AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4273
REVIEW

Advancements in 3D bioprinting for nanoparticle evaluation: Techniques, models, and biological applications

Moon Sup Yoon1 Jae Min Lee1 Min Jeong Jo2 Su Jeong Kang1 Myeong Kyun Yoo1 So Yeon Park1 Ji-Hyun Kang3 Chan-Su Park1 Chun-Woong Park1 Jin-Seok Kim4 Andrea Bernardos5,6,7,8 Vicente Martí-Centelles5,6,8* Ramón Martínez-Máñez5,6,7,8,9*, Dae Hwan Shin1,5,10*
Show Less
1 College of Pharmacy, Chungbuk National University, 28160 Cheongju, Republic of Korea
2 Department of Oncology Science, University of Oklahoma, Oklahoma City, 73104 Oklahoma, United States of America
3 Institute of New Drug Development and Respiratory Drug Development Research Institute, School of Pharmacy, Jeonbuk National University, 54896 Jeonju, Republic of Korea
4 Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women’s University, 04310 Seoul, Republic of Korea
5 Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n, 46022 Valencia, Spain
6 CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 46026 Madrid, Spain
7 Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Avenida Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
8 Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
9 Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Avenida Fernando Abril Martorell, 106, 46026 Valencia, Spain
10 Chungbuk National University Hospital, Chungbuk National University, 28644 Cheongju, Republic of Korea
IJB 2024, 10(5), 4273 https://doi.org/10.36922/ijb.4273
Submitted: 17 July 2024 | Accepted: 7 August 2024 | Published: 9 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Three-dimensional (3D) bioprinting technology has opened new possibilities for nanoparticle evaluation. This review discusses the latest research trends using various disease models created through 3D bioprinting for the biological evaluation of nanoparticles. The focus is on tumor models, vascular models, and skin models. In tumor models, evaluations include antitumor effects, gene expression analysis, and cytotoxicity comparisons between 2D and 3D models. Vascular models are used to assess restenosis prevention, ischemic repair, and vascular regeneration. Skin models are employed to investigate nanoparticle toxicity, drug release, and transdermal penetration. These studies highlight the versatility of 3D bioprinting in replicating complex biological environments, enabling more accurate nanoparticle testing. The use of various bioinks and cell types enhances the relevance of in vitro findings. The integration of nanoparticles with 3D-bioprinted models shows significant potential in advancing therapeutic strategies, including cancer treatment, vascular repair, and drug delivery systems. Overall, by providing selected examples to illustrate the concepts, this comprehensive review underscores the importance of 3D bioprinting as an innovative platform for nanoparticle research, bridging the gap between traditional 2D cell cultures and in vivo studies, and contributing to the development of nanomedicines and personalized medical treatments.

Keywords
3D bioprinting
Nanoparticles
Disease models
Antitumor effects
Drug delivery
Funding
This research was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-001); and the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (grant number NRF-2022R1C1C1007107). This research was supported by project PID2021-126304OB-C41 funded by MICIU/AEI/10.13039/501100011033/ and by European Regional Development Fund—A way of doing Europe.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Jamieson C, Keenan P, Kirkwood D, et al. A review of recent advances in 3D bioprinting with an eye on future regenerative therapies in veterinary medicine. Front Vet Sci. 2020;7:584193. doi: 10.3389/fvets.2020.584193
  2. Ricci G, Gibelli F, Sirignano A. Three-dimensional bioprinting of human organs and tissues: bioethical and medico-legal implications examined through a scoping review. Bioengineering (Basel, Switzerland). 2023;10(9):1052. doi: 10.3390/bioengineering10091052
  3. Yaneva A, Shopova D, Bakova D, et al. The progress in bioprinting and its potential impact on health-related quality of life. Bioengineering (Basel, Switzerland). 2023;10(8):910. doi: 10.3390/bioengineering10080910
  4. Cheng Y, Hu H, Dong X, Hao X, Li Y. Exploring transformer model in longitudinal pharmacokinetic/pharmacodynamic analyses and comparing with alternative natural language processing models. J Pharm Sci. 2024;113(5):1368-1375. doi: 10.1016/j.xphs.2024.02.008
  5. Migulina N, de Hilster RHJ, Bartel S, et al. 3-D culture of human lung fibroblasts decreases proliferative and increases extracellular matrix remodeling genes. Am J Physiol Cell Physiol. 2024;326(1):C177-C193. doi: 10.1152/ajpcell.00374.2023
  6. Nizamoglu M, Alleblas F, Koster T, et al. Three dimensional fibrotic extracellular matrix directs microenvironment fiber remodeling by fibroblasts. Acta Biomater. 2024;177:118-131. doi: 10.1016/j.actbio.2024.02.008
  7. Bernal PN, Bouwmeester M, Madrid-Wolff J, et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv Mater. 2022;34(15):2110054. doi: 10.1002/adma.202110054
  8. Muthusamy S, Kannan S, Lee M, et al. 3D bioprinting and microscale organization of vascularized tissue constructs using collagen-based bioink. Biotechnol Bioeng. 2021;118(8):3150-3163. doi: 10.1002/bit.27838
  9. Jia W, Gungor-Ozkerim PS, Zhang YS, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials. 2016;106:58-68. doi: 10.1016/j.biomaterials.2016.07.038
  10. Zhu J, Wang Y, Zhong L, Pan F, Wang J. Advances in tissue engineering of vasculature through three-dimensional bioprinting. Dev Dyn. 2021;250(12):1717-1738. doi: 10.1002/dvdy.385
  11. Farouk SM, Khafaga AF, Abdellatif AM. Bladder cancer: therapeutic challenges and role of 3D cell culture systems in the screening of novel cancer therapeutics. Cancer Cell Int. 2023;23(1):251. doi: 10.1186/s12935-023-03069-4
  12. Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33. doi: 10.3389/fmolb.2020.00033
  13. Abuwatfa WH, Pitt WG, Husseini GA. Scaffold-based 3D cell culture models in cancer research. J Biomed Sci. 2024;31(1):7. doi: 10.1186/s12929-024-00994-y
  14. Centeno EGZ, Cimarosti H, Bithell A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol Neurodegener. 2018;13(1):27. doi: 10.1186/s13024-018-0258-4
  15. Khafaga AF, Mousa SA, Aleya L, Abdel-Daim MM. Three-dimensional (3D) cell culture: a valuable step in advancing treatments for human hepatocellular carcinoma. Cancer Cell Int. 2022;22(1):243. doi: 10.1186/s12935-022-02662-3
  16. Badr-Eldin SM, Aldawsari HM, Kotta S, Deb PK, Venugopala KN. Three-dimensional in vitro cell culture models for efficient drug discovery: progress so far and future prospects. Pharmaceuticals (Basel). 2022;15(8):926. doi: 10.3390/ph15080926
  17. Belfiore L, Aghaei B, Law AMK, et al. Generation and analysis of 3D cell culture models for drug discovery. Eur J Pharm Sci. 2021;163:105876. doi: 10.1016/j.ejps.2021.105876
  18. Parodi I, Di Lisa D, Pastorino L, Scaglione S, Fato MM. 3D bioprinting as a powerful technique for recreating the tumor microenvironment. Gels. 2023;9(6):482. doi: 10.3390/gels9060482
  19. Germain N, Dhayer M, Dekiouk S, Marchetti P. Current advances in 3D bioprinting for cancer modeling and personalized medicine. Int J Mol Sci. 2022;23(7):3432. doi: 10.3390/ijms23073432
  20. Bojin F, Robu A, Bejenariu MI, et al. 3D bioprinting of model tissues that mimic the tumor microenvironment. Micromachines (Basel). 2021;12(5):535. doi: 10.3390/mi12050535
  21. Di Marzio N, Eglin D, Serra T, Moroni L. Bio-fabrication: convergence of 3D bioprinting and nano-biomaterials in tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2020;8:326. doi: 10.3389/fbioe.2020.00326
  22. Richards D, Jia J, Yost M, Markwald R, Mei Y. 3D bioprinting for vascularized tissue fabrication. Ann Biomed Eng. 2017;45(1):132-147. doi: 10.1007/s10439-016-1653-z
  23. Chen EP, Toksoy Z, Davis BA, Geibel JP. 3D bioprinting of vascularized tissues for in vitro and in vivo applications. Front Bioeng Biotechnol. 2021;9:664188. doi: 10.3389/fbioe.2021.664188
  24. Yang Q, Gao B, Xu F. Recent advances in 4D bioprinting. Biotechnol J. 2020;15(1):e1900086. doi: 10.1002/biot.201900086
  25. Phogat S, Thiam F, Al Yazeedi S, Abokor FA, Osei ET. 3D in vitro hydrogel models to study the human lung extracellular matrix and fibroblast function. Respir Res. 2023;24(1):242. doi: 10.1186/s12931-023-02548-6
  26. Vakhshiteh F, Bagheri Z, Soleimani M, et al. Heterotypic tumor spheroids: a platform for nanomedicine evaluation. J Nanobiotechnology. 2023;21(1):249. doi: 10.1186/s12951-023-02021-y
  27. Chia SL, Tay CY, Setyawati MI, Leong DT. Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles. Small. 2015;11(6):702-712. doi: 10.1002/smll.201401915
  28. Kim D, Jo S, Lee D, et al. NK cells encapsulated in micro/ macropore-forming hydrogels via 3D bioprinting for tumor immunotherapy. Biomater Res. 2023;27(1):60. doi: 10.1186/s40824-023-00403-9
  29. Sun S, Wang YH, Gao X, et al. Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: bibliometric analysis and review. Front Bioeng Biotechnol. 2023;11:1253048. doi: 10.3389/fbioe.2023.1253048
  30. Chakraborty A, Roy A, Ravi SP, Paul A. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Biomater Sci. 2021;9(19):6337-6354. doi: 10.1039/d1bm00605c
  31. Datta P, Dey M, Ataie Z, Unutmaz D, Ozbolat IT. 3D bioprinting for reconstituting the cancer microenvironment. NPJ Precis Oncol. 2020;4:18. doi: 10.1038/s41698-020-0121-2
  32. Cho ES, Kang HE, Kim NH, Yook JI. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res. 2019;42(1):14-24. doi: 10.1007/s12272-018-01108-7
  33. Chen Y, Xu L, Li W, et al. 3D bioprinted tumor model with extracellular matrix enhanced bioinks for nanoparticle evaluation. Biofabrication. 2022;14(2):025002. doi: 10.1088/1758-5090/ac48e4
  34. Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 2019;20(5):1033. doi: 10.3390/ijms20051033
  35. Gu X, Gao Y, Wang P, et al. Nano-delivery systems focused on tumor microenvironment regulation and biomimetic strategies for treatment of breast cancer metastasis. J Control Release. 2021;333:374-390. doi: 10.1016/j.jconrel.2021.03.039
  36. Su Y, Hu X, Kang Y, et al. Curcumin nanoparticles combined with 3D printed bionic tumor models for breast cancer treatment. Biofabrication. 2022;15(1):014105. doi: 10.1088/1758-5090/aca5b8
  37. Chirivì M, Bearzi C, Rosa P, et al. Biomimetic keratin-coated gold nanoparticles for photo-thermal therapy in a 3D bioprinted glioblastoma tumor model. Int J Mol Sci. 2022;23(17):9528. doi: 10.3390/ijms23179528
  38. Nam KH, Jeong CB, Kim H, et al. Quantitative photothermal characterization with bioprinted 3D complex tissue constructs for early-stage breast cancer therapy using gold nanorods. Adv Healthc Mater. 2021;10(18):e2100636. doi: 10.1002/adhm.202100636
  39. Dong X, Li R, Xiu P, et al. Meloxicam executes its antitumor effects against hepatocellular carcinoma in COX-2- dependent and -independent pathways. PloS One. 2014;9(3):e92864. doi: 10.1371/journal.pone.0092864
  40. Rarokar N, Ravikumar C, Gurav S, Khedekar P. Meloxicam encapsulated nanostructured colloidal self-assembly for evaluating antitumor and anti-inflammatory efficacy in 3D printed scaffolds. J Biomed Mater Res A. 2021;109(8):1441- 1456. doi: 10.1002/jbm.a.37135
  41. Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release. 2008;127(2):97-109. doi: 10.1016/j.jconrel.2007.12.018
  42. Rohit B, Pal Kaur I. A method to prepare solid lipid nanoparticles with improved entrapment efficiency of hydrophilic drugs. Current Nanosci. 2013;9(2):211-220. doi: 10.2174/1573413711309020008
  43. Liu D, Cito S, Zhang Y, Wang CF, Sikanen TM, Santos HA. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Adv Mater. 2015;27(14):2298-2304. doi: 10.1002/adma.201405408
  44. Arduino I, Liu Z, Rahikkala A, et al. Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomater. 2021;121:566-578. doi: 10.1016/j.actbio.2020.12.024
  45. Figueiredo P, Lintinen K, Kiriazis A, et al. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials. 2017;121:97-108. doi: 10.1016/j.biomaterials.2016.12.034
  46. Figueiredo P, Sipponen MH, Lintinen K, et al. Preparation and characterization of dentin phosphophoryn-derived peptide-functionalized lignin nanoparticles for enhanced cellular uptake. Small. 2019;15(24):e1901427. doi: 10.1002/smll.201901427
  47. Ahn M, Cho WW, Park W, et al. 3D biofabrication of diseased human skin models in vitro. Biomater Res. 2023;27(1):80. doi: 10.1186/s40824-023-00415-5
  48. Cho SW, Malick H, Kim SJ, Grattoni A. Advances in skin-on-a-chip technologies for dermatological disease modeling. J Invest Dermatol. 2024;144(8):1707-1715. doi: 10.1016/j.jid.2024.01.031
  49. Scheurer J, Sauer B, Focken J, et al. Histological and functional characterization of 3D human skin models mimicking the inflammatory skin diseases psoriasis and atopic dermatitis. Dis Model Mech. 2024;17(1):dmm050541. doi: 10.1242/dmm.050541
  50. Nuwayhid R, Schulz T, Siemers F, et al. A platform for testing the biocompatibility of implants: silicone induces a proinflammatory response in a 3D skin equivalent. Biomedicines. 2024;12(1):224. doi: 10.3390/biomedicines12010224
  51. Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K. Advances in the biofabrication of 3D skin in vitro: healthy and pathological models. Front Bioeng Biotechnol. 2018;6:154. doi: 10.3389/fbioe.2018.00154
  52. Zoio P, Oliva A. Skin-on-a-chip technology: microengineering physiologically relevant in vitro skin models. Pharmaceutics. 2022;14(3):682. doi: 10.3390/pharmaceutics14030682
  53. Mukhopadhyay C, Paul MK. Organoid-based 3D in vitro microphysiological systems as alternatives to animal experimentation for preclinical and clinical research. Arch Toxicol. 2023;97(5):1429-1431. doi: 10.1007/s00204-023-03466-8
  54. Marano F. Les méthodes alternatives à l’expérimentation animale, présent et futur [Alternative methods to animal testing, present and future]. Biol Aujourdhui. 2023;217(3- 4):199-205. doi: 10.1051/jbio/2023035
  55. Gao C, Lu C, Jian Z, et al. 3D bioprinting for fabricating artificial skin tissue. Colloids Surf B Biointerfaces. 2021;208:112041. doi: 10.1016/j.colsurfb.2021.112041
  56. Hou X, Liu S, Wang M, et al. Layer-by-layer 3D constructs of fibroblasts in hydrogel for examining transdermal penetration capability of nanoparticles. SLAS Technol. 2017;22(4):447-453. doi: 10.1177/2211068216655753
  57. do Amaral SR, Amantino CF, Atanasov A, et al. Evaluation of photodynamic therapy as a new therapeutic approach using quinizarin-loaded nanocapsules: in vitro cytotoxicity, permeation in 3D bioprinted skin equivalent and in vitro cytokines modulation. Preprints; 2024. doi: 10.20944/preprints202405.1323.v1
  58. Bhamare N, Tardalkar K, Khadilkar A, Parulekar P, Joshi MG. Tissue engineering of human ear pinna. Cell Tissue Bank. 2022;23(3):441-457. doi: 10.1007/s10561-022-09991-7
  59. Bos EJ, Doerga P, Breugem CC, van Zuijlen PP. The burned ear; possibilities and challenges in framework reconstruction and coverage. Burns. 2016;42(7):1387-1395. doi: 10.1016/j.burns.2016.02.006
  60. Abaci A, Camci-Unal G, Guvendiren M, Guest E. Three-dimensional bioprinting for medical applications. MRS Bulletin. 2023;48(6):624-631. doi: 10.1557/s43577-023-00546-z
  61. Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv Mater. 2019;31(42):1904209. doi: 10.1002/adma.201904209
  62. Yalgın A, Köse FA, Gökçe EH. The effect of cyclosporine A and co-enzyme Q10 loaded solid lipid nanoparticles on 3D printed human auricular model: evaluation of cell growth. J Drug Deliv Sci Technol. 2023;79:104087. doi: 10.1016/j.jddst.2022.104087
  63. Fang Y, Ouyang L, Zhang T, Wang C, Lu B, Sun W. Optimizing bifurcated channels within an anisotropic scaffold for engineering vascularized oriented tissues. Adv Healthc Mater. 2020;9(24):e2000782. doi: 10.1002/adhm.202000782
  64. Gao Q, Liu Z, Lin Z, et al. 3D bioprinting of vessel-like structures with multilevel fluidic channels. ACS Biomater Sci Eng. 2017;3(3):399-408. doi: 10.1021/acsbiomaterials.6b00643
  65. Zhou X, Gao Q, Yu D, et al. 3D-bioprinted vascular scaffold with tunable mechanical properties for simulating and promoting neo-vascularization. Smart Mater Med. 2022;3:199-208. doi: 10.1016/j.smaim.2022.01.003
  66. Gold KA, Saha B, Rajeeva Pandian NK, et al. 3D bioprinted multicellular vascular models. Adv Healthc Mater. 2021;10(21):2101141. doi: 10.1002/adhm.202101141
  67. Boada C, Zinger A, Tsao C, et al. Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ Res. 2020;126(1):25-37. doi: 10.1161/CIRCRESAHA.119.315185
  68. Betala J, Bae S, Langan III EM, LaBerge M, Lee JS. Combinatorial therapy of sirolimus and heparin by nanocarrier inhibits restenosis after balloon angioplasty ex vivo. Nanomedicine. 2020;15(12):1205-1220. doi: 10.2217/nnm-2020-0028
  69. Rosner D, McCarthy N, Bennett M. Rapamycin inhibits human in stent restenosis vascular smooth muscle cells independently of pRB phosphorylation and p53. Cardiovasc Res. 2005;66(3):601-610. doi: 10.1016/j.cardiores.2005.01.006
  70. Hauser PV, Chang H-M, Nishikawa M, Kimura H, Yanagawa N, Hamon M. Bioprinting scaffolds for vascular tissues and tissue vascularization. Bioengineering. 2021;8(11):178. doi: 10.3390/bioengineering8110178
  71. Choi J, Lee EJ, Lim HJ, et al. Development of 3D-bioprinted artificial blood vessels loaded with rapamycin-nanoparticles for ischemic repair. Int J Bioprin. 2024;10(2):1465. doi: 10.36922/ijb.1465
  72. Ge G, Wu H, Xiong F, et al. The cytotoxicity evaluation of magnetic iron oxide nanoparticles on human aortic endothelial cells. Nanoscale Res Lett. 2013;8:1-10. doi: 10.1186/1556-276X-8-215
  73. Wu X, Tan Y, Mao H, Zhang M. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomedicine. 2010;5:385-399. doi: 10.2147/ijn.s10458
  74. Nemmar A, Beegam S, Yuvaraju P, et al. Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Part Fibre Toxicol. 2015;13:1-11. doi: 10.1186/s12989-016-0132-x
  75. Ning L, Zanella S, Tomov ML, et al. Targeted rapamycin delivery via magnetic nanoparticles to address stenosis in a 3D bioprinted in vitro model of pulmonary veins. Adv Sci (Weinh). 2024;11(26):e2400476. doi: 10.1002/advs.202400476
  76. Lee EJ, Choi J, Lim HJ, et al. 3D-bioprinted cell-laden blood vessel with dual drug delivery nanoparticles for advancing vascular regeneration. Int J Bioprint. 2024;10(2):1857. doi: 10.36922/ijb.1857
  77. Song R, Fullerton DA, Ao L, et al. Altered micro RNA expression is responsible for the pro‐osteogenic phenotype of interstitial cells in calcified human aortic valves. J Am Heart Assoc. 2017;6(4):e005364. doi: 10.1161/JAHA.116.005364
  78. Voicu G, Mocanu CA, Safciuc F, et al. Nanocarriers of shRNA-Runx2 directed to collagen IV as a nanotherapeutic system to target calcific aortic valve disease. Mater Today Bio. 2023;20:100620. doi: 10.1016/j.mtbio.2023.100620
  79. van der Ven CFT, Tibbitt MW, Conde J, et al. Controlled delivery of gold nanoparticle-coupled miRNA therapeutics via an injectable self-healing hydrogel. Nanoscale. 2021;13(48):20451-20461. doi: 10.1039/d1nr04973a
  80. Ning L, Gil CJ, Hwang B, et al. Biomechanical factors in three-dimensional tissue bioprinting. Appl Phys Rev. 2020;7(4):041319. doi: 10.1063/5.0023206
  81. Byambaa B, Annabi N, Yue K, et al. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater. 2017;6(16):1700015. doi: 10.1002/adhm.201700015
  82. Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA, Leach JK. Alginate-based bioinks for 3D bioprinting and fabrication of anatomically accurate bone grafts. Tissue Eng Part A. 2021;27(17–18):1168-1181. doi: 10.1089/ten.TEA.2020.0305
  83. Fischetti T, Di Pompo G, Baldini N, Avnet S, Graziani G. 3D printing and bioprinting to model bone cancer: the role of materials and nanoscale cues in directing cell behavior. Cancers. 2021;13(16):4065. doi: 10.3390/cancers13164065
  84. Holmes B, Bulusu K, Plesniak M, Zhang LG. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology. 2016;27(6): 064001. doi: 10.1088/0957-4484/27/6/064001
  85. Baino F, Minguella-Canela J, Korkusuz F, et al. In vitro assessment of bioactive glass coatings on alumina/ zirconia composite implants for potential use in prosthetic applications. Int J Mol Sci. 2019;20(3):722. doi: 10.3390/ijms20030722
  86. Chen YW, Shen YF, Ho CC, et al. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Mate Sci Eng C, Mater Biol Appl. 2018;91:679-687. doi: 10.1016/j.msec.2018.06.005
  87. Yang Z, Yi P, Liu Z, et al. Stem cell-laden hydrogel-based 3D bioprinting for bone and cartilage tissue engineering. Front Bioeng Biotechnol. 2022;10:865770. doi: 10.3389/fbioe.2022.865770
  88. Zhang J, Eyisoylu H, Qin X-H, Rubert M, Müller R. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomaterialia. 2021;121:637-652. doi: 10.1016/j.actbio.2020.12.026
  89. Zhang X, Cui J, Cheng L, Lin K. Enhancement of osteoporotic bone regeneration by strontium-substituted 45S5 bioglass via time-dependent modulation of autophagy and the Akt/mTOR signaling pathway. J Mater Chem B. 2021;9(16):3489-3501. doi: 10.1039/d0tb02991b
  90. Souza L, Lopes JH, Encarnação D, et al. Comprehensive in vitro and in vivo studies of novel melt-derived Nb-substituted 45S5 bioglass reveal its enhanced bioactive properties for bone healing. Sci Rep. 2018;8(1):12808. doi: 10.1038/s41598-018-31114-0
  91. Bellucci D, Cannillo V, Sola A, Chiellini F, Gazzarri M, Migone C. Macroporous Bioglass®-derived scaffolds for bone tissue regeneration. Ceramics international. 2011;37(5):1575-1585. doi: 10.1016/j.ceramint.2011.01.023
  92. Wang X, Tolba E, Schröder HC, et al. Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting. PLoS One. 2014;9(11):e112497. doi: 10.1371/journal.pone.0112497
  93. Raveendran N, Vaswani K, Han P, Basu S, Moran CS, Ivanovski S. Modeling inflammatory response using 3D bioprinting of polarized macrophages Int J Bioprint. 2024;10(2):2116. doi: 10.36922/ijb.2116
  94. Roh TT, Chen Y, Paul HT, Guo C, Kaplan DL. 3D bioengineered tissue model of the large intestine to study inflammatory bowel disease. Biomaterials. 2019;225:119517. doi: 10.1016/j.biomaterials.2019.119517
  95. Torras N, Zabalo J, Abril E, Carré A, García-Díaz M, Martínez E. A bioprinted 3D gut model with crypt-villus structures to mimic the intestinal epithelial-stromal microenvironment. Biomater Adv. 2023;153:213534. doi: 10.1016/j.bioadv.2023.213534
  96. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4(4):370-380. doi: 10.1038/s41551-019-0471-7
  97. Dickman CTD, Russo V, Thain K, et al. Functional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technology. FASEB J. 2020;34(1):1652-1664. doi: 10.1096/fj.201901063RR
  98. Maes L, Szabó A, Van Haevermaete J, et al. P035 3D bioprinting of gelatin derivatives: towards novel small intestinal in vitro models. J Crohns Colitis. 2024;18(Supplement_1):i293-i293. doi: 10.1093/ecco-jcc/jjad212.0165
  99. Mon A, Gervacio S, Aidnik H, Oxford S, Rosette C, Piu F. Evaluation of the clinical stage FXR Agonist FXR314 in human primary cell 3D models of Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis. 2024;30(Supplement_1):S59-S59. doi: 10.1093/ibd/izae020.121
  100. Lee JM, Yeong WY. Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv Healthc Mater. 2016;5(22):2856-2865. doi: 10.1002/adhm.201600435
  101. Almutary AG, Alnuqaydan AM, Almatroodi SA, Bakshi HA, Chellappan DK, Tambuwala MM. Development of 3D-bioprinted colitis-mimicking model to assess epithelial barrier function using albumin nano-encapsulated anti-inflammatory drugs. Biomimetics (Basel). 2023;8(1):41. doi: 10.3390/biomimetics8010041
  102. Garcés M, Cáceres L, Chiappetta D, Magnani N, Evelson P. Current understanding of nanoparticle toxicity mechanisms and interactions with biological systems. New J Chem. 2021;45(32):14328-14344. doi: 10.1039/D1NJ01415C
  103. Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. J Nanopart Res. 2023;25(3):43. doi: 10.1007/s11051-023-05690-w
  104. Buzea C, Pacheco I. 28 – Toxicity of nanoparticles. In: Pacheco-Torgal F, Diamanti MV, Nazari A, Granqvist CG, Pruna A, Amirkhanian S, eds. Nanotechnology in Eco- Efficient Construction (Second Edition). Sawston, UK: Woodhead Publishing; 2019:705-754. doi: 10.1016/B978-0-08-102641-0.00028-1
  105. Egbuna C, Parmar VK, Jeevanandam J, et al. Toxicity of nanoparticles in biomedical application: nanotoxicology. J Toxicol. 2021;2021(1):9954443. doi: 10.1155/2021/9954443
  106. Ajdary M, Moosavi MA, Rahmati M, et al. Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nanomaterials. 2018;8(9):634. doi: 10.3390/nano8090634
  107. Wang M, Yang Q, Long J, et al. A comparative study of toxicity of TiO2, ZnO, and Ag nanoparticles to human aortic smooth-muscle cells. Int J Nanomedicine. 2018: 8037-8049. doi: 10.2147/IJN.S188175
  108. Sanches PL, Geaquinto LRdO, Cruz R, et al. Toxicity evaluation of TiO2 nanoparticles on the 3D skin model: a systematic review. Frontiers in Bioengineering and Biotechnology. 2020;8:575. doi: 10.3389/fbioe.2020.00575
  109. Dubiak-Szepietowska M, Karczmarczyk A, Jönsson- Niedziółka M, Winckler T, Feller KH. Development of complex-shaped liver multicellular spheroids as a human-based model for nanoparticle toxicity assessment in vitro. Toxicol Appl Pharmacol. 2016;294:78-85. doi: 10.1016/j.taap.2016.01.016
  110. Chen L, Wu M, Jiang S, et al. Skin toxicity assessment of silver nanoparticles in a 3D epidermal model compared to 2D keratinocytes. Int J Nanomedicine. 2019:9707-9719. doi: 10.2147/IJN.S225451
  111. Gelamo EL, Tabak M. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim Acta Part A Mol Biomol Spectrosc. 2000;56(11):2255-2271. doi: 10.1016/S1386-1425(00)00313-9
  112. Miller KL, Sit I, Xiang Y, et al. Evaluation of CuO nanoparticle toxicity on 3D bioprinted human iPSC-derived cardiac tissues. Bioprinting. 2023;32:e00284. doi: 10.1016/j.bprint.2023.e00284
  113. Saufi SASA, Zuhri MYM, Dezaki ML, et al. Compression behaviour of bio-inspired honeycomb reinforced starfish shape structures using 3D printing technology. Polymers. 2021;13(24):4388. doi: 10.3390/polym13244388
  114. Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E. In vivo toxicity of silver nanoparticles and silver ions in zebrafish (danio rerio). J Toxicol. 2012;2012:293784. doi: 10.1155/2012/293784
  115. Gerbolés AG, Galetti M, Rossi S, et al. Three-dimensional bioprinting of organoid-based scaffolds (OBST) for long-term nanoparticle toxicology investigation. Int J Mol Sci. 2023;24(7):6595. doi: 10.3390/ijms24076595
  116. Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1-18. doi: 10.1016/j.jare.2018.06.005
  117. Kashkooli FM, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: static and dynamic targeting strategies. J Control Release. 2020;327:316-349. doi: 10.1016/j.jconrel.2020.08.012
  118. Hussain Z, Arooj M, Malik A, et al. Nanomedicines as emerging platform for simultaneous delivery of cancer therapeutics: new developments in overcoming drug resistance and optimizing anticancer efficacy. Artif Cells Nanomed Biotechnol. 2018;46(sup2):1015-1024. doi: 10.1080/21691401.2018.1478420
  119. Ahmad J, Garg A, Mustafa G, Mohammed AA, Ahmad MZ. 3D printing technology as a promising tool to design nanomedicine-based solid dosage forms: contemporary research and future scope. Pharmaceutics. 2023;15(5):1448. doi: 10.3390/pharmaceutics15051448
  120. Chakka JL, Salem AK. 3D Printing in Drug Delivery Systems. Taylor & Francis; 2019:59-62. doi: 10.2217/3dp-2019-0005
  121. Staros R, Michalak A, Rusinek K, Mucha K, Pojda Z, Zagożdżon R. Perspectives for 3D-bioprinting in modeling of tumor immune evasion. Cancers. 2022;14(13):3126. doi: 10.3390/cancers14133126
  122. Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013;169(2):337-352. doi: 10.1111/bph.12139
  123. Fu Z, Hai N, Zhong Y, Sun W. Printing GelMA bioinks: a strategy for buildingin vitromodel to study nanoparticle-based minocycline release and cellular protection under oxidative stress. Biofabrication. 2024;16(2):025040. doi: 10.1088/1758-5090/ad30c3
  124. Zhu H, Monavari M, Zheng K, et al. 3D bioprinting of multifunctional dynamic nanocomposite bioinks incorporating Cu‐doped mesoporous bioactive glass nanoparticles for bone tissue engineering. Small. 2022;18(12):2104996. doi: 10.1002/smll.202104996
  125. Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal stem cell-laden construct with core–shell nanospheres for cartilage tissue engineering. Nanotechnology. 2018;29(18):185101. doi: 10.1088/1361-6528/aaafa1
  126. Rizzi F, Castaldo R, Latronico T, et al. High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: insights on the size and porosity control mechanisms. Molecules (Basel, Switzerland). 2021;26(14):4247. doi: 10.3390/molecules26144247
  127. Theus AS, Ning L, Kabboul G, et al. 3D bioprinting of nanoparticle-laden hydrogel scaffolds with enhanced antibacterial and imaging properties. Iscience. 2022;25(9):104947. doi: 10.1016/j.isci.2022.1049
  128. Cleetus CM, Alvarez Primo F, Fregoso G, et al. Alginate hydrogels with embedded ZnO nanoparticles for wound healing therapy. Int J Nanomedicine. 2020: 5097-5111. doi: 10.2147/IJN.S255937
  129. Li Z, Zheng A, Mao Z, et al. Silk fibroin–gelatin photo-crosslinked 3D-bioprinted hydrogel with MOF-methylene blue nanoparticles for infected wound healing. Int J Bioprint. 2023;9(5):773. doi: 10.18063/ijb.773
  130. Su Y, Liu Y, Hu X, et al. Caffeic acid-grafted chitosan/sodium alginate/nanoclay-based multifunctional 3D-printed hybrid scaffolds for local drug release therapy after breast cancer surgery. Carbohydr Polym. 2024;324:121441. doi: 10.1016/j.carbpol.2023.121441
  131. Puertas-Bartolomé M, Włodarczyk-Biegun MK, del Campo A, Vázquez-Lasa B, San Román J. Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting. Mater Sci Eng C. 2021;131:112515. doi: 10.1016/j.msec.2021.112515

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing