AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3448
REVIEW

Photoacoustic imaging for three-dimensional bioprinted constructs

Donghyeon Oh1 Hwanyong Choi2 Chulhong Kim1* Jinah Jang2*
Show Less
1 Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
2 Departments of Mechanical Engineering, and Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
IJB 2024, 10(4), 3448 https://doi.org/10.36922/ijb.3448
Submitted: 18 April 2024 | Accepted: 24 June 2024 | Published: 23 July 2024
(This article belongs to the Special Issue 3D Printing of Marine Origin Materials for Biomedical Application)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bioimaging is used to inspect the successful growth and functional differentiation of cells in printed biomaterials, which are ultimately finalized into functional artificial tissues capable of replacing native tissues. While optical bioimaging techniques are commonly utilized, the current trend in three-dimensional (3D) bioprinting towards replicating complex 3D microarchitectures poses a challenge for conventional optical imaging techniques in providing clear cross-sectional images due to the opaque nature of tissue. Consequently, these limitations necessitate lengthy and destructive preparation processes, which are associated with sacrificing cell viability and damaging the bioprinted material. Photoacoustic imaging (PAI) is a versatile imaging technique that extends the advantages of the optical bioimaging technique to undiscovered depths enabled by its acoustic hybridity, making itself a promising tool for non-destructive imaging of 3D bioprinted constructs. In this review, we introduce the flexible spectral contrasts provided by PAI, which are potentially applicable to 3D-bioprinted constructs, and summarize bioprinting studies that functionally implement PAI for in vitro and in vivo assessments. Finally, we provide an outlook on practical considerations for the more complete integration of these two fields, anticipating more fruitful discoveries as bioprinting advances towards more complex hierarchies.

Keywords
Photoacoustic imaging
Three-dimensional
Spectral imaging
Monitoring
Funding
Foundation (NRF) Grants (Nos. 2021M3C1C3097624, 2020R1A6A1A03047902, RS-2024-00335346, and 2023R1A2C3004880), the Korea Medical Device Development Fund Grant (Nos. 1711195277 and RS- 2020-KD000008), Korean Fund for Regenerative Medicine (No. 21A0104L1), and BK21 FOUR projects (Pohang University of Science and Technology) funded by the Korean government (the Ministry of Science and ICT; the Ministry of Education; the Ministry of Trade, Industry and Energy; the Ministry of Health and Welfare; the Ministry of Food and Drug Safety).
Conflict of interest
C. Kim has a financial interest in OPTICHO, which did not support this work. The authors declare no competing interests.
References
  1. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008
  2. Jo Y, Hwang DG, Kim M, Yong U, Jang J. Bioprinting-assisted tissue assembly to generate organ substitutes at scale. Trends Biotechnol. 2023;41(1):93-105. doi: 10.1016/j.tibtech.2022.07.001
  3. Cho S, Jang J. Recent trends in biofabrication technologies for studying skeletal muscle tissue-related diseases. Front Bioeng Biotechnol. 2021;9:782333. doi: 10.3389/fbioe.2021.782333
  4. Kim D, Kim M, Lee J, Jang J. Review on multicomponent hydrogel bioinks based on natural biomaterials for bioprinting 3D liver tissues. Front Bioeng Biotechnol. 2022;10:764682. doi: 10.3389/fbioe.2022.764682
  5. Gao G, Kim BS, Jang J, Cho D-W. Recent strategies in extrusion-based three-dimensional cell printing toward organ biofabrication. ACS Biomater Sci Eng. 2019;5(3): 1150-1169. doi: 10.1021/acsbiomaterials.8b00691
  6. Das S, Nam H, Jang J. 3D bioprinting of stem cell-laden cardiac patch: a promising alternative for myocardial repair. APL Bioeng. 2021;5(3):031508. doi: 10.1063/5.0030353
  7. Jang J, Park JY, Gao G, Cho D-W. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials. 2018;156:88-106. doi: 10.1016/j.biomaterials.2017.11.030
  8. Jang J, Yi H-G, Cho D-W. 3D printed tissue models: present and future. ACS Biomater Sci Eng. 2016;2(10):1722-1731. doi: 10.1021/acsbiomaterials.6b00129
  9. Kim D, Kang D, Kim D, Jang J. Volumetric bioprinting strategies for creating large-scale tissues and organs. MRS Bull. 2023;48(6):657-667. doi: 10.1557/s43577-023-00541-4
  10. Yong U, Kim D, Kim H, et al. Biohybrid 3D printing of a tissue‐sensor platform for wireless, real‐time, and continuous monitoring of drug‐induced cardiotoxicity. Adv Mater. 2023;35(11):e2208983. doi: 10.1002/adma.202208983
  11. Yoon J, Singh NK, Jang J, Cho D-W. 3D bioprinted in vitro secondary hyperoxaluria model by mimicking intestinal-oxalate-malabsorption-related kidney stone disease. Appl Phys Rev. 2022;9(4):041408. doi: 10.1063/5.0087345
  12. Hwang DG, Jo Y, Kim M, et al. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication. 2021;14(1):014101. doi: 10.1088/1758-5090/ac23ac
  13. Kim BS, Ahn M, Cho W-W, Gao G, Jang J, Cho D-W. Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro. Biomaterials. 2021;272:120776. doi: 10.1016/j.biomaterials.2021.120776
  14. Kim M, Jang J. Construction of 3D hierarchical tissue platforms for modeling diabetes. APL Bioeng. 2021;5(4):041506. doi: 10.1063/5.0055128
  15. Jang J, Park H-J, Kim S-W, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112: 264-274. doi: 10.1016/j.biomaterials.2016.10.026
  16. Choi Y-m, Lee H, Ann M, Song M, Rheey J, Jang J. 3D bioprinted vascularized lung cancer organoid models with underlying disease capable of more precise drug evaluation. Biofabrication. 2023;15(3):034104. doi: 10.1088/1758-5090/acd95f
  17. Kim JJ, Park JY, Nguyen VVT, et al. Pathophysiological reconstruction of a tissue‐specific multiple‐organ on‐a‐chip for Type 2 diabetes emulation using 3D cell printing. Adv Funct Mater. 2023;33(22):2213649. doi: 10.1002/adfm.202213649
  18. Choi S, Lee KY, Kim SL, et al. Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles. Nat Mater. 2023;22(8):1039-1046. doi: 10.1038/s41563-023-01611-3
  19. Hwang DG, Choi H, Yong U, et al. Bioprinting‐assisted tissue assembly for structural and functional modulation of engineered heart tissue mimicking left ventricular myocardial fiber orientation. Adv Mater. 2024:e2400364. doi: 10.1002/adma.202400364
  20. An J, Zhang S, Wu J, et al. Assessing bioartificial organ function: the 3P model framework and its validation. Lab Chip. 2024;24(10). doi: 10.1039/d3lc01020a
  21. Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN, Feinberg AW. FRESH 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng. 2020;6(11):6453-6459. doi: 10.1021/acsbiomaterials.0c01133
  22. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell‐laden tissue constructs. Adv Mater. 2014;26(19): 3124-3130. doi: 10.1002/adma.201305506
  23. Colosi C, Shin SR, Manoharan V, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low‐viscosity bioink. Adv Mater. 2016;28(4):677-684. doi: 10.1002/adma.201503310
  24. Glaser AK, Reder NP, Chen Y, et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat Biomed Eng. 2017;1(7):0084. doi: 10.1038/s41551-017-0084
  25. De Santis MM, Alsafadi HN, Tas S, et al. Extracellular‐matrix‐reinforced bioinks for 3D bioprinting human tissue. Adv Mater. 2021;33(3):e2005476. doi: 10.1002/adma.202005476
  26. Hafa L, Breideband L, Ramirez Posada L, et al. Light sheet‐based laser patterning bioprinting produces long‐term viable full‐thickness skin constructs. Adv Mater. 2024;36(8):e2306258. doi: 10.1002/adma.202306258
  27. Ouyang L, Armstrong JP, Chen Q, Lin Y, Stevens MM. Void‐free 3D bioprinting for in situ endothelialization and microfluidic perfusion. Adv Funct Mater. 2019;30(1):1908349. doi: 10.1002/adfm.201908349
  28. Chen C-W, Betz MW, Fisher JP, Paek A, Chen Y. Macroporous hydrogel scaffolds and their characterization by optical coherence tomography. Tissue Eng Part C Methods. 2011;17(1):101-112. doi: 10.1089/ten.tec.2010.0072
  29. Tashman JW, Shiwarski DJ, Coffin B, et al. In situ volumetric imaging and analysis of FRESH 3D bioprinted constructs using optical coherence tomography. Biofabrication. 2022;15(1):014102. doi: 10.1088/1758-5090/ac975e
  30. Attia ABE, Balasundaram G, Moothanchery M, et al. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics. 2019;16:100144. doi: 10.1016/j.pacs.2019.100144
  31. Karlas A, Fasoula N-A, Paul-Yuan K, et al. Cardiovascular optoacoustics: from mice to men–a review. Photoacoustics. 2019;14:19-30. doi: 10.1016/j.pacs.2019.03.001
  32. Manohar S, Dantuma M. Current and future trends in photoacoustic breast imaging. Photoacoustics. 2019;16:100134. doi: 10.1016/j.pacs.2019.04.004
  33. Jeon S, Kim J, Lee D, Baik JW, Kim C. Review on practical photoacoustic microscopy. Photoacoustics. 2019;15:100141. doi: 10.1016/j.pacs.2019.100141
  34. Choi W, Oh D, Kim C. Practical photoacoustic tomography: realistic limitations and technical solutions. J Appl Phys. 2020;127(23):230903. doi: 10.1063/5.0008401
  35. Park B, Oh D, Kim J, Kim C. Functional photoacoustic imaging: from nano-and micro-to macro-scale. Nano Converg. 2023;10(1):29. doi: 10.1186/s40580-023-00377-3
  36. Yao J, Wang LV. Sensitivity of photoacoustic microscopy. Photoacoustics. 2014;2(2):87-101. doi: 10.1016/j.pacs.2014.04.002
  37. Park J, Park B, Kim TY, et al. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer. Proc Natl Acad Sci U S A. 2021;118(11):e1920879118. doi: 10.1073/pnas.1920879118
  38. Choi S, Yang J, Lee SY, et al. Deep learning enhances multiparametric dynamic volumetric photoacoustic computed tomography in vivo (DL‐PACT). Adv Sci (Weinh). 2022;10(1):e2202089. doi: 10.1002/advs.202202089
  39. Park B, Park S, Kim J, Kim C. Listening to drug delivery and responses via photoacoustic imaging. Adv Drug Deliv Rev. 2022;184:114235. doi: 10.1016/j.addr.2022.114235
  40. Choi W, Park B, Choi S, Oh D, Kim J, Kim C. Recent advances in contrast-enhanced photoacoustic imaging: overcoming the physical and practical challenges. Chem Rev. 2023;123(11):7379-7419. doi: 10.1021/acs.chemrev.2c00627
  41. Cho S, Baik J, Managuli R, Kim C. 3D PHOVIS: 3D photoacoustic visualization studio. Photoacoustics. 2020;18:100168. doi: 10.1016/j.pacs.2020.100168
  42. Choi S, Park S, Kim J, et al. X-ray free-electron laser induced acoustic microscopy (XFELAM). Photoacoustics. 2024;35(4):100587. doi: 10.1016/j.pacs.2024.100587
  43. Oh D, Lee D, Heo J, et al. Contrast agent‐free 3D Renal ultrafast doppler imaging reveals vascular dysfunction in acute and diabetic kidney diseases. Adv Sci (Weinh). 2023;10(36):e2303966. doi: 10.1002/advs.202303966
  44. Oh D, Kim H, Sung M, Kim C. Video-rate endocavity photoacoustic/harmonic ultrasound imaging with miniaturized light delivery. J Biomed Opt. 2024;29(S1):S11528. doi: 10.1117/1.jbo.29.s1.s11528
  45. Yoo J, Oh D, Kim C, Kim HH, Um J-Y. Switchable preamplifier for dual modal photoacoustic and ultrasound imaging. Biomed Opt Express. 2023;14(1):89-105. doi: 10.1364/boe.476453
  46. Kim H, Cho S, Park E, et al. Nonlinear beamforming for intracardiac echocardiography: a comparative study. Biomed Eng Lett. 2024;14(3):571-582. doi: 10.1007/s13534-024-00352-9
  47. Baik JW, Kim JY, Cho S, Choi S, Kim J, Kim C. Super wide-field photoacoustic microscopy of animals and humans in vivo. IEEE Trans Med Imaging. 2020;39(4):975-984. doi: 10.1109/tmi.2019.2938518
  48. Ahn J, Baik JW, Kim D, et al. In vivo photoacoustic monitoring of vasoconstriction induced by acute hyperglycemia. Photoacoustics. 2023;30:100485. doi: 10.1016/j.pacs.2023.100485
  49. Kim D, Ahn J, Park E, Kim JY, Kim C. In vivo quantitative photoacoustic monitoring of corticosteroid-induced vasoconstriction. J Biomed Opt. 2023;28(8):082805. doi: 10.1117/1.JBO.28.8.082805
  50. Lee H, Park SM, Park J, et al. Transportable multispectral optical-resolution photoacoustic microscopy using stimulated raman scattering spectrum. IEEE Trans Instrum Measure. 2024. doi: 10.1109/tim.2024.3351259
  51. Park B, Lee KM, Park S, et al. Deep tissue photoacoustic imaging of nickel (II) dithiolene-containing polymeric nanoparticles in the second near-infrared window. Theranostics. 2020;10(6):2509-2521. doi: 10.7150/thno.39403
  52. Li X, Park EY, Kang Y, et al. Supramolecular phthalocyanine assemblies for improved photoacoustic imaging and photothermal therapy. Angew Chemie. 2020;132(22): 8708-8712. doi: 10.1002/ange.201916147
  53. Park E-Y, Oh D, Park S, Kim W, Kim C. New contrast agents for photoacoustic imaging and theranostics: recent 5-year overview on phthalocyanine/naphthalocyanine-based nanoparticles. APL Bioeng. 2021;5(3):031510. doi: 10.1063/5.0047660
  54. Ding Y, Park B, Ye J, et al. Surfactant‐stripped semiconducting polymer micelles for tumor theranostics and deep tissue imaging in the NIR‐II window. Small. 2022;18(6):e2104132. doi: 10.1002/smll.202104132
  55. Park J, Park B, Yong U, et al. Bi-modal near-infrared fluorescence and ultrasound imaging via a transparent ultrasound transducer for sentinel lymph node localization. Opt Lett. 2022;47(2):393-396. doi: 10.1364/ol.446041
  56. Maji D, Oh D, Sharmah Gautam K, et al. Copper‐catalyzed covalent dimerization of near‐infrared fluorescent cyanine dyes: synergistic enhancement of photoacoustic signals for molecular imaging of tumors. Anal Sens. 2022;2(1):e202100045. doi: 10.1002/anse.202100045
  57. Noh I, Kim M, Kim J, et al. Structure-inherent near-infrared bilayer nanovesicles for use as photoacoustic image-guided chemo-thermotherapy. J Control Release. 2020;320:283-292. doi: 10.1016/j.jconrel.2020.01.032
  58. Fasoula N-A, Karlas A, Prokopchuk O, et al. Non-invasive multispectral optoacoustic tomography resolves intrahepatic lipids in patients with hepatic steatosis. Photoacoustics. 2023;29:100454. doi: 10.1016/j.pacs.2023.100454
  59. Choi W, Park E-Y, Jeon S, et al. Three-dimensional multistructural quantitative photoacoustic and US imaging of human feet in vivo. Radiology. 2022;303(2):467-473. doi: 10.1148/radiol.211029
  60. Kim J, Park B, Ha J, et al. Multiparametric photoacoustic analysis of human thyroid cancers in vivo. Cancer Res. 2021;81(18):4849-4860. doi: 10.1158/0008-5472.can-20-3334
  61. Yao D-K, Maslov K, Shung KK, Zhou Q, Wang LV. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt Lett. 2010;35(24): 4139-4141. doi: 10.1364/OL.35.004139
  62. Wong TT, Zhang R, Zhang C, et al. Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy. Nat Commun. 2017;8(1):1386. doi: 10.1038/s41467-017-01649-3
  63. Wong TT, Zhang R, Hai P, et al. Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci Adv. 2017;3(5):e1602168. doi: 10.1126/sciadv.1602168
  64. Baik JW, Kim H, Son M, et al. Intraoperative label‐free photoacoustic histopathology of clinical specimens. Laser Photonics Rev. 2021;15(10):2100124. doi: 10.1002/lpor.202170052
  65. Martell MT, Haven NJ, Cikaluk BD, et al. Deep learning-enabled realistic virtual histology with ultraviolet photoacoustic remote sensing microscopy. Nat Commun. 2023;14(1):5967. doi: 10.1038/s41467-023-41574-2
  66. Cao R, Nelson SD, Davis S, et al. Label-free intraoperative histology of bone tissue via deep-learning-assisted ultraviolet photoacoustic microscopy. Nat Biomed Eng. 2023;7(2):124-134. doi: 10.1038/s41551-022-00940-z
  67. Kang L, Li X, Zhang Y, Wong TT. Deep learning enables ultraviolet photoacoustic microscopy based histological imaging with near real-time virtual staining. Photoacoustics. 2021;25:100308. doi: 10.1016/j.pacs.2021.100308
  68. Cao R, Zhao J, Li L, et al. Optical-resolution photoacoustic microscopy with a needle-shaped beam. Nat Photon. 2023;17(1):89-95. doi: 10.1038/s41566-022-01112-w
  69. Kim D, Park E, Park J, et al. An ultraviolet‐transparent ultrasound transducer enables high‐resolution label‐free photoacoustic histopathology. Laser Photon Rev. 2024;18(2):2300652. doi: 10.1002/lpor.202470012
  70. Zhu X, Huang Q, DiSpirito A, et al. Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy. Light Sci Appl. 2022;11(1):138. doi: 10.1038/s41377-022-00836-2
  71. Zhu X, Huang Q, Jiang L, et al. Longitudinal intravital imaging of mouse placenta. Sci Adv. 2024;10(12):eadk1278. doi: 10.1126/sciadv.adk1278
  72. Gatford KL, Andraweera PH, Roberts CT, Care AS. Animal models of preeclampsia: causes, consequences, and interventions. Hypertension. 2020;75(6):1363-1381. doi: 10.1161/hypertensionaha.119.14598
  73. Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet. 2020;21(1):27-43. doi: 10.1038/s41576-019-0169-4
  74. Dekan S, Linduska N, Kasprian G, Prayer D. MRI of the placenta–a short review. Wien Med Wochenschr. 2012;162(9):225-228. doi: 10.1007/s10354-012-0073-4
  75. Rebling J, Ben‐Yehuda Greenwald M, Wietecha M, Werner S, Razansky D. Long‐term imaging of wound angiogenesis with large scale optoacoustic microscopy. Adv Sci. 2021;8(13):2004226. doi: 10.1002/advs.202004226
  76. Liu C, Liang Y, Wang L. Single-shot photoacoustic microscopy of hemoglobin concentration, oxygen saturation, and blood flow in sub-microseconds. Photoacoustics. 2020;17:100156. doi: 10.1016/j.pacs.2019.100156
  77. Pleitez MA, Khan AA, Soldà A, et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat Biotechnol. 2020;38(3):293-296. doi: 10.1038/s41587-019-0359-9
  78. Shi J, Wong TT, He Y, et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat Photonics. 2019;13(9):609-615. doi: 10.1038/s41566-019-0441-3
  79. Park E, Lee Y-J, Kim C, Eom TJ. Azimuth mapping of fibrous tissue in linear dichroism-sensitive photoacoustic microscopy. Photoacoustics. 2023;31:100510. doi: 10.1016/j.pacs.2023.100510
  80. Zhao W, Yu H, Ge Z, et al. Characterization of interconnectivity of gelatin methacrylate hydrogels using photoacoustic imaging. Lab Chip. 2022;22(4):727-732. doi: 10.1039/d1lc00967b
  81. Ma C, Li W, Li D, et al. Photoacoustic imaging of 3D-printed vascular networks. Biofabrication. 2022;14(2):025001. doi: 10.1088/1758-5090/ac49d5
  82. Yim W, Zhou J, Sasi L, et al. 3D‐bioprinted phantom with human skin phototypes for biomedical optics. Adv Mater. 2023;35(3):e2206385. doi: 10.1002/adma.202305227
  83. Luo Y, Wei X, Wan Y, Lin X, Wang Z, Huang P. 3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair. Acta Biomater. 2019;92:37-47. doi: 10.1016/j.actbio.2019.05.039
  84. Zhu W, Zhou Z, Huang Y, et al. A versatile 3D-printable hydrogel for antichondrosarcoma, antibacterial, and tissue repair. J Mater Sci Technol. 2023;136:200-211. doi: 10.1016/j.jmst.2022.07.010
  85. Wei X, Liu C, Wang Z, Luo Y. 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer. Int J Pharm. 2020;580:119219. doi: 10.1016/j.ijpharm.2020.119219
  86. Yang C, Gao X, Younis MR, et al. Non-invasive monitoring of in vivo bone regeneration based on alkaline phosphatase-responsive scaffolds. Chem Eng J. 2021;408:127959. doi: 10.1016/j.cej.2020.127959
  87. Zhang Y, Cai X, Choi S-W, Kim C, Wang LV, Xia Y. Chronic label-free volumetric photoacoustic microscopy of melanoma cells in three-dimensional porous scaffolds. Biomaterials. 2010;31(33):8651-8658. doi: 10.1016/j.biomaterials.2010.07.089
  88. Zhang YS, Cai X, Yao J, Xing W, Wang LV, Xia Y. Non‐invasive and in situ characterization of the degradation of biomaterial scaffolds by volumetric photoacoustic microscopy. Angew Chemie Int Ed. 2014;53(1):184-188. doi: 10.1002/anie.201306282
  89. Cai X, Zhang Y, Li L, et al. Investigation of neovascularization in three-dimensional porous scaffolds in vivo by a combination of multiscale photoacoustic microscopy and optical coherence tomography. Tissue Eng Part C Methods. 2013;19(3):196-204. doi: 10.1089/ten.tec.2012.0326
  90. Cai X, Paratala BS, Hu S, Sitharaman B, Wang LV. Multiscale photoacoustic microscopy of single-walled carbon nanotube-incorporated tissue engineering scaffolds. Tissue Eng Part C Methods. 2012;18(4):310-317. doi: 10.1089/ten.tec.2011.0519
  91. Zheng N, Fitzpatrick V, Cheng R, Shi L, Kaplan DL, Yang C. Photoacoustic carbon nanotubes embedded silk scaffolds for neural stimulation and regeneration. ACS Nano. 2022;16(2):2292-2305. doi: 10.1021/acsnano.1c08491
  92. Ogunlade O, Ho JO, Kalber TL, et al. Monitoring neovascularization and integration of decellularized human scaffolds using photoacoustic imaging. Photoacoustics. 2019;13:76-84. doi: 10.1016/j.pacs.2019.01.001
  93. Hwang SH, Kim J, Heo C, et al. 3D printed multi-growth factor delivery patches fabricated using dual-crosslinked decellularized extracellular matrix-based hybrid inks to promote cerebral angiogenesis. Acta Biomater. 2023;157:137-148. doi: 10.1016/j.actbio.2022.11.050
  94. Li C, Ma Z, Li W, et al. 3D-printed scaffolds promote angiogenesis by recruiting antigen-specific T cells. Engineering. 2022;17:183-195. doi: 10.1016/j.eng.2021.05.018
  95. Tosoratti E, Fisch P, Taylor S, Laurent‐Applegate LA, Zenobi‐Wong M. 3D‐printed reinforcement scaffolds with targeted biodegradation properties for the tissue engineering of articular cartilage. Adv Healthc Mater. 2021;10(23):e2101094. doi: 10.1002/adhm.202101094
  96. Hajireza P, Shi W, Bell K, Paproski RJ, Zemp RJ. Non-interferometric photoacoustic remote sensing microscopy. Light Sci Appl. 2017;6(6):e16278. doi: 10.1038/lsa.2016.278
  97. Sun W, Starly B, Daly AC, et al. The bioprinting roadmap. Biofabrication. 2020;12(2):022002. doi: 10.1088/1758-5090/ab5158
  98. Gao G, Lee JH, Jang J, et al. Tissue engineered bio‐blood‐vessels constructed using a tissue‐specific bioink and 3D coaxial cell printing technique: a novel therapy for ischemic disease. Adv Funct Mater. 2017;27(33):1700798. doi: 10.1002/adfm.201770192
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing