Osteocytic PGE2 receptors EP2/4 signaling create a physiological osteogenic microenvironment in polycaprolactone 3D modules
3D bioprinting is a focused field in orthopedics, and its application with physiological osteogenic microenvironments (POMEs) is a prerequisite for authentic bone reconstruction. Mechanical stimulation produces prostaglandin E2 (PGE2) in mechanosensory osteocytes, but it remains unclear whether osteocytic PGE2 is a POME. PGE2 is an inducer of osteogenesis by acting on bone marrow stromal cells through its receptors EP2/EP4 to initiate osteogenic differentiation and mineralization. Unfortunately, clinical trials of PGE2 have reported side effects, including fever and drowsiness; targeting the PGE2 receptor in specific tissues can avoid these side effects. Here, we demonstrate that osteocytic cell line MLO-Y4 from murine long bones treated with EP2/EP4 agonists for 24 h enhance osteogenic differentiation and mineralization, inhibit adipogenesis of the stromal cell line ST2, and induce tubule formation and angiogenic marker expression in human umbilical vein endothelial cells (HUVECs). Mechanistically, activation of the PGE2 signaling pathway in osteocytes induces autocrine effects by upregulating the expression of EP2/EP4 receptors and COX-2 (Ptgs2), further amplifying PGE2 signaling. PGE2 produced by treated MLO-Y4 cells appears responsible for osteogenesis, alongside other unidentified factors. MLO-Y4 and ST2 cells, incorporated into POME 3D constructs, maintained over 95% viability over seven days. Treatment of osteocytes with a PGE2 receptor agonist promotes ST2 cell proliferation and enhances osteoblast marker expression and mineralization. As 3D bioprinting closely models in vivo conditions, these data suggest that osteocytic PGE2 receptor signaling is a safe and mild POME with great potential for translational applications.
- Shapira A, Dvir T. 3D Tissue and organ printing-hope and reality. Adv Sci (Weinh). 2021;8(10):2003751. doi: 10.1002/advs.202003751
- Ashammakhi N, Hasan A, Kaarela O, et al. Advancing frontiers in bone bioprinting. Adv Healthc Mater. 2019;8(7):e1801048. doi: 10.1002/adhm.201801048
- Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs. Sci Rep. 2020;10(1):14023. doi: 10.1038/s41598-020-70086-y
- West-Livingston LN, Park J, Lee SJ, Atala A, Yoo JJ. The role of the microenvironment in controlling the fate of bioprinted stem cells. Chem Rev. 2020;120(19):11056-11092. doi: 10.1021/acs.chemrev.0c00126
- Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Faulkner RA, Baxter-Jones AD. Higher premenarcheal bone mass in elite gymnasts is maintained into young adulthood after long-term retirement from sport: a 14-year follow-up. J Bone Miner Res. 2012;27(1):104-110. doi: 10.1002/jbmr.514
- Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229-238. doi: 10.1002/jbmr.320
- Zhao D, Riquelme MA, Guda T, et al. Connexin hemichannels with prostaglandin release in anabolic function of bone to mechanical loading. Elife. 2022;11:e74365. doi: 10.7554/eLife.74365
- Zhang Y, Daaka Y. PGE2 promotes angiogenesis through EP4 and PKA Cγ pathway. Blood. 2011;118(19):5355-5364. doi: 10.1182/blood-2011-04-350587
- Graham S, Gamie Z, Polyzois I, et al. Prostaglandin EP2 and EP4 receptor agonists in bone formation and bone healing: In vivo and in vitro evidence. Expert Opin Investig Drugs. 2009;18(6):746-766. doi: 10.1517/13543780902893051
- Cheng H, Huang H, Guo Z, Chang Y, Li Z. Role of prostaglandin E2 in tissue repair and regeneration. Theranostics. 2021;11(18):8836-8854. doi: 10.7150/thno.63396
- Sakuma Y, Li Z, Pilbeam CC, et al. Stimulation of cAMP production and cyclooxygenase-2 by prostaglandin E(2) and selective prostaglandin receptor agonists in murine osteoblastic cells. Bone. 2004;34(5):827-834. doi: 10.1016/j.bone.2003.12.007
- Wang P, Wang X, Wang B, et al. 3D printing of osteocytic Dll4 integrated with PCL for cell fate determination towards osteoblasts in vitro. Bio-des. Manuf. 2022;5(3):497-511. https://www.doi.org/10.1007/s42242-022-00196-1
- Wang B, Khan S, Wang P, et al. A highly selective GSK-3β inhibitor CHIR99021 promotes osteogenesis by activating canonical and autophagy-mediated Wnt signaling. Front Endocrinol (Lausanne). 2022;13:926622. doi: 10.3389/fendo.2022.926622
- Tu X, Joeng KS, Nakayama KI, et al. Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Dev Cell. 2007;12(1):113-127. doi: 10.1016/j.devcel.2006.11.003
- Liu Y, Ruan X, Li J, et al. The osteocyte stimulated by Wnt agonist SKL2001 is a safe osteogenic niche improving bioactivities in a polycaprolactone and cell integrated 3D module. Cells. 2022;11(5):831. doi: 10.3390/cells11050831
- Tu X, Delgado-Calle J, Condon KW, et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci USA. 2015;112(5):E478-486. doi: 10.1073/pnas.1409857112
- Zhang J, Zhang Y, Chen J, Gong W, Tu X. The osteocyte with SB216763-activated canonical Wnt signaling constructs a multifunctional 4D intelligent osteogenic module. Biomolecules. 2024;14(3):354. doi: 10.3390/biom14030354
- Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials. 2014;35(1):49-62. doi: 10.1016/j.biomaterials.2013.09.078
- Zhang L, Xu M, Ren Q, et al. Human induced pluripotent stem cell-derived neural cells from Alzheimer’s disease patients exhibited different susceptibility to oxidative stress. Stem Cells Dev. 2020;29(22):1444-1456. doi: 10.1089/scd.2020.0103
- Zhang HY, Sun H. Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer. Cancer Lett. 2010;287(1):91-97. doi: 10.1016/j.canlet.2009.06.001
- Jia L, Zhou X, Huang X, et al. Maternal and umbilical cord serum-derived exosomes enhance endothelial cell proliferation and migration. Faseb J. 2018;32(8):4534-4543. doi: 10.1096/fj.201701337RR
- Gong W, Li M, Zhao L, et al. Sustained release of a highly specific GSK3β inhibitor SB216763 in the PCL scaffold creates an osteogenic niche for osteogenesis, anti-adipogenesis, and potential angiogenesis. Front Bioeng Biotechnol. 2023;11:1215233. doi: 10.3389/fbioe.2023.1215233
- Cai J, Huang J, Yang J, et al. The protective effect of selenoprotein M on non-alcoholic fatty liver disease: the role of the AMPKα1-MFN2 pathway and Parkin mitophagy. Cell Mol Life Sci. 2022;79(7):354. doi: 10.1007/s00018-022-04385-0
- Cherian PP, Cheng B, Gu S, Sprague E, Bonewald LF, Jiang JX. Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J Biol Chem. 2003;278(44): 43146-43156. doi: 10.1074/jbc.M302993200
- Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3): 312-319. doi: 10.1038/nbt.3413
- Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071. doi: 10.1038/natrevmats.2016.71
- Pashuck ET, Stevens M. From clinical imaging to implantation of 3D printed tissues. Nat Biotechnol. 2016;34(3):295-296. doi: 10.1038/nbt.3503
- Anthon SG, Valente KP. Vascularization strategies in 3D cell culture models: from scaffold-free models to 3D bioprinting. Int J Mol Sci. 2022;23(23):14582. doi: 10.3390/ijms232314582
- Dellaquila A, Le Bao C, Letourneur D, Simon-Yarza T. In vitro strategies to vascularize 3D physiologically relevant models. Adv Sci (Weinh). 2021;8(19):e2100798. doi: 10.1002/advs.202100798
- Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab. 2010;21(5):294-301. doi: 10.1016/j.tem.2009.12.004
- Choudhary S, Alander C, Zhan P, Gao Q, Pilbeam C, Raisz L. Effect of deletion of the prostaglandin EP2 receptor on the anabolic response to prostaglandin E2 and a selective EP2 receptor agonist. Prostaglandins Other Lipid Mediat. 2008;86(1-4):35-40. doi: 10.1016/j.prostaglandins.2008.02.001
- Hakeda Y, Yoshino T, Natakani Y, Kurihara N, Maeda N, Kumegawa M. Prostaglandin E2 stimulates DNA synthesis by a cyclic AMP-independent pathway in osteoblastic clone MC3T3-E1 cells. J Cell Physiol. 1986;128(2):155-161. doi: 10.1002/jcp.1041280204
- Koyama A, Otsuka E, Inoue A, Hirose S, Hagiwara H. Nitric oxide accelerates the ascorbic acid-induced osteoblastic differentiation of mouse stromal ST2 cells by stimulating the production of prostaglandin E(2). Eur J Pharmacol. 2000;391(3):225-231. doi: 10.1016/s0014-2999(00)00100-x
- Perkel VS, Mohan S, Herring SJ, Baylink DJ, Linkhart TA. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells. Cancer Res. 1990;50(21):6902-6907.
- Pradhan G, Samson SL, Sun Y. Ghrelin: much more than a hunger hormone. Curr Opin Clin Nutr Metab Care. 2013;16(6):619-624. doi: 10.1097/MCO.0b013e328365b9be
- Fujimori K. Prostaglandins as PPARγ modulators in adipogenesis. PPAR Res. 2012;2012:527607. doi: 10.1155/2012/527607
- Joiner DM, Tayim RJ, McElderry JD, Morris MD, Goldstein SA. Aged male rats regenerate cortical bone with reduced osteocyte density and reduced secretion of nitric oxide after mechanical stimulation. Calcif Tissue Int. 2014;94(5):484-494. doi: 10.1007/s00223-013-9832-5
- Kamel MA, Picconi JL, Lara-Castillo N, Johnson ML. Activation of β-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: implications for the study of mechanosensation in bone. Bone. 2010;47(5):872-881. doi: 10.1016/j.bone.2010.08.007
- Tiede-Lewis LM, Xie Y, Hulbert MA, et al. Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging (Albany NY). 2017;9(10):2190-2208. doi: 10.18632/aging.101308
- Wang X, Ma Y, Chen J, et al. A novel decellularized matrix of Wnt signaling-activated osteocytes accelerates the repair of critical-sized parietal bone defects with osteoclastogenesis, angiogenesis, and neurogenesis. Bioact Mater. 2023;21:110-128. doi: 10.1016/j.bioactmat.2022.07.017
- Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241-1246. doi: 10.1016/s0140-6736(06)68438-9
- Zhou Z, Pang Y, Ji J, et al. Harnessing 3D in vitro systems to model immune responses to solid tumours: a step towards improving and creating personalized immunotherapies. Nat Rev Immunol. 2024;24(1):18-32. doi: 10.1038/s41577-023-00896-4
- Wang T, Pan W, Zheng H, et al. Accuracy of using a patient-derived tumor organoid culture model to predict the response to chemotherapy regimens in stage IV colorectal cancer: a blinded study. Dis Colon Rectum. 2021;64(7): 833-850. doi: 10.1097/dcr.0000000000001971