AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4139
REVIEW

3D-printed electronics for biomedical applications

Minsu Ryoo1 Daeho Kim1 Junseop Noh1 Song Ih Ahn2*
Show Less
1 School of Mechanical Engineering, Pusan National University, Pusan, Republic of Korea
2 Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
Submitted: 3 July 2024 | Accepted: 2 August 2024 | Published: 7 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Biomedical electronics have garnered significant interest due to the rising demand for advanced healthcare devices for diagnosis, monitoring, and treatment. Three-dimensional (3D) printing, or additive manufacturing, has emerged as an attractive fabrication method for developing these advanced biomedical devices. Its unique features, such as versatility, cost-effectiveness, and rapid prototyping capabilities, when combined with medical imaging technologies enable the creation of highly precise and customized patient-specific structures. Extensive research in the field of 3D printing has focused on developing biomedical devices, including wearable and implantable devices, as well as scaffolds or platforms. Recently, the integration of 3D printing with state-of-the-art electronic materials, known for their high flexibility, conductivity, stretchability, stability, and biocompatibility, has led to the development of innovative biomedical electronics. In this review, we outline the recent advancements in 3D printing technologies and their applications in bioelectronic devices. Firstly, we describe various 3D printing methods and printable electronic materials, highlighting their advantages and limitations. Subsequently, we explore the applications of these technologies in biomedical research, spanning from surgical guidance and prosthetics to health monitoring devices and tissue-engineered scaffolds. Finally, this review discusses the current challenges and future directions to fully exploit the potential of 3D-printed bioelectronic devices, aimed at transforming personalized healthcare.

Keywords
Bioelectronics
Biomedical electronics
3D printing
Biomedical devices
Personalized healthcare
Funding
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1C1C1010823, No. RS-2023-00218543).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Xu L, Qin H, Tan J, et al. Clinical study of 3D printed personalized prosthesis in the treatment of bone defect after pelvic tumor resection. J Orthop Translat. 2021;29:163-169. doi: 10.1016/j.jot.2021.05.007
  2. Tejo-Otero A, Lustig-Gainza P, Fenollosa-Artés F, Valls A, Krauel L, Buj-Corral I. 3D printed soft surgical planning prototype for a biliary tract rhabdomyosarcoma. J Mech Behav Biomed Mater. 2020;109:103844. doi: 10.1016/j.jmbbm.2020.103844
  3. Uhl JF, Sufianov A, Ruiz C, et al. The use of 3D printed models for surgical simulation of cranioplasty in craniosynostosis as training and education. Brain Sci. 2023;13(6):894. doi: 10.3390/brainsci13060894
  4. Wang F, Xue Y, Chen X, et al. 3D printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation. Adv Funct Mater. 2024;34(21):2314471. doi: 10.1002/adfm.202314471
  5. Krishnadoss V, Kanjilal B, Hesketh A, et al. In situ 3D printing of implantable energy storage devices. Chem Eng J. 2021;409:128213. doi: 10.1016/j.cej.2020.128213
  6. Picco CJ, Domínguez-Robles J, Utomo E, et al. 3D-printed implantable devices with biodegradable rate-controlling membrane for sustained delivery of hydrophobic drugs. Drug Deliv. 2022;29(1):1038-1048. doi: 10.1080/10717544.2022.2057620
  7. Yi Q, Najafikhoshnoo S, Das P, et al. All‐3D‐printed, flexible, and hybrid wearable bioelectronic tactile sensors using biocompatible nanocomposites for health monitoring. Adv Mater Technol. 2022;7(5):2101034. doi: 10.1002/admt.202101034
  8. Tang Z, Jia S, Zhou C, Li B. 3D printing of highly sensitive and large-measurement-range flexible pressure sensors with a positive piezoresistive effect. ACS Appl Mater Interfaces. 2020;12(25):28669-28680. doi: 10.1021/acsami.0c06977
  9. Davoodi E, Montazerian H, Haghniaz R, et al. 3D-printed ultra-robust surface-doped porous silicone sensors for wearable biomonitoring. ACS Nano. 2020;14(2):1520-1532. doi: 10.1021/acsnano.9b06283
  10. Kwon Y-T, Kim Y-S, Kwon S, et al. All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces. Nat Commun. 2020;11(1):3450. doi: 10.1038/s41467-020-17288-0
  11. Yan W-C, Davoodi P, Vijayavenkataraman S, et al. 3D bioprinting of skin tissue: from pre-processing to final product evaluation. Adv Drug Deliv Rev. 2018;132: 270-295. doi: 10.1016/j.addr.2018.07.016
  12. Bao G, Yang P, Yi J, et al. Full-sized realistic 3D printed models of liver and tumour anatomy: a useful tool for the clinical medicine education of beginning trainees. BMC Med Educ. 2023;23(1):574. doi: 10.1186/s12909-023-04535-3
  13. Fu H, Zhang D, Zeng J, et al. Application of 3D-printed tissue-engineered skin substitute using innovative biomaterial loaded with human adipose-derived stem cells in wound healing. Int J Bioprint. 2023;9(2):674. doi: 10.18063/ijb.v9i2.674
  14. Zhu Z, Guo SZ, Hirdler T, et al. 3D printed functional and biological materials on moving freeform surfaces. Adv Mater. 2018;30(23):e1707495. doi: 10.1002/adma.201707495
  15. Guo X, Li H, Hong W, et al. 3D printed fourth-order star-like negative poisson’s ratio structure for high-sensitivity bionic flexible capacitive pressure sensor. IEEE Sens J. 2024;24(9) 13937-13945. doi: 10.1109/JSEN.2024.3374304
  16. He Q, Zeng Y, Jiang L, et al. Growing recyclable and healable piezoelectric composites in 3D printed bioinspired structure for protective wearable sensor. Nat Commun. 2023;14(1):6477. doi: 10.1038/s41467-023-41740-6
  17. Wei J, Xie J, Zhang P, et al. Bioinspired 3D printable, self-healable, and stretchable hydrogels with multiple conductivities for skin-like wearable strain sensors. ACS Appl Mater Interfaces. 2021;13(2):2952-2960. doi: 10.1021/acsami.0c19512
  18. Jain K, Wang Z, Garma LD, et al. 3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics. Appl Mater Today. 2023;30:101703. doi: 10.1016/j.apmt.2022.101703
  19. Yu J, Tian F, Wang W, et al. Design of highly conductive, intrinsically stretchable, and 3D printable PEDOT: PSS hydrogels via PSS-chain engineering for bioelectronics. Chem Mater. 2023;35(15):5936-5944. doi: 10.1021/acs.chemmater.3c00844
  20. Peng S, Li Y, Wu L, et al. 3D printing mechanically robust and transparent polyurethane elastomers for stretchable electronic sensors. ACS Appl Mater Interfaces. 2020; 12(5):6479-6488 doi: 10.1021/acsami.9b20631
  21. Tan P, Xi Y, Chao S, et al. An artificial intelligence-enhanced blood pressure monitor wristband based on piezoelectric nanogenerator. Biosensors. 2022;12(4):234. doi: 10.3390/bios12040234
  22. Kim B, Jang S, Geier ML, Prabhumirashi PL, Hersam MC, Dodabalapur A. High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett. 2014;14(6):3683-3687. doi: 10.1021/nl5016014
  23. Minemawari H, Yamada T, Matsui H, et al. Inkjet printing of single-crystal films. Nature. 2011;475(7356):364-367. doi: 10.1038/nature10313
  24. De Gans BJ, Duineveld PC, Schubert US. Inkjet printing of polymers: state of the art and future developments. Adv Mater. 2004;16(3):203-213. doi: 10.1002/adma.200300385
  25. Calvert P. Printing cells. Science. 2007;318(5848):208-209. doi: 10.1126/science.1144212
  26. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;30(31):6221-6227. doi: 10.1016/j.biomaterials.2009.07.056
  27. Huang Z, Tang Y, Guo H, et al. 3D printing of ceramics and graphene circuits-on-ceramics by thermal bubble inkjet technology and high temperature sintering. Ceramics Int. 2020;46(8):10096-10104. doi: 10.1016/j.ceramint.2019.12.278
  28. Wood V, Panzer MJ, Chen J, et al. Inkjet‐printed quantum dot–polymer composites for full‐color ac‐driven displays. Adv Mater. 2009;21(21):2151-2155. doi: 10.1002/adma.200990078
  29. Teo MY, RaviChandran N, Kim N, et al. Direct patterning of highly conductive PEDOT: PSS/ionic liquid hydrogel via microreactive inkjet printing. ACS Appl Mater Interfaces. 2019;11(40):37069-37076. doi: 10.1021/acsami.9b12069
  30. Mangoma TN, Yamamoto S, Malliaras GG, Daly R. Hybrid 3D/Inkjet-printed organic neuromorphic transistors. Adv Mater Technol. 2022;7(2):2000798. doi: 10.1002/admt.202000798
  31. Carey T, Cacovich S, Divitini G, et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat Commun. 2017;8(1):1202. doi: 10.1038/s41467-017-01210-2
  32. Gibertini E, Lissandrello F, Bertoli L, Viviani P, Magagnin L. All-inkjet-printed Ti3C2 MXene capacitor for textile energy storage. Coatings. 2023;13(2):230. doi: 10.3390/coatings13020230
  33. Li Y, Dahhan O, Filipe CD, Brennan JD, Pelton RH. Deposited nanoparticles can promote air clogging of piezoelectric inkjet printhead nozzles. Langmuir. 2019;35(16): 5517-5524. doi: 10.1021/acs.langmuir.8b04335
  34. Li Y, Dahhan O, Filipe CD, Brennan JD, Pelton RH. Optimizing piezoelectric inkjet printing of silica sols for biosensor production. J Sol-Gel Sci Technol. 2018; 87:657-664. doi: 10.1007/s10971-018-4762-3
  35. Li J, Rossignol F, Macdonald J. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab Chip. 2015;15(12): 2538-2558. doi: 10.1039/C5LC00235D
  36. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103-112. doi: 10.1016/j.copbio.2016.03.014
  37. Yan K, Li J, Pan L, Shi Y. Inkjet printing for flexible and wearable electronics. APL Mater. 2020;8(12):120705. doi: 10.1063/5.0031669
  38. Shah MA, Lee D-G, Lee B-Y, Hur S. Classifications and applications of inkjet printing technology: a review. IEEE Access. 2021 doi: 10.1109/ACCESS.2021.3119219
  39. Tekin E, Smith PJ, Schubert US. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter. 2008;4(4):703-713. doi: 10.1039/B711984D
  40. Chung S, Cho K, Lee T. Recent progress in inkjet-printed thin-film transistors. Adv Sci (Weinh). 2019;6(6):1801445. doi: 10.1002/advs.201801445
  41. Rahmati S, Shirazi S, Baghayeri H. Piezo‐electric head application in a new 3D printing design. Rapid Prototyping J. 2009;15(3):187-191. doi: 10.1108/13552540910960280
  42. Wang Z, Wu W, Yang Q, Li Y, Noh C-H. In-situ fabrication of flexible vertically integrated electronic circuits by inkjet printing. J Alloys Compd. 2009;486(1-2):706-710. doi: 10.1016/j.jallcom.2009.07.044
  43. Lo L-W, Zhao J, Wan H, Wang Y, Chakrabartty S, Wang C. An inkjet-printed PEDOT: PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl Mater Interfaces. 2021;13(18):21693-21702. doi: 10.1021/acsami.1c00537
  44. Delekta SS, Adolfsson KH, Erdal NB, Hakkarainen M, Östling M, Li J. Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte. Nanoscale. 2019;11(21):10172-10177. doi: 10.1039/C9NR01427F
  45. Su C-H, Chiu H-L, Chen Y-C, et al. Highly responsive PEG/gold nanoparticle thin-film humidity sensor via inkjet printing technology. Langmuir. 2019;35(9):3256-3264. doi: 10.1021/acs.langmuir.8b03433
  46. Wen D, Ying G, Liu L, et al. Flexible and high‐performance MXene/MnO2 film electrodes fabricated by inkjet printing: toward a new generation supercapacitive application. Adv Mater Interfaces. 2021;8(21):2101453. doi: 10.1002/admi.202101453
  47. Kim JD, Choi JS, Kim BS, Choi YC, Cho YW. Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer. 2010;51(10):2147-2154. doi: 10.1016/j.polymer.2010.03.038
  48. Remaggi G, Zaccarelli A, Elviri L. 3D printing technologies in biosensors production: recent developments. Chemosensors. 2022;10(2):65. doi: 10.3390/chemosensors10020065
  49. Huang J, Qin Q, Wang J. A review of stereolithography: processes and systems. Processes. 2020;8(9):1138. doi: 10.3390/pr8091138
  50. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
  51. Song Q, Chen Y, Hou P, et al. Fabrication of multi-material pneumatic actuators and microactuators using stereolithography. Micromachines. 2023;14(2):244. doi: 10.3390/mi14020244
  52. Pagac M, Hajnys J, Ma Q-P, et al. A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing. Polymers. 2021;13(4):598. doi: 10.3390/polym13040598
  53. Peng X, Kuang X, Roach DJ, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit Manuf. 2021;40:101911. doi: 10.1016/j.addma.2021.101911
  54. Liu M, Zhang Q, Shao Y, Liu C, Zhao Y. Research of a novel 3D printed strain gauge type force sensor. Micromachines. 2018;10(1):20. doi: 10.3390/mi10010020
  55. Kim NP, Eo J-S, Cho D. Optimization of piston type extrusion (PTE) techniques for 3D printed food. J Food Eng. 2018;235:41-49. doi: 10.1016/j.jfoodeng.2018.04.019
  56. Valkenaers H, Vogeler F, Voet A, Kruth J-P. Screw Extrusion Based 3D Printing, A Novel Additive Manufacturing Technology. University of Stellenbosch: Stellenbosch; 2013:97-103.
  57. Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: personalised solutions for healthcare challenges. J Control Release. 2021;332:367-389. doi: 10.1016/j.jconrel.2021.02.027
  58. Tetsuka H, Shin SR. Materials and technical innovations in 3D printing in biomedical applications. J Mater Chem B. 2020;8(15):2930-2950. doi: 10.1039/D0TB00034E
  59. Dababneh AB, Ozbolat IT. Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng. 2014;136(6):061016. doi: 10.1115/1.4028512
  60. Li B, Liang W, Zhang L, Ren F, Xuan F. TPU/CNTs flexible strain sensor with auxetic structure via a novel hybrid manufacturing process of fused deposition modeling 3D printing and ultrasonic cavitation-enabled treatment. Sens Actuators A: Phys. 2022;340:113526. doi: 10.1016/j.sna.2022.113526
  61. Ma C, Zhu B, Qian Z, Ren L, Yuan H, Meng Y. 3D-printing of conductive inks based flexible tactile sensor for monitoring of temperature, strain and pressure. J Manuf Processes. 2023;87:1-10. doi: 10.1016/j.jmapro.2023.01.008
  62. Park SH, Su R, Jeong J, et al. 3D printed polymer photodetectors. Adv Mater. 2018;30(40):1803980. doi: 10.1002/adma.201803980
  63. Zhu Z, Park HS, McAlpine MC. 3D printed deformable sensors. Sci Adv. 2020;6(25):eaba5575. doi: 10.1126/sciadv.aba5575
  64. Schouten M, Wolterink G, Dijkshoorn A, Kosmas D, Stramigioli S, Krijnen G. A review of extrusion-based 3d printing for the fabrication of electro-and biomechanical sensors. IEEE Sens J. 2020;21(11):12900-12912. doi: 10.1109/JSEN.2020.3042436
  65. Saadi MASR, Maguire A, Pottackal NT, et al. Direct ink writing: A 3D printing technology for diverse materials. Adv Mater. 2022;34(28):2108855. doi: 10.1002/adma.201707495
  66. Wei P, Leng H, Chen Q, Advincula RC, Pentzer EB. Reprocessable 3D-printed conductive elastomeric composite foams for strain and gas sensing. ACS Appl Polym Mater. 2019;1(4):885-892. doi: 10.1021/acsapm.9b00118
  67. Huang K, Dong S, Yang J, et al. Three-dimensional printing of a tunable graphene-based elastomer for strain sensors with ultrahigh sensitivity. Carbon. 2019;143:63-72. doi: 10.1016/j.carbon.2018.11.008
  68. Baker DV, Bao C, Kim WS. Highly conductive 3D printable materials for 3D structural electronics. ACS Appl Electron Mater. 2021;3(6):2423-2433. doi: 10.1021/acsaelm.1c00296
  69. Neumann TV, Dickey MD. Liquid metal direct write and 3D printing: a review. Adv Mater Technol. 2020;5(9): 2000070. doi: 10.1002/admt.202000070
  70. Tan HW, An J, Chua CK, Tran T. Metallic nanoparticle inks for 3D printing of electronics. Adv Electronic Mater. 2019;5(5):1800831. doi: 10.1002/aelm.201800831
  71. Zou Z, Chen Y, Yuan S, Luo N, Li J, He Y. 3D printing of liquid metals: recent advancements and challenges. Adv Funct Mater. 2023;33(10):2213312. doi: 10.1002/adfm.202213312
  72. Chen R. Liquid Metal Based Flexible Pressure Sensor for Tactile Sensing of Robots. IOP Publishing; 2021:052025. doi: 10.1088/1742-6596/1885/5/052025
  73. Cook A, Parekh DP, Ladd C, et al. Shear‐driven direct‐write printing of room‐temperature gallium‐based liquid metal alloys. Adv Eng Mater. 2019;21(11):1900400. doi: 10.1002/adem.201900400
  74. Wu P, Fu J, Xu Y, He Y. Liquid metal microgels for three-dimensional printing of smart electronic clothes. ACS Appl Mater Interfaces. 2022;14(11):13458-13467. doi: 10.1021/acsami.1c22975
  75. Kim S, Oh J, Jeong D, Bae J. Direct wiring of eutectic gallium–indium to a metal electrode for soft sensor systems. ACS Appl Mater Interfaces. 2019;11(22):20557-20565. doi: 10.1021/acsami.9b05363
  76. Wang Y, Yu Z, Mao G, et al. Printable liquid‐metal@ PDMS stretchable heater with high stretchability and dynamic stability for wearable thermotherapy. Adv Mater Technol. 2019;4(2):1800435. doi: 10.1002/admt.201800435
  77. Oh J, Kim S, Lee S, Jeong S, Ko SH, Bae J. A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality. Adv Funct Mater. 2021;31(39):2007772. doi: 10.1002/adfm.202007772
  78. Allen G, Bayles R, Gile W, Jesser W. Small particle melting of pure metals. Thin Solid Films. 1986;144(2):297-308. doi: 10.1016/0040-6090(86)90422-0
  79. McNamara K, Tofail SA. Nanoparticles in biomedical applications. Adv Phys: X. 2017;2(1):54-88. doi: 10.1080/23746149.2016.1254570
  80. Das S, Langbang L, Haque M, Belwal VK, Aguan K, Roy AS. Biocompatible silver nanoparticles: an investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies. J Pharm Anal. 2021;11(4):422-434. doi: 10.1016/j.jpha.2020.12.003
  81. Rajendran G, Rajamuthuramalingam T, Jesse DMI, Kathiravan K. Synthesis and characterization of biocompatible acetaminophen stabilized gold nanoparticles. Mater Res Express. 2019;6(9):095043. doi: 10.1088/2053-1591/ab2e4d
  82. Nejati K, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A. Biomedical applications of functionalized gold nanoparticles: a review. J Clust Sci. 2021;33:1-16. doi: 10.1007/s10876-020-01955-9
  83. Madhavan R. Flexible and stretchable strain sensors fabricated by inkjet printing of silver nanowire-ecoflex composites. J Mater Sci: Mater Electron. 2022;33(7):3465-3484. doi: 10.1007/s10854-022-09087-8
  84. Kong YL, Tamargo IA, Kim H, et al. 3D printed quantum dot light-emitting diodes. Nano Lett. 2014;14(12):7017-7023. doi: 10.1021/nl5033292
  85. Rosati G, Ravarotto M, Scaramuzza M, De Toni A, Paccagnella A. Silver nanoparticles inkjet-printed flexible biosensor for rapid label-free antibiotic detection in milk. Sens Actuators B: Chem. 2019;280:280-289. doi: 10.1016/j.snb.2018.09.084
  86. Agarwala S, Goh GL, Yap YL, et al. Development of bendable strain sensor with embedded microchannels using 3D printing. Sens Actuators A: Phys. 2017;263:593-599. doi: 10.1016/j.sna.2017.07.025
  87. Kwon SN, Kim SW, Kim IG, Hong YK, Na SI. Direct 3D Printing of graphene nanoplatelet/silver nanoparticle‐based nanocomposites for multiaxial piezoresistive sensor applications. Adv Mater Technol. 2019;4(2):1800500. doi: 10.1002/admt.201800500
  88. Ali MA, Hu C, Jahan S, et al. Sensing of COVID‐19 antibodies in seconds via aerosol jet nanoprinted reduced‐graphene‐oxide‐coated 3D electrodes. Adv Mater. 2021;33(7):2006647. doi: 10.1002/adma.202006647
  89. Zhu C, Han TY-J, Duoss EB, et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun. 2015;6(1):6962. doi: 10.1038/ncomms7962
  90. Zhu D, Ren Y, Liao G, et al. Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling. J Appl Polym Sci. 2017;134(39):45332. doi: 10.1002/app.45332
  91. Wang J, Liu Y, Fan Z, Wang W, Wang B, Guo Z. Ink-based 3D printing technologies for graphene-based materials: a review. Adv Compos Hybrid Mater. 2019;2:1-33. doi: 10.1007/s42114-018-0067-9
  92. Thostenson ET, Li C, Chou T-W. Nanocomposites in context. Compos Sci Technol. 2005;65(3-4):491-516. doi: 10.1016/j.compscitech.2004.11.003
  93. Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small. 2005;1(2):180-192. doi: 10.1002/smll.200400118
  94. Goh GL, Agarwala S, Yeong WY. Directed and on-demand alignment of carbon nanotube: a review toward 3D printing of electronics. Adv Mater Interfaces. 2019;6(4):1801318. doi: 10.1002/admi.201801318
  95. Lee S-J, Wei Z, Nowicki M, et al. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng. 2018;15(1):016018. doi: 10.1088/1741-2552/aa95a5
  96. Jarosova R, Mcclure SE, Gajda M, et al. Inkjet-printed carbon nanotube electrodes for measuring pyocyanin and uric acid in a wound fluid simulant and culture media. Anal Chem. 2019;91(14):8835-8844. doi: 10.1021/acs.analchem.8b05591
  97. Eng H, Maleksaeedi S, Yu S, et al. Development of CNTs-filled photopolymer for projection stereolithography. Rapid Prototyping J. 2017;23(1):129-136. doi: 10.1108/RPJ-10-2015-0148
  98. Nadernezhad A, Unal S, Khani N, Koc B. Material extrusion-based additive manufacturing of structurally controlled poly (lactic acid)/carbon nanotube nanocomposites. Int J Adv Manuf Technol. 2019;102:2119-2132 doi: 10.1007/s00170-018-03283-9
  99. Belaid H, Nagarajan S, Teyssier C, et al. Development of new biocompatible 3D printed graphene oxide-based scaffolds. Mater Sci Eng: C. 2020;110:110595. doi: 10.1016/j.msec.2019.110595
  100. eSilva EP, Huang B, Helaehil JV, et al. In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering. Bio-Des Manuf. 2021;4(2):190-202. doi: 10.1007/s42242-020-00116-1
  101. Ryan KR, Down MP, Hurst NJ, Keefe EM, Banks CE. Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. eScience. 2022;2(4):365–381. doi: 10.1016/j.esci.2022.07.003
  102. Shi H, Liu C, Jiang Q, Xu J. Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Adv Electron Mater. 2015;1(4):1500017. doi: 10.1002/aelm.201500017
  103. Su R, Park SH, Ouyang X, Ahn SI, McAlpine MC. 3D-printed flexible organic light-emitting diode displays. Sci Adv. 2022;8(1):eabl8798. doi: 10.1126/sciadv.abl8798
  104. Vuorinen T, Niittynen J, Kankkunen T, Kraft TM, Mäntysalo M. Inkjet-printed graphene/PEDOT: PSS temperature sensors on a skin-conformable polyurethane substrate. Sci Rep. 2016;6(1):35289. doi: 10.1038/srep35289
  105. Yang J, Cao Q, Tang X, et al. 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J Mater Chem A. 2021;9(35):19649-19658. doi: 10.1039/D1TA02617H
  106. Shen Z, Zhang Z, Zhang N, et al. High‐stretchability, ultralow‐hysteresis conductingpolymer hydrogel strain sensors for soft machines. Adv Mater. 2022;34(32): 2203650. doi: 10.1002/adma.202203650
  107. Molina-Lopez F, Gao T, Kraft U, et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nat Commun. 2019;10(1):2676. doi: 10.1038/s41467-019-10569-3
  108. Soni M, Bhattacharjee M, Ntagios M, Dahiya R. Printed temperature sensor based on PEDOT: PSS-graphene oxide composite. IEEE Sens J. 2020;20(14):7525-7531. doi: 10.1109/JSEN.2020.2969667
  109. Yuk H, Lu B, Lin S, et al. 3D printing of conducting polymers. Nat Commun. 2020;11(1):1604. doi: 10.1038/s41467-020-15316-7
  110. Scordo G, Bertana V, Scaltrito L, et al. A novel highly electrically conductive composite resin for stereolithography. Mater Today Commun. 2019;19:12-17. doi: 10.1016/j.mtcomm.2018.12.017
  111. Vijayavenkataraman S, Kannan S, Cao T, Fuh JY, Sriram G, Lu WF. 3D-printed PCL/PPy conductive scaffolds as three-dimensional porous nerve guide conduits (NGCs) for peripheral nerve injury repair. Front Bioeng Biotechnol. 2019;7:266. doi: 10.3389/fbioe.2019.00266
  112. Qian J, Xiao R, Su F, Guo M, Liu D. 3D wet-spinning printing of wearable flexible electronic sensors of polypyrrole@ polyvinyl formate. J Ind Eng Chem. 2022;111:490-498. doi: 10.1016/j.jiec.2022.04.030
  113. Ajdary R, Ezazi NZ, Correia A, et al. Multifunctional 3D-printed patches for long-term drug release therapies after myocardial infarction. Adv Funct Mater. 2020;30(34):2003440. doi: 10.1002/adfm.202003440
  114. Distler T, Polley C, Shi F, et al. Electrically conductive and 3D-printable oxidized alginate-gelatin polypyrrole:PSS hydrogels for tissue engineering. Adv Healthc Mater. 2021;10(9):2001876. doi: 10.1002/adhm.202001876
  115. Gu Y, Zhang Y, Shi Y, Zhang L, Xu X. 3D all printing of polypyrrole nanotubes for high mass loading flexible supercapacitor. ChemistrySelect. 2019;4(36):10902-10906. doi: 10.1002/slct.201902721
  116. Li W, Liu J, Wei J, Yang Z, Ren C, Li B. Recent progress of conductive hydrogel fibers for flexible electronics: fabrications, applications, and perspectives. Adv Funct Mater. 2023;33(17):2213485. doi: 10.1002/adfm.202213485
  117. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev. 2019;48(6):1642-1667. doi: 10.1039/c8cs00595h
  118. Kang M, Park J, Kim SA, et al. Modulus-tunable multifunctional hydrogel ink with nanofillers for 3D-Printed soft electronics. Biosens Bioelectron. 2024;255:116257. doi: 10.1016/j.bios.2024.116257
  119. Zhou Y, Wan C, Yang Y, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv Funct Mater. 2019;29(1):1806220. doi: 10.1002/adfm.201806220
  120. Zhou J, Yan H, Wang C, Gong H, Nie Q, Long Y. 3D printing highly stretchable conductors for flexible electronics with low signal hysteresis. Virt Phys Prototyping. 2022;17(1):19-32. doi: 10.1080/17452759.2021.1980283
  121. Fantino E, Roppolo I, Zhang D, et al. 3D printing/interfacial polymerization coupling for the fabrication of conductive hydrogel. Macromol Mater Eng. 2018;303(4):1700356. doi: 10.1002/mame.201700356
  122. Carcione R, Pescosolido F, Montaina L, et al. Self-standing 3D-printed PEGDA–PANIs electroconductive hydrogel composites for pH monitoring. Gels. 2023;9(10):784. doi: 10.3390/gels9100784
  123. Distler T, Boccaccini AR. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors–a review. Acta Biomater. 2020;101:1-13. doi: 10.1016/j.actbio.2019.08.044
  124. Serafin A, Murphy C, Rubio MC, Collins MN. Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Mater Sci Eng: C. 2021;122:111927. doi: 10.1016/j.msec.2021.111927
  125. Liu J, Garcia J, Leahy LM, et al. 3D printing of multifunctional conductive polymer composite hydrogels. Adv Funct Mater. 2023;33(37):2214196. doi: 10.1002/adfm.202214196
  126. Deng Z, Hu T, Lei Q, He J, Ma PX, Guo B. Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3D printability for human motion sensing. ACS Appl Mater Interfaces. 2019;11(7):6796-6808. doi: 10.1021/acsami.8b20178
  127. Qiu K, Haghiashtiani G, McAlpine MC. 3D printed organ models for surgical applications. Annu Rev Anal Chem (Palo Alto Calif). 2018;11(1):287-306. doi: 10.1146/annurev-anchem-061417-125935
  128. Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D printing for the radiologist. Radiographics. 2015;35(7): 1965-1988. doi: 10.1148/rg.2015140320
  129. Qiu K, Zhao Z, Haghiashtiani G, et al. 3D printed organ models with physical properties of tissue and integrated sensors. Adv Mater Technol. 2018;3(3):1700235. doi: 10.1002/admt.201700235
  130. Haghiashtiani G, Qiu K, Zhingre Sanchez JD, et al. 3D printed patient-specific aortic root models with internal sensors for minimally invasive applications. Sci Adv. 2020;6(35):eabb4641. doi: 10.1126/sciadv.abb4641
  131. Said S, Boulkaibet I, Sheikh M, Karar AS, Alkork S, Nait-ali A. Machine-learning-based muscle control of a 3D-printed bionic arm. Sensors. 2020;20(11):3144. doi: 10.3390/s20113144
  132. Corona-Castuera J, Rodriguez-Delgado D, Henao J, Castro- Sandoval JC, Poblano-Salas CA. Design and fabrication of a customized partial hip prosthesis employing CT-scan data and lattice porous structures. ACS Omega. 2021;6(10):6902-6913. doi: 10.1021/acsomega.0c06144
  133. Sang S, Pei Z, Zhang F, et al. Three-dimensional printed bimodal electronic skin with high resolution and breathability for hair growth. ACS Appl Mater Interfaces. 2022;14(27):31493-31501. doi: 10.1021/acsami.2c09311
  134. Gao H, An J, Chua CK, Bourell D, Kuo C-N, Tan DT. 3D printed optics and photonics: processes, materials and applications. Mater Today. 2023;69:107-132. doi: 10.1016/j.mattod.2023.06.019
  135. Kong YL, Gupta MK, Johnson BN, McAlpine MC. 3D printed bionic nanodevices. Nano Today. 2016;11(3):330-350. doi: 10.1016/j.nantod.2016.04.007
  136. Mannoor MS, Jiang Z, James T, et al. 3D printed bionic ears. Nano Lett. 2013;13(6):2634-2639. doi: 10.1021/nl4007744
  137. Lu L, Zhang J, Xie Y, et al. Wearable health devices in health care: narrative systematic review. JMIR mHealth uHealth. 2020;8(11):e18907. doi: 10.2196/18907
  138. Ho DH, Hong P, Han JT, et al. 3D‐printed sugar scaffold for high‐precision and highly sensitive active and passive wearable sensors. Adv Sci. 2020;7(1):1902521. doi: 10.1002/advs.201902521
  139. Ouyang X, Su R, Ng DWH, Han G, Pearson DR, McAlpine MC. 3D printed skin-interfaced UV-visible hybrid photodetectors. Adv Sci (Weinh). 2022;9(25):e2201275. doi: 10.1002/advs.202201275
  140. Wang Z, Gao W, Zhang Q, et al. 3D-printed graphene/ polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors. ACS Appl Mater Interfaces. 2019;11(1):1344-1352. doi: 10.1021/acsami.8b16139
  141. Hou Y, Gao M, Gao J, et al. 3D printed conformal strain and humidity sensors for human motion prediction and health monitoring via machine learning. Adv Sci (Weinh). 2023;10(36):e2304132. doi: 10.1002/advs.202304132
  142. Zhu G, Dai H, Yao Y, et al. 3D printed skin‐inspired flexible pressure sensor with gradient porous structure for tunable high sensitivity and wide linearity range. Adv Mater Technol. 2022;7(7):2101239. doi: 10.1002/admt.202101239
  143. Herbert R, Lim H-R, Rigo B, Yeo W-H. Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci Adv. 2022;8(19):eabm1175. doi: 10.1126/sciadv.abm1175
  144. Chen C, Bai X, Ding Y, Lee I-S. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res. 2019;23(1):1-12. doi: 10.1186/s40824-019-0176-8
  145. Bedir T, Ulag S, Aydogan K, et al. Effect of electric stimulus on human adipose‐derived mesenchymal stem cells cultured in 3D‐printed scaffolds. Polym Adv Technol. 2021;32(3):1114-1125. doi: 10.1002/pat.5159
  146. Lind JU, Busbee TA, Valentine AD, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater. 2017;16(3):303-308. doi: 10.1038/nmat4782
  147. Wu Q, Zhang P, O’Leary G, et al. Flexible 3D printed microwires and 3D microelectrodes for heart-on-a-chip engineering. Biofabrication. 2023;15(3):035023. doi: 10.1088/1758-5090/acd8f4
  148. Aimar A, Palermo A, Innocenti B. The role of 3D printing in medical applications: a state of the art. J Healthc Eng. 2019;2019:5340616. doi: 10.1155/2019/5340616
  149. Yan Q, Dong H, Su J, et al. A review of 3D printing technology for medical applications. Engineering. 2018;4(5):729-742. doi: 10.1016/j.eng.2018.07.021
  150. Ventola CL. Medical applications for 3D printing: current and projected uses. P T. 2014;39(10):704-711.
  151. Jiang Y, Islam MN, He R, et al. Recent advances in 3D printed sensors: materials, design, and manufacturing. Adv Mater Technol. 2023;8(2):2200492. doi: 10.1002/admt.202200492
  152. Jin J, Zhang F, Yang Y, et al. Hybrid multimaterial 3D printing using photocuring‐while‐dispensing. Small. 2023;19(50):2302405. doi: 10.1002/smll.202302405
  153. Pless CJ, Nikzad S, Papiano I, et al. Soft electronic block copolymer elastomer composites for multi‐material printing of stretchable physiological sensors on textiles. Adv Electron Mater. 2023;9(5):2201173. doi: 10.1002/aelm.202201173
  154. Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent progress in materials chemistry to advance flexible bioelectronics in medicine. Adv Mater. 2022;34(10):2106787. doi: 10.1002/adma.202106787
  155. Pillai S, Upadhyay A, Sayson D, Nguyen BH, Tran SD. Advances in medical wearable biosensors: Design, fabrication and materials strategies in healthcare monitoring. Molecules. 2021;27(1):165. doi: 10.3390/molecules27010165
  156. Chow L, Yick Kl, Wong KH, et al. 3D printing auxetic architectures for hypertrophic scar therapy. Macromol Mater Eng. 2022;307(5):2100866. doi: 10.1002/mame.202100866
  157. Dong S, Hu H. Sensors based on auxetic materials and structures: a review. Materials. 2023;16(9):3603. doi: 10.3390/ma16093603
  158. Ma C, Li G, Qin L, et al. Analytical model of micropyramidal capacitive pressure sensors and machine‐learning‐assisted design. Adv Mater Technol. 2021;6(12):2100634. doi: 10.1002/admt.202100634

 

 

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing