AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3735
RESEARCH ARTICLE

Development of novel skin-mimetic substrate with 3D printing to assess the adhesion properties of transdermal patches

Arvind Bagde1 Keb Mosley-Kellum1 Oluwaseyi Salau1 Satyanarayan Dev2* Nisarg Modi3 Mandip Singh1*
Show Less
1 Pharmaceutical Sciences Department, Florida A&M University, Tallahassee, Florida, USA
2 Biological Systems Engineering, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, Florida, USA
3 Research and Development Department, Transdermal Research Pharm Laboratories, Inc., Long Island City, New York, USA
IJB 2024, 10(4), 3735 https://doi.org/10.36922/ijb.3735
Submitted: 22 May 2024 | Accepted: 14 June 2024 | Published: 13 August 2024
© 2024 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Transdermal system (TDS) patches, a long-standing product in the market, still grapple with issues of secure skin adherence, efficacy, and safety. Hence, there is a pressing need to study factors affecting TDS patch adhesion on skin-mimetic substrates to enhance reliability and reduce reliance on extensive in vivo testing. The present study aims to develop novel skin-mimetic substrates with fused deposition modeling (FDM)-based three-dimensional (3D) printing using materials with similar surface energy as the skin and evaluating the adhesion property of pressure-sensitive adhesives (PSAs). Additionally, the study investigates the effect of various intrinsic factors, including coat weight, elastic properties of backing membranes, and viscosity of PSAs, on the adhesion properties of PSAs. We successfully fabricated our novel polypropylene (PP) probe using FDM printing and implemented an automated robotic arm setup for adhesion testing. Probe tack test results displayed no significant difference in peak adhesive force between the skin and PP probes. However, PP probes exhibited a 10.26-fold decrease (p < 0.0001) in the adhesive force compared to stainless steel (SS) probes. Probe tack and peel adhesion tests of the marketed Salonpas patch also displayed a significant decrease (p < 0.0001) in the adhesive force for PP probes/plates compared to SS probes/plates. In terms of coating, both amine-compatible (PSA-4302) and non-amine-compatible (PSA-4501) silicone-based PSAs displayed a significant increase in their adhesion properties at 10 mg/cm2 compared to 5 mg/cm2 coating (p < 0.05). Furthermore, the selection of backing membrane and the viscosity of silicone-based PSAs also demonstrated a significant (p < 0.0001) effect on the PSA’s adhesion property. In conclusion, PP probes/plates could be a promising approach for in vitro adhesion testing of transdermal system (TDS) products. Furthermore, intrinsic properties, including coat weight and viscosity of silicone-based PSAs, could significantly affect the adhesion properties of TDS products.

Graphical abstract
Keywords
3D printing
Transdermal
Adhesion
Tack test
Peel adhesion
Skin-mimetic substrate
Funding
The research was supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health (grant number: U54 MD007582 [U54 RCMI grant]) and NSF-CREST Center for Complex Materials Design for Multidimensional Additive Processing (CoManD) (grant number: 1735968).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Cilurzo F, Gennari CG, Minghetti P. Adhesive properties: a critical issue in transdermal patch development. Expert Opin Drug Deliv. 2012;9(1):33-45. doi: 10.1517/17425247.2012.637107
  2. Trenor S, Suggs A, Love B. Influence of penetration enhancers on the thermomechanical properties and peel strength of a poly (isobutylene) pressure sensitive adhesive. J Mater Sci Lett. 2002;21(17):1321-1323. doi: 10.1023/A:1019748112291
  3. Taghizadeh SM, Lahootifard F. Transdermal excipients effect on adhesion strength of a pressure sensitive adhesive. Iranian Poly J. 2003;12(3):243-248.
  4. Wokovich AM, Prodduturi S, Doub WH, Hussain AS, Buhse LF. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur J Pharm Biopharm. 2006;64(1):1-8. doi: 10.1016/j.ejpb.2006.03.009
  5. Minghetti P, Cilurzo F, Casiraghi A. Measuring adhesive performance in transdermal delivery systems. Am J Drug Deliv. 2004;2(3):193-206. doi: 10.2165/00137696-200402030-00004
  6. Guidance D. Transdermal and Topical Delivery Systems- Product Development and Quality Considerations. Food and Drug Administration; 2019:1-25.
  7. Boehringer-Ingelheim. Catapres-TTS Transdermal Therapeutic System Programmed delivery in vivo of 0.1, 0.2, or 0.3 mg Clonidine Per Day, for One Week. Boehringer- Ingelheim; Updated August 2016. Accessed October 1, 2023. https://docs.boehringer-ingelheim.com/Prescribing%20 Information/PIs/Catapres%20TTS/CatapresTTS.pdf
  8. Elshoff J-P, Bauer L, Goldammer N, Oortgiesen M, Pesch H, Timmermann L. Randomized, double-blind, crossover study of the adhesiveness of two formulations of rotigotine transdermal patch in patients with Parkinson’s disease. Curr Med Res Opin. 2018;34(7):1293-1299. doi: 10.1080/03007995.2018.1430559
  9. USFDA. Neupro® (Rotigotine Transdermal System) Continuous Delivery For Once-Daily Application. US Food & Drug Administration; Updated June 2006. Accessed October 1; 2023. https://www.accessdata.fda.gov/drugsatfda_docs/label/ 2007/021829lbl.pdf
  10. Novartis. EXELON PATCH Safely and Effectively. Novartis Pharmaceutical Corporation; Updated December 2018. Accessed October 1, 2023. https://www.novartis.com/us-en/sites/novartis_us/files/ exelonpatch.pdf
  11. Arnet I, Schacher S, Balmer E, Koeberle D, Hersberger KE. Poor adhesion of fentanyl transdermal patches may mimic end-of-dosage failure after 48 hours and prompt early patch replacement in hospitalized cancer pain patients. J Pain Res. 2016;9:993-999. doi: 10.2147/JPR.S116091
  12. Minghetti P, Casiraghi A, Cilurzo F, Montanari L. Development of local patches containing melilot extract and ex vivo–in vivo evaluation of skin permeation. Eur J Pharm Sci. 2000;10(2):111-117. doi: 10.1016/S0928-0987(99)00094-9
  13. Steven-Fountain A, Atkins A, Jeronimidis G, Vincent J, Farrar D, Chivers R. The effect of flexible substrates on pressure-sensitive adhesive performance. Int J Adhes Adhes. 2002;22(6):423-430. doi: 10.1016/S0143-7496(02)00018-0
  14. 3M; 2023. https://www.3m.com/3M/en_US/bonding-and-assembly-us/resources/science-of-adhesion/categorizing-surface-energy/
  15. Charkoudian JC. A model skin surface for testing adhesion to skin. J Soc Cosm Chemists. 1988;39:225-234.
  16. Kowalski A, Czech Z, Byczyński Ł. How does the surface free energy influence the tack of acrylic pressure-sensitive adhesives (PSAs)? J Coat Technol Res. 2013;10(6): 879-885. doi: 10.1007/s11998-013-9522-2
  17. Lin S-Y, Lee C-J, Lin Y-Y. Drug-polymer interaction affecting the mechanical properties, adhesion strength and release kinetics of piroxicam-loaded Eudragit E films plasticized with different plasticizers. J Control Release. 1995; 33(3):375-381. doi: 10.1016/0168-3659(94)00109-8
  18. Gullick DR, Pugh WJ, Ingram MJ, Cox PA, Moss GP. Formulation and characterization of a captopril ethyl ester drug-in-adhesive-type patch for percutaneous absorption. Drug Dev Ind Pharm. 2010;36(8):926-932. doi: 10.3109/03639040903585135
  19. Cilurzo F, Minghetti P, Gennari CG, Casiraghi A, Montanari L. A novel polymethylmethacrylate hydrophilic adhesive matrix intended for transdermal patch formulations. Drug Deliv. 2010;17(3):171-177. doi: 10.3109/10717541003667772
  20. Sheu M-T, Chen L-C, Ho H-O. Simultaneous optimization of percutaneous delivery and adhesion for ketoprofen poultice. Int J Pharm. 2002;233(1-2):257-262. doi: 10.1016/S0378-5173(01)00919-X
  21. Schurad B, Tack J, Lipp R. Evaluation of the transdermal permeation behavior of Proterguride from drug in adhesive matrix patches through hairless mouse skin. Drug Dev Ind Pharm. 2005;31(6):505-513. doi: 10.1080/03639040500215842
  22. Taghizadeh SM, Soroushnia A, Mohamadnia F. Preparation and in vitro evaluation of a new fentanyl patch based on functional and non-functional pressure sensitive adhesives. AAPS PharmSciTech. 2010;11:278-284. doi: 10.1208/s12249-009-9366-3
  23. Mehdizadeh A, Ghahremani MH, Rouini MR, Toliyat T. Effects of pressure sensitive adhesives and chemical permeation enhancers on permeability of fentanyl through excised rat skin. Acta Pharm. 2006;56(2):219-229.
  24. Ko C. Effect of skin penetration enhancers in transdermal drug delivery adhesives on skin adhesion and irritation. Int Symptom Control Rel Bio Mater. 1996;23:281-282.
  25. Lin S-Y, Lee C-J, Lin Y-Y. The effect of plasticizers on compatibility, mechanical properties, and adhesion strength of drug-free Eudragit E films. Pharm Res. 1991;8(9):1137-1143. doi: 10.1023/a:1015850301214
  26. Horst A, McDonald F. Uncertain but not unregulated: medical product regulation in the light of three-dimensional printed medical products. 3D Print Addit Manuf. 2020;7(5):248-257. doi: 10.1089/3dp.2020.0076
  27. Ng WL, An J, Chua CK. Process, material, and regulatory considerations for 3D printed medical devices and tissue constructs. Engineering. 2024;36:146-166. doi: 10.1016/j.eng.2024.01.028
  28. Ohtsuki R, Sakamaki T, Tominaga S. Analysis of skin surface roughness by visual assessment and surface measurement. Opt Rev. 2013;20:94-101. doi: 10.1007/s10043-013-0014-5
  29. FDSC. Surface Energy Measurment. 2022. https://fdsc.com
  30. Ganti SS, Bhattaccharjee SA, Murnane KS, Blough BE, Banga AK. Formulation and evaluation of 4-benzylpiperidine drug-in-adhesive matrix type transdermal patch. Int J Pharm. 2018;550(1-2):71-78. doi: 10.1016/j.ijpharm.2018.08.033
  31. Sun W, Grosser S, Kim C, Raney SG. Statistical considerations and impact of the FDA draft guidance for assessing adhesion with transdermal delivery systems and topical patches for ANDAs. J Biopharm Stat. 2019;29(5):952-970. doi: 10.1080/10543406.2019.1657440
  32. USFDA. Assessing Adhesion With Transdermal and Topical Delivery Systems for ANDAs Draft Guidance for Industry; 2023. Accessed October 1. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/assessing-adhesion-transdermal-and-topical-delivery-systems-andas-draft-guidance-industry
  33. Firooz A, Sadr B, Babakoohi S, et al. Variation of biophysical parameters of the skin with age, gender, and body region. ScientificWorldJournal. 2012;2012: 386936. doi: 10.1100/2012/386936
  34. Couturaud V. Biophysical characteristics of the skin in relation to race, sex, age, and site. In: Handbook of Cosmetic Science and Technology; 2009:5-24. doi: 10.1201/b15273-3
  35. Wesley NO, Maibach HI. Racial (ethnic) differences in skin properties: the objective data. Am J Clin Dermatol. 2003;4(12):843-860. doi: 10.2165/00128071-200304120-00004
  36. Man M, Xin S, Song S, et al. Variation of skin surface pH, sebum content and stratum corneum hydration with age and gender in a large Chinese population. Skin Pharmacol Physiol. 2009;22(4):190-199. doi: 10.1159/000231524
  37. Greenall J, Koczmara C, Cheng R, Hyland S. Safety issues with fentanyl patches require pharmaceutical care. Can J Hosp Pharm. 2008;61(1):57-59.
  38. Wichman K, David U. Overdose a risk of transdermal patch in diverse settings. Can Pharm J (Ott). 2005;138(7):65.
  39. Schreier P, Traßl C, Altstädt V. Surface Modification of Polypropylene Based Particle Foams. American Institute of Physics; 2014:378-382.
  40. Babu R, Chatterjee A, Singh M. Assessment of skin irritation and molecular responses in rat skin exposed to nonane, dodecane and tetradecane. Toxicol Lett. 2004;153(2):255-266. doi: 10.1016/j.toxlet.2004.04.036
  41. Ahaghotu E, Babu R, Chatterjee A, Singh M. Effect of methyl substitution of benzene on the percutaneous absorption and skin irritation in hairless rats. Toxicol Lett. 2005;159(3): 261-271. doi: 10.1016/j.toxlet.2005.05.020
  42. Boakye CH, Patel K, Doddapaneni R, et al. Ultra-flexible nanocarriers for enhanced topical delivery of a highly lipophilic antioxidative molecule for skin cancer chemoprevention. Colloids Surf B Biointerfaces. 2016;143:156-167. doi: 10.1016/j.colsurfb.2016.03.036
  43. Kanikkannan N, Burton S, Patel R, Jackson T, Shaik MS, Singh M. Percutaneous permeation and skin irritation of JP-8+ 100 jet fuel in a porcine model. Toxicol Lett. 2001;119(2):133-142. doi: 10.1016/S0378-4274(00)00311-8
  44. Bagde A, Patel K, Mondal A, et al. Combination of UVB absorbing titanium dioxide and quercetin nanogel for skin cancer chemoprevention. AAPS PharmSciTech. 2019;20(6):1-12. doi: 10.1208/s12249-019-1424-x
  45. Bagde A, Kouagou E, Singh M. Formulation of topical flurbiprofen solid lipid nanoparticle gel formulation using hot melt extrusion technique. AAPS PharmSciTech. 2022;23(7):257. doi: 10.1208/s12249-022-02410-w
  46. Salau O, Bagde A, Kalvala A, Singh M. Enhancement of transdermal permeation of cannabinoids and their pharmacodynamic evaluation in rats. Int J Pharm. 2022;624(3):122016. doi: 10.1016/j.ijpharm.2022.122016
  47. Godugu C, Doddapaneni R, Patel AR, Singh R, Mercer R, Singh M. Novel gefitinib formulation with improved oral bioavailability in treatment of A431 skin carcinoma. Pharm Res. 2016;33:137-154. doi: 10.1007/s11095-015-1771-6
  48. Dimas DA, Dallas PP, Rekkas DM, Choulis NH. Effect of several factors on the mechanical properties of pressure-sensitive adhesives used in transdermal therapeutic systems. AAPS PharmSciTech. 2000;1:80-87.
  49. Kyriazanou A, Dallas P, Rekkas D, Choulis N. Effect of several factors on the mechanical properties of a pressure sensitive adhesive containing penetration enhancers. STP Pharma Sci. 2002;12(5):283-286.
  50. Lv S., Quan P., Liu X., Fang L. Effect of backing films on the transdermal delivery of cyclobenzaprine patch. Asian J Pharm Sci. 2016;11(6):780-783. doi: 10.1016/j.ajps.2016.05.007
  51. 3M. Transdermal Films & Laminates. 2023. https://www.3m.com/3M/en_US/p/c/medical/tapes-films/ transdermal/
  52. Mohammed I, Charalambides M, Kinloch A. Modelling the interfacial peeling of pressure-sensitive adhesives. J Nonnewton Fluid Mech. 2015;222:141-150. doi: 10.1016/j.jnnfm.2014.10.005
  53. Shi Y, Li Y, Wu J, Wang W, Dong A, Zhang J. A novel transdermal drug delivery system based on self-adhesive Janus nanofibrous film with high breathability and monodirectional water-penetration. J Biomater Sci Polym Ed. 2014;25(7):713-728. doi: 10.1080/09205063.2014.897596
  54. Patel AV, Shah BN. Transdermal drug delivery system: a review. Pharm Sci Monit. 2018;9(1):378-390.
  55. DUPONT. DuPont™ Liveo™ BIO-PSA Standard Silicone Adhesives. https://www.dupont.com/products/LiveoBIOPSAStandard SiliconeAdhesives.html

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing