10.1016/j.cej.2023.147083
  35. Jang TS, Park SJ, Lee JE, et al. Topography‐supported nanoarchitectonics of hybrid scaffold for systematically modulated bone regeneration and remodeling. Adv Funct Mater. 2022;32(51):2206863. doi: 10.1002/adfm.202206863
  36. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
  37. Wu J, Fei F, Wei C, et al. Efficient multi-barrier thin film encapsulation of OLED using alternating Al2O3 and polymer layers. RSC Adv. 2018;8(11):5721-5727. doi: 10.1039/c8ra00023a
  38. Zhao W, Zhou J, Hu H, Xu C, Xu Q. The role of crosslinking density in surface stress and surface energy of soft solids. Soft Matter. 2022;18(3):507-513. doi: 10.1039/d1sm01600h
  39. Cheng H, Vepachedu V. Recent development of transient electronics. Theor Appl Mech Lett. 2016;6(1):21-31. doi: 10.1016/j.taml.2015.11.012
  40. Yin L, Cheng H, Mao S, et al. Dissolvable metals for transient electronics. Adv Funct Mater. 2014;24(5):645-658. doi: 10.1002/adfm.201301847
  41. Fallegger F, Schiavone G, Lacour SP. Conformable hybrid systems for implantable bioelectronic interfaces. Adv Mater. 2020;32(15):e1903904. doi: 10.1002/adma.201903904
  42. Enzmann DR, Pelc NJ. Brain motion: measurement with phase-contrast MR imaging. Radiology. 1992;185(3):653-660. doi: 10.1148/radiology.185.3.1438741
  43. Carlsson M, Cain P, Holmqvist C, Stahlberg F, Lundback S, Arheden H. Total heart volume variation throughout the cardiac cycle in humans. Am J Physiol Heart Circ Physiol. 2004;287(1):H243-50. doi: 10.1152/ajpheart.01125.2003
  44. Banerjee S, Pal A, Fox M. Volume and position change of the stomach during gastric accommodation and emptying: a detailed three-dimensional morphological analysis based on MRI. Neurogastroenterol Motil. 2020;32(8):e13865. doi: 10.1111/nmo.13865
  45. Harrison DE, Cailliet R, Harrison DD, Troyanovich SJ, Harrison SO. A review of biomechanics of the central nervous system--part I: spinal canal deformations resulting from changes in posture. J Manipulative Physiol Ther. 1999;22(4):227-234. doi: 10.1016/s0161-4754(99)70049-7
  46. Handorf AM, Zhou Y, Halanski MA, Li WJ. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis. 2015;11(1):1-15. doi: 10.1080/15476278.2015.1019687
  47. Liu J, Zheng H, Poh PSP, Machens HG, Schilling AF. Hydrogels for engineering of perfusable vascular networks. Int J Mol Sci. 2015;16(7):15997-16016. doi: 10.3390/ijms160715997
  48. Lu KW, Chen HL, Chen HP, Kuo CC. Design of organic/ inorganic multilayer water vapor barrier thin films deposited via plasma polymerization for encapsulation. Thin Solid Films. 2023;767:139672. doi: 10.1016/j.tsf.2023.139672
  49. Grover R, Srivastava R, Kamalasanan MN, Mehta DS. Multilayer thin film encapsulation for organic light emitting diodes. RSC Adv. 2014;4(21):10808-10814. doi: 10.1039/c3ra46077k
  50. Xu F, Song Y, Wei M, Wang Y. Water flow through interlayer channels of two-dimensional materials with various hydrophilicities. J Phys Chem C. 2018;122(27): 15772-15779. doi: 10.1021/acs.jpcc.8b04719

 

 

 



 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing