AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3453
RESEARCH ARTICLE

 A functionally graded gyroid-type three-periodic minimal surface framework applied to implant-supported fixed complete dentures

Jiwei Ren1 Renkai Huang1,2* Linqing Huang3 Shaoying Yang1 Chunrong Pan1 Yuchun Sun2,4,5 Sukun Tian2,4,5* Xuehua Wu1 Dongsheng Wang6,7,8 Youwen Yang1,8*
Show Less
1 Department of Intelligent Manufacturing, School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
2 NHC Key Laboratory of Digital Stomatology, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
3 Institute of Green Metallurgy and Process Intensification, School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
4 Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
5 National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
6 Advanced Copper-based Material Industry Generic Technology Research Center of Anhui Province, Scool of Mechanical Engineering, Tongling University, Tongling, Anhui, China
7 Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Scool of Mechanical Engineering, Tongling University, Tongling, Anhui, China
8 Key Laboratory of Additive Manufacturing of Tongling City, Scool of Mechanical Engineering, Tongling University, Tongling, Anhui, China
Submitted: 19 April 2024 | Accepted: 30 May 2024 | Published: 19 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Titanium alloy, particularly Ti6Al4V, is commonly used for constructing the framework of implant-supported fixed complete dentures (IFCDs) but exhibits poor specific strength and impact toughness. Three-periodic minimal surface (TPMS) porous structures have the advantages of high specific strength, lightweight, and shock and energy absorption. Therefore, the functionally graded TPMS porous structure was adopted to design the framework for IFCDs in this study. Nine types of TPMS-based lattice structures with radial gradient variations were designed. Finite element analysis and experimental results indicate that the relative density increases outward and the cell size decreases outward from the center. The B-I porous structure has the highest strength and impact toughness compared to other gradient porous structure types. Moreover, the IFCD framework, utilizing the B-I porous structure, exhibited a 50% reduction in weight compared to the solid framework. When compared to the hollow framework with the same weight, the B-I framework demonstrated a 42.81% lower maximum equivalent stress under normal chewing conditions without undergoing plastic deformation. Therefore, the B-I framework meets the mechanical performance requirements for daily chewing and exhibits superior mechanical properties over conventional structures.

Keywords
Implant-supported fixed complete dentures
Porous frameworks
Three-periodic minimal surfaces
Functional gradient
Mechanical properties
Funding
This work was supported by the Project Supported by the (i) National Natural Science Foundation of China (No. 52165043), (ii) Beijing Natural Science Foundation and Haidian Original Innovation Joint Fund (No. L232145), (iii) Open Project of NHC Key Laboratory of Digital Stomatology of Peking University School of Stomatology (PKUSS20230501), (iv) Science and Technology Research Project of Department of Education of Jiangxi Provincial, China (No. GJJ210877), (v) High-level Talents Scientific Research Start-up Program of Jiangxi University of Science and Technology (No. 205200100556, No. 205200100350), (vi) Jiangxi Provincial Natural Science Foundation of China (20224ACB214008), (vii) Anhui Natural Science Foundation (2308085ME171), (viii) The University Synergy Innovation Program of Anhui Province (GXXT- 2023-025; GXXT-2023-026), and (ix) Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects (20225BCJ23008).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Guo Y-q, Ma Y, Cai S-n, Yu H. Optimal impression materials for implant-supported fixed complete dentures: a systematic review and meta-analysis. J Prosthet Dent. 2023;Inpress. doi: 10.1016/j.prosdent.2023.06.024
  2. Cinquini C, Alfonsi F, Marchio V, et al. The use of zirconia for implant-supported fixed complete dental prostheses: a narrative review. Dent J (Basel). 2023;11(6):144. doi: 10.3390/dj11060144
  3. Vahnström M, Johansson PH, Svanborg P, Stenport VF. Comparison of porcelain veneer fracture in implant‐supported fixed full‐arch prostheses with a framework of either titanium, cobalt–chromium, or zirconia: an in vitro study. Clin Exp Dent Res. 2022;8(2):544-551. doi: 10.1002/cre2.558
  4. Alberto LHJ, Kalluri L, Esquivel-Upshaw JF, Duan Y. Three-dimensional finite element analysis of different connector designs for all-ceramic implant-supported fixed dental prostheses. Ceramics. 2022; 5(1):34-43. doi: 10.3390/ceramics5010004
  5. Thompson J, Schoenbaum TR, Pannu D, Knoernschild K. Survival analysis of zirconia implant-supported, fixed complete dentures: a 5-year retrospective cohort study. J Prosthet Dent. 2023;Inpress. doi: 10.1016/j.prosdent.2023.04.031
  6. Messias A, Nicolau P, Guerra F. Different interventions for rehabilitation of the edentulous maxilla with implant-supported prostheses: an overview of systematic reviews. Int J Prosthodont. 2021;34(Suppl):s63-s84. doi: 10.11607/ijp.7162
  7. Zhang L, Liu H, Yao H, Zeng Y, Chen J. Preparation, microstructure, and properties of ZrO2(3Y)/Al2O3 bioceramics for 3D printing of all-ceramic dental implants by vat photopolymerization. Chin J Mech Eng: Addit Manuf Front. 2022;1(2):100023. doi: 10.1016/j.cjmeam.2022.100023
  8. Baltatu MS, Țugui CA, Perju MC, et al. Biocompatible titanium alloys used in medical applications. Rev Chim. 2019;70(4):1302-1306. doi: 10.37358/RC.19.4.7114
  9. Nouri A, Hodgson PD, Wen C. Biomimetic porous titanium scaffolds for orthopedic and dental applications. Biomimetics Learn Nat. 2010;21:415-450. doi: 10.5772/8787
  10. Al-Meraikhi H, Yilmaz B, McGlumphy E, Brantley W, Johnston WM. In vitro fit of CAD-CAM complete arch screw-retained titanium and zirconia implant prostheses fabricated on 4 implants. J Prosthet Dent. 2018;119(3):409-416. doi: 10.1016/j.prosdent.2017.04.023
  11. Kanazawa M, Iwaki M, Minakuchi S, Nomura N. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting. J Prosthet Dent. 2014;112(6): 1441-1447. doi: 10.1016/j.prosdent.2014.06.017
  12. Tribst JPM, Dal Piva AMO, Borges ALS, Rodrigues VA, Bottino MA, Kleverlaan CJ. Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers. J Adv Prosthodont. 2020;12(2):67-74. doi: 10.4047/jap.2020.12.2.67
  13. Zhang L, Feih S, Daynes S, et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Addit Manuf. 2018;23:505-515. doi: 10.1016/j.addma.2018.08.007
  14. Tribst J, Rodrigues V, Dal Piva A, Borges A, Nishioka R. The importance of correct implants positioning and masticatory load direction on a fixed prosthesis. J Clin Exp Dent. 2018;10(1):e81-e87. doi: 10.4317/jced.54489
  15. Edelhoff D, Schubert O, Stimmelmayr M, Schweiger J. CAD/CAM full-mouth rehabilitation of an elderly patient: one-piece digital complete denture meets multilayered zirconia with gradient technology. J Esthet Restor Dent. 2024;36(1):174-185. doi: 10.1111/jerd.13031
  16. Ventura J, Jiménez-Castellanos E, Romero J, Enrile F. Tooth fractures in fixed full-arch implant-supported acrylic resin prostheses: a retrospective clinical study. Int J Prosthodont. 2016;29(2):161-165. doi: 10.11607/ijp.4400
  17. Mackert J, El-Shewy M, Pannu DS, Schoenbaum TR. Prosthetic complications and survival rates of metal-acrylic implant fixed complete dental prostheses: a retrospective study up to 10 years. J Prosthet Dent. 2022;Inpress. doi: 10.1016/j.prosdent.2022.06.019
  18. Fischer K, Stenberg T. Prospective 10-year cohort study based on a randomized, controlled trial (RCT) on implant-supported full-arch maxillary prostheses. part II: prosthetic outcomes and maintenance. Clin Implant Dent Relat Res. 2013;15(4):498-508. doi: 10.1111/j.1708-8208.2011.00383.x
  19. Melchels FPW, Bertoldi K, Gabbrielli R, Velders AH, Feijen J, Grijpma DW. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials. 2010;31(27):6909-6916. doi: 10.1016/j.biomaterials.2010.05.068
  20. Toosi S, Javid-Naderi MJ, Tamayol A, Ebrahimzadeh MH, Yaghoubian S, Mousavi Shaegh SA. Additively manufactured porous scaffolds by design for treatment of bone defects. Front Bioeng Biotechnol. 2024;11:1252636. doi: 10.3389/fbioe.2023.1252636
  21. Catchpole-Smith S, Sélo RRJ, Davis A, Ashcroft I, Tuck CJ, Clare AT. Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion. Addit Manuf. 2019;30(4):100846. doi: 10.1016/j.addma.2019.100846
  22. Wei SS, Zhang JL, Zhang L, et al. Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: a review. Int J Extreme Manuf. 2023;5(3):032001. doi: 10.1088/2631-7990/acc7d9
  23. Dong Z, Han CJ, Zhao YZ, et al. Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in zinc fabricated via laser powder bed fusion. Int J Extrem Manuf. 2024;6(4):045003. doi: 10.1088/2631-7990/ad3929
  24. Kapfer SC, Hyde ST, Mecke K, Arns CH, Schröder-Turk GE. Minimal surface scaffold designs for tissue engineering. Biomaterials. 2011;32(29):6875-6882. doi: 10.1016/j.biomaterials.2011.06.012
  25. Dwivedi A, Khurana MK, Bala YG. Heat-treated nickel alloys produced using laser powder bed fusion-based additive manufacturing methods: a review. Chinese J Mech Eng Additive Manuf Front. 2023;2(3):100087. doi: 10.1016/j.cjmeam.2023.100087
  26. Wu LY, Xue J, Tian X, Liu T, Li D. 3D-printed metamaterials with versatile functionalities. Chin J Mech Eng Additive Manuf Front. 2023;2(3):100091. doi: 10.1016/j.cjmeam.2023.100091
  27. Jin Y, Zou S, Pan B, Li G, Shao L, Du J. Biomechanical properties of cylindrical and twisted triply periodic minimal surface scaffolds fabricated by laser powder bed fusion. Addit Manuf. 2022;56:102899. doi: 10.1016/j.addma.2022.102899
  28. Xue L, Atli KC, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework. Acta Mater. 2021; 215:117017. doi: 10.1016/j.actamat.2021.117017
  29. Zhang X-Y, Yan X-C, Fang G, Liu M. Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface. Addit Manuf. 2020;32:101015. doi: 10.1016/j.addma.2019.101015
  30. Novak N, Al‐Ketan O, Borovinšek M, et al. Development of novel hybrid TPMS cellular lattices and their mechanical characterisation. J Mater Res Technol. 2021; 15:1318-1329. doi: 10.1016/j.jmrt.2021.08.092
  31. Zhang X-Y, Fang G, Leeflang S, Zadpoor AA, Zhou J. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomater. 2019; 84:437-452. doi: 10.1016/j.actbio.2018.12.013
  32. Jiulu J, Siqi W, Lei Y, et al. Ni–Ti multicell interlacing gyroid lattice structures with ultra-high hyperelastic response fabricated by laser powder bed fusion. Int J Mach Tools Manuf. 2024;195:0890-6955. doi: 10.1016/j.ijmachtools.2023.104099
  33. Al‐Ketan O, Lee D-W, Rowshan R, Abu Al-Rub RK. Functionally graded and multi-morphology sheet TPMS lattices: design, manufacturing, and mechanical properties. J Mech Behav Biomed Mater. 2019;102:103520. doi: 10.1016/j.jmbbm.2019.103520
  34. Castro APG, Ruben RB, Gonçalves SB, Pinheiro J, Guedes JM, Fernandes PR. Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering. Comput Methods Biomech Biomed Engin. 2019;22(6): 567-573. doi: 10.1080/10255842.2019.1569638
  35. Zhang Y-R, Du W-P, Zhou X, Yu H-y. Review of research on the mechanical properties of the human tooth. Int J Oral Sci. 2014;6(2):61-69. doi: 10.1038/ijos.2014.21
  36. Gabrieli R, Wenger R, Mazza M, Verné E, Baino F. Design, stereolithographic 3D printing, and characterization of TPMS scaffolds. Materials (Basel). 2024;17(3):654. doi: 10.3390/ma17030654
  37. Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83: 127-141. doi: 10.1016/j.biomaterials.2016.01.012
  38. Hu J, Wang S, Li B, Li F, Luo Z, Liu L. Efficient representation and optimization for TPMS-based porous structures. IEEE Trans Vis Comput Graph. 2022;28(7):2615-2627. doi: 10.1109/TVCG.2020.3037697
  39. Al‐Ketan O, Abu Al-Rub RK. MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater Des Process Commun. 2021;3(6):e205. doi: 10.1002/mdp2.205
  40. Fan Z. On the young’s moduli of Ti6Al4V alloys. Scrip Metall Material. 1993;29(11):1427-1432. doi: 10.1016/0956-716X(93)90331-L
  41. Bai L. Multi-objective structural optimization design of Ti6Al4V lattice structure formed by SLM. J Mech Eng. 2018;54(5):156-165. doi: 10.3901/JME.2018.05.156
  42. Yang L, Yan C, Han C, Chen P, Yang S, Shi Y. Mechanical response of a triply periodic minimal surface cellular structures manufactured by selective laser melting. Int J Mech Sci. 2018;148:149-157. doi: 10.1016/j.ijmecsci.2018.08.039
  43. Rene JS, Smita S, Satish S, Buvaneshwari A, Velmurugan N. Impact of Contracted Endodontic Access Cavities on the Fracture Resistance of Endodontically Treated Teeth After Mechanical Aging by Simulated Chewing Forces. J Endodont. 2023;49(9):1176-1182. doi: 10.1016/j.joen.2023.06.018
  44. Guo W, Yang Y, Liu C, et al. 3D printed TPMS structural PLA/GO scaffold: process parameter optimization, porous structure, mechanical and biological properties. J Mech Behav Biomed Mater. 2023;142:105848. doi: 10.1016/j.jmbbm.2023.105848
  45. Sun Q, Sun J, Guo K, Wang L. Compressive mechanical properties and energy absorption characteristics of SLM fabricated Ti6Al4V triply periodic minimal surface cellular structures. Mech Mater. 2022;166:104241. doi: 10.1016/j.mechmat.2022.104241
  46. Dumas M, Terriault P, Brailovski VJM. Modeling and characterization of a porosity graded lattice structure for additively manufactured biomaterials. Mater Design. 2017;121:383-392. doi: 10.1016/j.matdes.2017.02.021
  47. Na Q, Yuheng W, Yijun S, Jianguang F. Experimental and numerical studies on mechanical properties of TPMS structures. Int J Mech Sci. 2024;261:108657. doi: 10.1016/j.ijmecsci.2023.108657
  48. Papazoglou DP, Neidhard-Doll AT, Pinnell MF, Erdahl DS, Osborn TH. Compression and tensile testing of L-PBF Ti- 6Al-4V lattice structures with biomimetic porosities and strut geometries for orthopedic implants. Metals. 2024;2:232. doi: 10.3390/met14020232

 

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing