Manipulating fungal growth in engineered living materials through precise deposition of nutrients
One main challenge of emerging fungal-based engineered living materials (ELMs) lies in achieving localized multi-material properties in these structures. Although three-dimensional (3D) printing can efficiently vary local composition and properties, it has not yet been demonstrated in fungal-based ELMs. This work thus explores the concept of using nutrients to manipulate fungal foraging behavior in 3D structures fabricated using direct ink writing (DIW) for the next generation of fungal-based ELMs. Using two fungal strains (Pleurotus ostreatus and Ganoderma lucidum), this study showed that the ink formulation used is suitable for both DIW and mycelium growth. Varying the nutrient content allows for either the inhibition or promotion of exploration and bridging of mycelium in different sections, the control of mycelium density in three dimensions and the fabrication of patterned surfaces. There is potential in fabricating patterned fungal-based ELMs and lab-on-a-chip systems to investigate the effects of other substances and microorganisms on the foraging behavior of mycelium.
- Rodrigo-Navarro A, Sankaran S, Dalby MJ, del Campo A, Salmeron-Sanchez M. Engineered living biomaterials. Nat Rev Mater. 2021;6(12):1175-1190. doi: 10.1038/s41578-021-00350-8
- Wang Y, Liu Y, Li J, Chen Y, Liu S, Zhong C. Engineered living materials (ELMs) design: from function allocation to dynamic behavior modulation. Curr Opin Chem Biol. 2022;70:102188. doi: 10.1016/j.cbpa.2022.102188
- Lantada AD, Korvink JG, Islam M. Taxonomy for engineered living materials. Cell Rep Phys Sci. 2022;3(4):100807. doi: 10.1016/j.xcrp.2022.100807
- Vandelook S, Elsacker E, Van Wylick A, De Laet L, Peeters E. Current state and future prospects of pure mycelium materials. Fungal Biol Biotechnol. 2021;8(1):20. doi: 10.1186/s40694-021-00128-1
- Jones M, Gandia A, John S, Bismarck A. Leather-like material biofabrication using fungi. Nat Sustain. 2021;4(1):9-16. doi: 10.1038/s41893-020-00606-1
- Elsacker E, Zhang M, Dade-Robertson M. Fungal engineered living materials: the viability of pure mycelium materials with self-healing functionalities. Adv Funct Mater. 2023;33(29):2301875. doi: 10.1002/adfm.202301875
- McBee RM, Lucht M, Mukhitov N, et al. Engineering living and regenerative fungal–bacterial biocomposite structures. Nat Mater. 2022;21(4):471-478. doi: 10.1038/s41563-021-01123-y
- Gantenbein S, Colucci E, Käch J, et al. Three-dimensional printing of mycelium hydrogels into living complex materials. Nat Mater. 2023;22(1):128-134. doi: 10.1038/s41563-022-01429-5
- Brand A, Gow NA. Mechanisms of hypha orientation of fungi. Curr Opin Microbiol. 2009;12(4):350-357. doi: 10.1016/j.mib.2009.05.007
- Soh E, Le Ferrand H. Woodpile structural designs to increase the stiffness of mycelium-bound composites. Mater Design. 2023;225:111530. doi: 10.1016/j.matdes.2022.111530
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
- Schaffner M, Rühs PA, Coulter F, Kilcher S, Studart AR. 3D printing of bacteria into functional complex materials. Sci Adv. 2017;3(12):eaao6804. doi: 10.1126/sciadv.aao6804
- Teoh JH, Mozhi A, Sunil V, Tay SM, Fuh J, Wang CH. 3D printing personalized, photocrosslinkable hydrogel wound dressings for the treatment of thermal burns. Adv Funct Mater. 2021;31(48):2105932. doi: 10.1002/adfm.202105932
- Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature. 2019;575(7782):330-335. doi: 10.1038/s41586-019-1736-8
- Cheng J, Wang R, Sun Z, et al. Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects. Nat Commun. 2022;13(1):1-10. doi: 10.1038/s41467-022-35622-6
- Soh E, Chew ZY, Saeidi N, Javadian A, Hebel D, Le Ferrand H. Development of an extrudable paste to build mycelium-bound composites. Mater Design. 2020;195:109058. doi: 10.1016/j.matdes.2020.109058
- Soh E, Teoh JH, Leong B, Xing T, Le Ferrand H. 3D printing of mycelium engineered living materials using a waste-based ink and non-sterile conditions. Mater Design. 2023;236:112481. doi: 10.1016/j.matdes.2023.112481
- Elsacker E, Peeters E, De Laet L. Large-scale robotic extrusion-based additive manufacturing with living mycelium materials. Sustain Fut. 2022;4:100085. doi: 10.1016/j.sftr.2022.100085
- Jauk J, Gosch L, Vašatko H, Christian I, Klaus A, Stavric M. MyCera. Application of mycelial growth within digitally manufactured clay structures. Int J Arch Comput. 2022;20(1):147807712210822. doi: 10.1177/14780771221082248
- Shen SC, Lee NA, Lockett WJ, et al. Robust myco-composites: a biocomposite platform for versatile hybrid-living materials. Mater Horiz. 2024;11(7):1689-1703. doi: 10.1039/D3MH01277H
- Boswell GP, Jacobs H, Davidson FA, Gadd GM, Ritz K. Functional consequences of nutrient translocation in mycelial fungi. J Theor Biol. 2002;217(4):459-477. doi: 10.1006/jtbi.2002.3048
- Aleklett K, Ohlsson P, Bengtsson M, Hammer EC. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. ISME J. 2021;15(6):1782-1793. doi: 10.1038/s41396-020-00886-7
- Ye XH, Yu FH, Dong M. A trade-off between guerrilla and phalanx growth forms in Leymus secalinus under different nutrient supplies. Ann Bot. 2006;98(1):187-191. doi: 10.1093/aob/mcl086
- Fomina M, Ritz K, Gadd GM. Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycol Res. 2003;107(7):861-871. doi: 10.1017/S095375620300786X
- Nussbaum N, von Wyl T, Gandia A, Romanens E, Rühs PA, Fischer P. Impact of malt concentration in solid substrate on mycelial growth and network connectivity in Ganoderma species. Sci Rep. 2023;13(1):21051. doi: 10.1038/s41598-023-48203-4
- Fukasawa Y, Ishii K. Foraging strategies of fungal mycelial networks: responses to quantity and distance of new resources. Front Cell Dev Biol. 2023;11:1244673. doi: 10.3389/fcell.2023.1244673
- Davidson FA, Park AW. A mathematical model for fungal development in heterogeneous environments. Appl Math Lett. 1998;11(6):51-56. doi: 10.1016/S0893-9659(98)00102-5
- Aguilar-Trigueros CA, Boddy L, Rillig MC, Fricker MD. Network traits predict ecological strategies in fungi. ISME Commun. 2022;2(1):1-11. doi: 10.1038/s43705-021-00085-1
- Veresoglou SD, Wang D, Andrade-Linares DR, Hempel S, Rillig MC. Fungal decision to exploit or explore depends on growth rate. Microb Ecol. 2018;75(2):289-292. doi: 10.1007/s00248-017-1053-4
- Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675. doi: 10.1038/nmeth.2089
- Yang L, Park D, Qin Z. Material function of mycelium-based bio-composite: a review. Front Mater. 2021;8:737377. doi: 10.3389/fmats.2021.737377
- Hotz EC, Bradshaw AJ, Elliott C, Carlson K, Dentinger BTM, Naleway SE. Effect of agar concentration on structure and physiology of fungal hyphal systems. J Mater Res Technol. 2023;24:7614-7623. doi: 10.1016/j.jmrt.2023.05.013
- Hoa HT, Wang CL. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology. 2015;43(1):14-23. doi: 10.5941/MYCO.2015.43.1.14
- Qiu Z, Wu X, Gao W, Zhang J, Huang C. High temperature induced disruption of the cell wall integrity and structure in Pleurotus ostreatus mycelia. Appl Microbiol Biotechnol. 2018;102(15):6627-6636. doi: 10.1007/s00253-018-9090-6
- Wang J, Liu Y, Zhang X, et al. 3D printed agar/ calcium alginate hydrogels with high shape fidelity and tailorable mechanical properties. Polymer. 2021;214:123238. doi: 10.1016/j.polymer.2020.123238
- Mallakpour S, Azadi E, Hussain CM. State-of-the-art of 3D printing technology of alginate-based hydrogels—an emerging technique for industrial applications. Adv Colloid Interface Sci. 2021;293:102436. doi: 10.1016/j.cis.2021.102436
- Jones EBG, Jennings DH. The effect of cations on the growth of fungi. New Phytol. 1965;64(1):86-100. doi: 10.1111/j.1469-8137.1965.tb05378.x
- Lin N, Taghizadehmakoei A, Polovina L, et al. 3D bioprinting of food grade hydrogel infused with living Pleurotus ostreatus Mycelium in non-sterile conditions. ACS Appl Bio Mater. 2024;7(5): 2982-2992. doi: 10.1021/acsabm.4c00048
- Abdallah YK, Estévez AT. Biowelding 3D-Printed biodigital brick of seashell-based biocomposite by pleurotus ostreatus mycelium. Biomimetics. 2023;8(6):504. doi: 10.3390/biomimetics8060504
- Kaufmann KW. Fitting and using growth curves. Oecologia. 1981;49(3):293-299. doi: 10.1007/BF00347588
- Ritz K. Growth responses of some soil fungi to spatially heterogeneous nutrients. FEMS Microbiol Ecol. 1995;16(4):269-279. doi: 10.1111/j.1574-6941.1995.tb00291.x
- Haneef M, Ceseracciu L, Canale C, Bayer IS, Heredia- Guerrero JA, Athanassiou A. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci Rep. 2017;7(1):41292. doi: 10.1038/srep41292