AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3010
RESEARCH ARTICLE

Investigating the effect of pregabalin on neuronal development using ultrashort self-assembling peptides: Assessing 3D neuronal cultures with high throughput robotic 3D bioprinting

Walaa F. Alsanie1,2* Sherin Abdelrahman3,4,5 Majid Alhomrani1,2 Alexander U. Valle-Pérez3,4,5 Ebtisam Abdulah Alosimi2 Hamza Habeeballah6 Heba A. Alkhatabi7,8,9 Raed I. Felimban7,10 Abdulhakeem S. Alamri1,2 Abdulaziz Alsharif1 Bassem M. Raafat11 Yusuf S. Althobaiti12,13 Ahmed Gaber2,14 Charlotte A. E. Hauser3,4,5*
Show Less
1 Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
2 Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
3 Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
4 Computational Bioscience Research Center (CBRC), KAUST, Jeddah, Saudi Arabia
5 Red Sea Research Center (RSRC), KAUST, Jeddah, Saudi Arabia
6 Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
7 Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
8 Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
9 King Fahd Medical Research Centre, Hematology Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
10 Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
11 Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
12 Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
13 Addiction and Neuroscience Research Unit, Taif University, Taif, Saudi Arabia
14 Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
IJB 2024, 10(4), 3010 https://doi.org/10.36922/ijb.3010
Submitted: 25 February 2024 | Accepted: 13 May 2024 | Published: 18 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Pregabalin is a widely prescribed drug for various neurological disorders, yet its effects on embryonic cortical neuron development when given to pregnant women remain inadequately explored. In this study, we employed advanced three-dimensional (3D) culturing and in-house developed high-throughput robotic 3D bioprinting technologies to evaluate their potential in neuropharmacology applications, using pregabalin as a model compound. Using a robotic 3D bioprinter and tetrameric IIZK peptide hydrogel as bioink, we created constructs with pregabalin-treated and untreated primary mouse embryonic cortical neurons. This setup allowed us to study the drug’s effects on cell viability, expression of neuronal markers, and neuron development. Our comparative analysis between 2D and 3D peptide-based cell culture models revealed that at a therapeutic concentration of 10 μM, pregabalin does not affect neuronal viability or the morphogenesis of cortical neurons. However, it significantly alters adenosine triphosphate (ATP) release, suggesting potential disruptions in mitochondrial function. Moreover, gene expression analysis of key genes involved in the development of the forebrain and the differentiation and maturation of neurons revealed significant alterations, including the downregulation of Dlx2, Nhlh2, Otp, and Gad67. These findings, together with observed alterations in neuronal activity and oscillations, emphasize the complex impact of pregabalin on neuronal development and function. They highlight the necessity for comprehensive clinical evaluations of its use during pregnancy. Furthermore, our research demonstrates the feasibility and value of integrating 3D cultures with high-throughput 3D bioprinting in neuropharmacology, opening new avenues for investigating drug effects on neuronal development and function, and contributing to safer clinical practices.

Keywords
Pregabalin
Cortical neurons
Fetal neurodevelopment
Neuropathic pain
Embryonic neurons
Ultrashort self-assembling peptides
3D neuronal models
Funding
This project was financially support by Ministry of education under project number 1-441-120.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Alles SR, Cain SM, Snutch TP. Pregabalin as a pain therapeutic: beyond calcium channels. Front Cell Neurosci. 2020;14:83. doi: 10.3389/fncel.2020.00083
  2. Cross AL, Viswanath O, Sherman Al, Pregabalin I. StatPearls. Treasure Island, FL, USA: StatPearls Publishing; 2023. Available online: (accessed on 1 June, 2023). https://www.ncbi.nlm.nih.gov/books/NBK470341/
  3. Bidari A, Moazen-Zadeh E, Ghavidel-Parsa B, Rahmani S, Hosseini S, Hassankhani A. Comparing duloxetine and pregabalin for treatment of pain and depression in women with fibromyalgia: an open-label randomized clinical trial. DARU. 2019;27(1):149-158. doi: 10.1007/s40199-019-00257-4
  4. Moulin D, Boulanger A, Clark A, et al. Pharmacological management of chronic neuropathic pain: revised consensus statement from the Canadian Pain Society. Pain Res Manag. 2014;19(6):328-335. doi: 10.1155/2014/754693
  5. Dworkin RH, Corbin AE, Young JP, et al. Pregabalin for the treatment of postherpetic neuralgia: a randomized, placebo-controlled trial. Neurology. 2003;60(8):1274-1283. doi: 10.1212/01.wnl.0000055433.55136.55
  6. Lesser H, Sharma U, LaMoreaux L, Poole RM. Pregabalin relieves symptoms of painful diabetic neuropathy: a randomized controlled trial. Neurology. 2004;63(11): 2104-2110. doi: 10.1212/01.wnl.0000145767.36287.a1
  7. Elgazzar FM, Elseady WS, Hafez AS. Neurotoxic effects of pregabalin dependence on the brain frontal cortex in adult male albino rats. Neurotoxicology. 2021;83:146-155. doi: 10.1016/j.neuro.2021.01.004
  8. Morse DC. Embryo‐fetal developmental toxicity studies with pregabalin in mice and rabbits. Birth Defects Res B Dev Reprod Toxicol. 2016;107(2):85-93. doi: 10.1002/bdrb.21174
  9. Kułak-Bejda A, Waszkiewicz N, Popławska R, Bejda G. The impact of high doses of pregabalin on pregnancy–case report. Psychiatry Clin Psychopharmacol. 2019;29(1):97-99. doi: 10.1080/24750573.2018.1505452
  10. Cross AL, Viswanath O, Sherman AL. Pregabalin. StatPearls [Internet]; 2021. Available online: (accessed April 17, 2023). https://www.ncbi.nlm.nih.gov/books/NBK470341/
  11. Tassone DM, Boyce E, Guyer J, Nuzum D. Pregabalin: a novel γ-aminobutyric acid analogue in the treatment of neuropathic pain, partial-onset seizures, and anxiety disorders. Clin Ther. 2007;29(1):26-48. doi: 10.1016/j.clinthera.2007.01.013
  12. Dudukina E, Szépligeti SK, Karlsson P, et al. Prenatal exposure to pregabalin, birth outcomes and neurodevelopment – a population-based cohort study in four Nordic countries. Drug Saf. 2023;46(7):661-675. doi: 10.1007/s40264-023-01307-2
  13. Winterfeld U, Merlob P, Baud D, et al. Pregnancy outcome following maternal exposure to pregabalin may call for concern. Neurology. 2016;86(24):2251-2257. doi: 10.1212/WNL.0000000000002767
  14. Richardson JL, Damkier P, Diav-Citrin O, et al. A critical appraisal of controlled studies investigating malformation risks following pregabalin use in early pregnancy. Br J Clin Pharmacol. 2023;89(2):630-640. doi: 10.1111/bcp.15607
  15. Black E, Khor KE, Kennedy D, et al. Medication use and pain management in pregnancy: a critical review. Pain Pract. 2019;19(8):875-899. doi: 10.1111/papr.12814.
  16. Bonnet U, Scherbaum N. How addictive are gabapentin and pregabalin? A systematic review. Eur Neuropsychopharmacol. 2017;27(12):1185-1215. doi: 10.1016/j.euroneuro.2017.08.430
  17. Patorno E, Bateman BT, Huybrechts KF, et al. Pregabalin use early in pregnancy and the risk of major congenital malformations. Neurology. 2017;88(21):2020-2025. doi: 10.1212/WNL.0000000000003959
  18. Althobaiti YS, Almutairi FM, Alshehri FS, et al. Involvement of the dopaminergic system in the reward-related behavior of pregabalin. Sci Rep. 2021;11(1):10577. doi: 10.1038/s41598-021-88429-8
  19. Alsanie WF, Alhomrani M, Gaber A, et al. The effects of prenatal exposure to pregabalin on the development of ventral midbrain dopaminergic neurons. Cells. 2022;11(5);852. doi: 10.3390/cells11050852
  20. Lemon RN, Baker SN, Kraskov A. Classification of cortical neurons by spike shape and the identification of pyramidal neurons. Cereb Cortex. 2021;31(11):5131-5138. doi: 10.1093/cercor/bhab147.
  21. Yook C, Kim K, Kim D, et al. A TBR1-K228E mutation induces Tbr1 upregulation, altered cortical distribution of interneurons, increased inhibitory synaptic transmission, and autistic-like behavioral deficits in mice. Front Mol Neurosci. 2019;12:241. doi: 10.3389/fnmol.2019.00241
  22. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544 doi: 10.4161/auto.19496
  23. Bedogni F, Hodge RD, Elsen GE, et al. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc Natl Acad Sci USA. 2010;107(29): 13129-13134. doi: 10.1073/pnas.1002285107
  24. Hevner RF, Shi L, Justice N, et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron. 2001;29(2):353-366. doi: 10.1016/s0896-6273(01)00211-2
  25. Abdelrahman S, Ge R, Susapto HH, et al. The impact of mechanical cues on the metabolomic and transcriptomic profiles of human dermal fibroblasts cultured in ultrashort self-assembling peptide 3d scaffolds. ACS Nano. 2023;17(15):14508-14531. doi: 10.1021/acsnano.3c01176
  26. Hauser CA, Deng R, Mishra A, et al. Natural tri- to hexapeptides self-assemble in water to amyloid beta-type fiber aggregates by unexpected alpha-helical intermediate structures. Proc Natl Acad Sci USA. 2011;108(4):1361-1366. doi: 10.1073/pnas.1014796108
  27. Mishra A, Loo Y, Deng R, et al. Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. Nano Today. 2011;6(3):232-239. doi: 10.1016/j.nantod.2011.05.001
  28. Abdelrahman S, Alsanie WF, Khan ZN, et al. A Parkinson’s disease model composed of 3D bioprinted dopaminergic neurons within a biomimetic pep-tide scaffold. Biofabrication. 2022;14(4):044103. doi: 10.1088/1758-5090/ac7eec.
  29. Susapto HH, Alhattab D, Abdelrahman S, et al. ultrashort peptide bioinks support automated printing of large-scale constructs assuring long-term survival of printed tissue constructs. Nano Lett. 2021;21(7):2719-2729. doi: 10.1021/acs.nanolett.0c04426
  30. Alhattab DM, Isaioglou I, Alshehri S, et al. Fabrication of a three-dimensional bone marrow niche-like acute myeloid leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system. Biomater Res. 2023;27(1):111. doi: 10.1186/s40824-023-00457-9.
  31. Hayashi H, Yamada M, Kumai J, Takagi N, Nomizu, M. Biological activities of laminin-111-derived peptide-chitosan matrices in a primary culture of rat cortical neurons. Arch Biochem Biophys. 2018;648:53-59. doi: 10.1016/j.abb.2018.04.010
  32. Alsanie WF, Bahri OA, Habeeballah HH, et al. Generating homogenous cortical preplate and deep-layer neurons using a combination of 2D and 3D differentiation cultures. Sci Rep. 2020;10(1):6272. doi: 10.1038/s41598-020-62925-9

 

  1. Alsanie W, Penna V, Schachner M, Thompson L, Parish C. Homophilic binding of the neural cell adhesion molecule CHL1 regulates development of ventral midbrain dopaminergic pathways. Sci Rep. 2017;7:9368. doi: 10.1038/s41598-017-09599-y
  2. Kahin K, Khan Z, Albagami M, et al. Development of a robotic 3D bioprinting and microfluidic pumping system for tissue and organ engineering. In: Microfluidics, BioMEMS, and Medical Microsystems XIX. SPIE-Intl Soc Optical Eng; 2019. doi: 10.1117/12.2507237
  3. Khan Z, Kahin K, Rauf S, et al. Optimization of a 3D bioprinting process using ultrashort peptide bioinks. Int J Bioprint. 2018;5(1):173. doi: 10.18063/ijb.v5i1.173
  4. Khan Z, Kahin K, Hauser CAE. Time-dependent pulsing of microfluidic pumps to enhance 3D bioprinting of peptide bioinks. In: Microfluidics, BioMEMS, and Medical Microsystems XIX. SPIE-Intl Soc Optical Eng.; 2021. doi: 10.1117/12.2578830
  5. Goriounova NA, Mansvelder HD. Genes, cells and brain areas of intelligence. Front Hum Neurosci. 2019;13:44. doi: 10.3389/fnhum.2019.00044
  6. Coleman JR, Bryois J, Gaspar HA, et al. Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals. Mol Psychiatry. 2019;24:182-197. doi: 10.1038/s41380-018-0040-6
  7. Trampush JW, Yang MLZ, Yu J., et al. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Mol Psychiatry. 2017;22:336-345. doi: 10.1038/mp.2016.244
  8. Won H, Huang J, Opland CK, Hartl CL, Geschwind DH. Human evolved regulatory elements modulate genes in-volved in cortical expansion and neurodevelopmental disease susceptibility. Nat Commun. 2019; 0:2396. doi: 10.1038/s41467-019-10248-3
  9. Alsanie WF, Abdelrahman S, Alhomrani M, et al. The influence of prenatal exposure to quetiapine fumarate on the development of dopaminergic neurons in the ventral midbrain of mouse embryos. Int J Mol Sci. 2022;23:12352. doi: 10.3390/ijms232012352
  10. Yuan F, Fang K-H, Cao S-Y, et al. Efficient generation of region-specific forebrain neurons from human pluripotent stem cells under highly defined condition. Sci Rep. 2015;5(1):18550. doi: 10.1038/srep18550
  11. Kriegstein A, Noctor S, Martínez-Cerdeño V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci. 2006;7(11):883-890. doi: 10.1038/nrn2008
  12. Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. 2009;10(10): 724-735. doi: 10.1038/nrn2719
  13. Lu I-L, Chen C, Tung C-Y, et al. Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat Commun. 2018;9(1):2498. doi: 10.1038/s41467-018-04880-8
  14. Desikan RS, Barkovich AJ. Malformations of cortical development. Ann Neurol. 2016;80(6):797-810. doi: 10.1002/ana.24793
  15. Blümcke I, Vinters HV, Armstrong D, Aronica E, Thom M, Spreafico R. Malformations of cortical development and epilepsies. Epileptic Disord. 2009;11:181-193. doi: 10.1101/cshperspect.a022392
  16. Ikeda H, Yonemochi N, Ardianto C, Yang L, Kamei J. Pregabalin increases food intake through dopaminergic systems in the hypothalamus. Brain Res. 2018;1701:219-226. doi: 10.1016/j.brainres.2018.09.026
  17. Chagury AA, Tavares KR, Camargo RM, Martins DV, Marques LH, Mahmoud A. Pregabalin treatment in a pregnant woman with glossopharyngeal neuralgia. Braz J Otorhinolaryngol. 2020;86:S17-S19. doi: 10.1016/j.bjorl.2017.01.010
  18. Wettermark B, Brandt L, Kieler H, Bodén R. Pregabalin is increasingly prescribed for neuropathic pain, generalised anxiety disorder and epilepsy but many patients discontinue treatment. Int J Clin Pract. 2014;68(1):104-110. doi: 10.1111/ijcp.12182
  19. Derry S, Bell RF, Straube S, Wiffen PJ, Aldington D, Moore RA. Pregabalin for neuropathic pain in adults. Cochrane Database Syst Rev. 2019;2019(1):CD007076. doi: 10.1002/14651858.CD007076.pub3
  20. Ben-Menachem E. Pregabalin pharmacology and its relevance to clinical practice. Epilepsia. 2004;45:13-18. doi: 10.1111/j.0013-9580.2004.455003.x
  21. Sałat K, Librowski T, Nawiesniak B, Gluch-Lutwin M. Evaluation of analgesic, antioxidant, cytotoxic and metabolic effects of pregabalin for the use in neuropathic pain. Neurol Res. 2013;35(9):948-958. doi: 10.1179/1743132813Y.0000000236
  22. Margulis AV, Hernandez-Diaz S, McElrath T, et al. Relation of in-utero exposure to antiepileptic drugs to pregnancy duration and size at birth. PLoS One. 2019;14(8):e0214180. doi: 10.1371/journal.pone.0214180
  23. Andrade C. Safety of pregabalin in pregnancy. J Clin Psychiatry. 2018;79(5):18f12568. doi: 10.4088/JCP.18f12568
  24. Alsanie WF, Abdelrahman S, Alhomrani M, et al. Prenatal exposure to gabapentin alters the development of ventral midbrain dopaminergic neurons. Front Pharmacol. 2022;13:923113. doi: 10.3389/fphar.2022.923113
  25. Saino‐Saito S, Berlin R, Baker H. Dlx‐1 and Dlx‐2 expression in the adult mouse brain: relationship to dopaminergic phenotypic regulation. J Comp Neurol. 2003;461(1):18-30. doi: 10.1002/cne.10611
  26. Cecchi C. Emx2: a gene responsible for cortical development, regionalization and area specification. Gene. 2002; 291(1-2):1-9. doi: 10.1016/s0378-1119(02)00623-6
  27. Pei Z, Wang B, Chen G, Nagao M, Nakafuku M, Campbell K. Homeobox genes Gsx1 and Gsx2 differentially regulate telencephalic progenitor maturation. Proc Natl Acad Sci USA. 2011;108(4):1675-1680. doi: 10.1073/pnas.1008824108
  28. Bishop JH, Faerman A, Geoly A, et al. Altered neurotransmitter ratio in the prefrontal cortex is associated with pain in fibromyalgia syndrome. medRxiv. 2021;2021:21265618. doi: 10.1101/2021.10.28.21265618
  29. Jiang H, Fang D, Kong L-Y, et al. Sensitization of neurons in the central nucleus of the amygdala via the decreased GABAergic inhibition contributes to the development of neuropathic pain-related anxiety-like behaviors in rats. Mol Brain. 2014;7:72. doi: 10.1186/s13041-014-0072-z
  30. Alifragis P, Liapi A. Parnavelas JG. Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. J Neurosci. 2004;24:5643-5648. doi: 10.1523/JNEUROSCI.1245-04.2004
  31. Good DJ, Braun T. NHLH2: at the intersection of obesity and fertility. Trends Endocrinol Metab. 2013;24(8):385-390. doi: 10.1016/j.tem.2013.04.003
  32. Takebayashi H, Yoshida S, Sugimori M, et al. Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech Dev. 2000;99:143-148. doi: 10.1016/s0925-4773(00)00466-4
  33. Meijer DH, Kane MF, Mehta S, et al. Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2. Nat Rev Neurosci. 2012;13(12):819-831. doi: 10.1038/nrn3386
  34. Wang H, Xu L, Lai C, et al. Region-specific distribution of Olig2-expressing astrocytes in adult mouse brain and spinal cord. Mol Brain. 2021;14:1-14. doi: 10.1186/s13041-021-00747-0
  35. Jakovcevski I, Zecevic N. Olig transcription factors are expressed in oligodendrocyte and neuronal cells in human fetal CNS. J Neurosci. 2005;25(44):10064-10073. doi: 10.1523/JNEUROSCI.2324-05.2005
  36. Aruga J. The role of Zic genes in neural development. Mol Cell Neurosci. 2004;26(2):205-221. doi: 10.1016/j.mcn.2004.01.004
  37. Inoue T, Ota M, Ogawa M, Mikoshiba K, Aruga J. Zic1 and Zic3 regulate medial forebrain development through expansion of neuronal progenitors. J Neurosci. 2007;27(20):5461-5473. doi: 10.1523/JNEUROSCI.4046-06.2007
  38. Butt SJ, Sousa VH, Fuccillo MV, et al. The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron. 2008;59(5):722-732. doi: 10.1016/j.neuron.2008.07.031
  39. Hundehege P, Fernandez-Orth J, Römer P, et al. Targeting voltage-dependent calcium channels with pregabalin exerts a direct neuroprotective effect in an animal model of multiple sclerosis. Neurosignals. 2018;26(1):77-93. doi: 10.1159/000495425.
  40. Ablinger C, Geisler SM, Stanika RI, Klein CT, Obermair GJ. Neuronal α2δ proteins and brain disorders. Pflügers Arch. 2020;472(7):845-863. doi: 10.1007/s00424-020-02420-2
  41. Bockbrader HN, Wesche D, Miller R, Chapel S, Janiczek N, Burger P. A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin Pharmacokinet. 2010;49(10):661-669. doi: 10.2165/11536200-000000000-00000
  42. Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-throughput screening: Drug screening, disease modeling, and precision medicine applications. Appl Phys Rev. 2019;6(1):011302. doi: 10.1063/1.5056188
  43. Satpathy A, Datta P, Wu Y, Ayan B, Bayram E, Ozbolat IT. Developments with 3D bioprinting for novel drug discovery. Expert Opin Drug Discov. 2018;13(12):1115-1129. doi: 10.1080/17460441.2018.1542427
  44. Hwang DG, Choi YM, Jang J. 3D bioprinting-based vascularized tissue models mimicking tissue-specific architecture and pathophysiology for in vitro studies. Front Bioeng Biotechnol. 2021;9:685507. doi: 10.3389/fbioe.2021.685507
  45. Wu BX, Wu Z, Hou YY, et al. Application of three-dimensional (3D) bioprinting in anti-cancer therapy. Heliyon. 2023;9(10):e20475. doi: 10.1016/j.heliyon.2023.e20475
  46. Peng W, Datta P, Ayan B, Ozbolat V, Sosnoski D, Ozbolat IT. 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomat. 2017;57:26-46. doi: 10.1016/j.actbio.2017.05.025
  47. Jorfi M, D’Avanzo C, Kim DY, Irimia, D. Three-dimensional models of the human brain development and diseases. Adv Healthc Mater. 2018;7(1):10.1002/adhm.201700723. doi: 10.1002/adhm.201700723
  48. Edelman DB, Keefer EW. A cultural renaissance: in vitro cell biology embraces three-dimensional context. Exp Neurol. 2005;192(1):1-6. doi: 10.1016/j.expneurol.2004.10.005
  49. Zhao X, Bhattacharyya A. Human models are needed for studying human neurodevelopmental disorders. Am J Hum Genet. 2018;103(6):829-857. doi: 10.1016/j.ajhg.2018.10.009

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing