AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3526
RESEARCH ARTICLE

3D-printed Mg-substituted hydroxyapatite/ gelatin methacryloyl hydrogels encapsulated with PDA@DOX particles for bone tumor therapy and bone tissue regeneration

Shangsi Chen1 Yue Wang1,2 Junzhi Li3 Haoran Sun4* Ming-Fung Francis Siu2* Shenglong Tan5*
Show Less
1 Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
2 Department of Building and Real Estate, Faculty of Construction and Environment, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
3 Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
4 Koln 3D Technology (Medical) Limited, Hong Kong Science Park, Shatin, Hong Kong, China
5 Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
IJB 2024, 10(5), 3526 https://doi.org/10.36922/ijb.3526
Submitted: 29 April 2024 | Accepted: 14 May 2024 | Published: 17 July 2024
(This article belongs to the Special Issue Advanced Biomaterials for 3D Printing and Healthcare Application)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The development of bifunctional scaffolds for clinical applications, aimed at preventing tumor recurrence and promoting bone tissue regeneration simultaneously at the surgical site, is imperative in repairing bone tumor-related defects. In the current study, Mg-substituted hydroxyapatite (MgHAp) nanocomposites were synthesized via a biomineralization process. Doxorubicin hydrochloride (DOX), an anticancer drug, was incorporated in polydopamine (PDA) particles to synthesize PDA@DOX particles. MgHAp/gelatin methacryloyl (GelMA) hydrogels encapsulated with PDA@DOX particles were designed and fabricated to construct MgHAp/GelMA-PDA@DOX hydrogels via 3D printing. The 3D-printed MgHAp/GelMA-PDA@DOX hydrogels exhibited antitumor synergy by providing combined chemotherapy and phototherapy for bone tumor cell ablation. The hydrogels showed a good photothermal effect and could induce hyperthermia upon irradiation with an 808 nm near-infrared (NIR) laser. Moreover, MgHAp/GelMA-PDA@DOX hydrogels could release DOX sustainably and controllably. In vitro experiments demonstrated that 3D-printed MgHAp/GelMA-PDA@DOX hydrogels could effectively eradicate MG63 cells through the synergy of induced hyperthermia and DOX release. Furthermore, due to the sustained release of Mg2+, 3D-printed MgHAp/GelMA-PDA@DOX hydrogels could promote the proliferation of rat bone marrow-derived mesenchymal stem cells and facilitate alkaline phosphatase activity and the expression of osteogenic genes, such as osteocalcin (Ocn), type I collagen (Col1), runt-related transcription factor-2 (Runx2), and bone morphogenetic protein-2 (Bmp2), indicating their excellent osteogenic effect. As a result, 3D-printed MgHAp/GelMA-PDA@DOX hydrogels showed great potential in the treatment of bone tumor-related defects by effectively killing tumor cells and simultaneously promoting bone tissue regeneration.

Keywords
3D printing
Magnesium
Anti-tumor effect
Bone tissue regeneration
Controlled release
Funding
This work was financially supported by the National Nature Science Foundation of China (Grant No. 82201133) and Fong On Construction Ltd. in Hong Kong (Grant No. ZDBM, ZDCA). The research sponsored from Fong On Construction Ltd. (HK) has potential interest in exploring the potential application of extrusion-based 3D printing technology in automation within the construction industry
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Isakoff MS, Bielack SS, Meltzer P, Gorlick R. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33(27):3029-3035. doi: 10.1200/JCO.2014.59.4895
  2. Chen HHW, Kuo MT. Improving radiotherapy in cancer treatment: promises and challenges. Oncotarget. 2017;8(37):62742-62758. doi: 10.18632/oncotarget.18409
  3. Behranvand N, Nasri F, Zolfaghari Emameh R, et al. Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol Immunother. 2022;71(3):507-526. doi: 10.1007/s00262-021-03013-3
  4. Su J, Sun H, Meng Q, et al. Bioinspired nanoparticles with NIR‐controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv Funct Mater. 2016;26(41):7495-7506. doi: 10.1002/adfm.201603381
  5. Fan R, Chen C, Hou H, et al. Tumor acidity and near‐infrared light responsive dual drug delivery polydopamine‐based nanoparticles for chemo‐photothermal therapy. Adv Funct Mater. 2021;31(18):2009733. doi: 10.1002/adfm.202009733
  6. An D, Fu J, Zhang B, et al. NIR‐II responsive inorganic 2D nanomaterials for cancer photothermal therapy: recent advances and future challenges. Adv Funct Mater. 2021;31(32):2101625. doi: 10.1002/adfm.202101625
  7. Ren Y, Yan Y, Qi H. Photothermal conversion and transfer in photothermal therapy: from macroscale to nanoscale. Adv Colloid Interface Sci. 2022;308:102753. doi: 10.1016/j.cis.2022.102753
  8. Batul R, Tamanna T, Khaliq A, Yu A. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci. 2017;5(7):1204-1229. doi: 10.1039/c7bm00187h
  9. Qiu J, Shi Y, Xia Y. Polydopamine nanobottles with photothermal capability for controlled release and related applications. Adv Mater. 2021;33(45):e2104729. doi: 10.1002/adma.202104729
  10. Bedhiafi T, Idoudi S, Alhams AA, et al. Applications of polydopaminic nanomaterials in mucosal drug delivery. J Control Release. 2023;353:842-849. doi: 10.1016/j.jconrel.2022.12.037
  11. Chen S, Tan S, Zheng L, Wang M. Multilayered shape-morphing scaffolds with a hierarchical structure for uterine tissue regeneration. ACS Appl Mater Interfaces. 2024;16(6):6772-6788. doi: 10.1021/acsami.3c14983
  12. Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds for bone regeneration. J Sci: Adv Mater Devices. 2020; 5(1):1-9. doi: 10.1016/j.jsamd.2020.01.007
  13. Chen S, Shi Y, Zhang X, Ma J. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2020;112:110893. doi: 10.1016/j.msec.2020.110893
  14. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546-554. doi: 10.1016/j.tibtech.2012.07.005
  15. Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246-1262. doi: 10.1016/j.msec.2017.05.017
  16. Lai J, Wang C, Liu J, et al. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds within situdelivery of osteogenic peptide and mesenchymal stem cells. Biofabrication. 2022;14(4):045006. doi: 10.1088/1758-5090/ac84b0
  17. Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater. 2015;4(12):1742-1762. doi: 10.1002/adhm.201500168
  18. Wang S, Zhao S, Yu J, Gu Z, Zhang Y. Advances in translational 3D printing for cartilage, bone, and osteochondral tissue engineering. Small. 2022;18(36):e2201869. doi: 10.1002/smll.202201869
  19. MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science. 2016;353(6307):aaf2093. doi: 10.1126/science.aaf2093
  20. Velasquez-Garcia LF, Kornbluth Y. Biomedical applications of metal 3D printing. Annu Rev Biomed Eng. 2021;23: 307-338. doi: 10.1146/annurev-bioeng-082020-032402
  21. Ratheesh G, Vaquette C, Xiao Y. Patient-specific bone particles bioprinting for bone tissue engineering. Adv Healthc Mater. 2020;9(23):e2001323. doi: 10.1002/adhm.202001323
  22. Van hede D, Liang B, Anania S, et al. 3D‐printed synthetic hydroxyapatite scaffold with in silico optimized macrostructure enhances bone formation in vivo. Adv Funct Mater. 2021;32(6):2105002. doi: 10.1002/adfm.202105002
  23. Wang Y, Chen SS, Liang HW, Liu Y, Bai JM, Wang M. Digital light processing (DLP) of nano biphasic calcium phosphate bioceramic for making bone tissue engineering scaffolds. Ceram Int. 2022;48(19):27681-27692. doi: 10.1016/j.ceramint.2022.06.067
  24. Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interfaces. 2018;10(8):6849-6857. doi: 10.1021/acsami.7b16059
  25. Guo A, Zhang S, Yang R, Sui C. Enhancing the mechanical strength of 3D printed GelMA for soft tissue engineering applications. Mater Today Bio. 2024; 24:100939. doi: 10.1016/j.mtbio.2023.100939
  26. Chen S, Wang Y, Lai J, Tan S, Wang M. Structure and properties of gelatin methacryloyl (GelMA) synthesized in different reaction systems. Biomacromolecules. 2023;24(6):2928-2941. doi: 10.1021/acs.biomac.3c00302
  27. Jiang G, Li S, Yu K, et al. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Acta Biomater. 2021;128:150-162. doi: 10.1016/j.actbio.2021.04.010
  28. Xu C, Chang Y, Xu Y, et al. Silicon-phosphorus-nanosheets-integrated 3D-printable hydrogel as a bioactive and biodegradable scaffold for vascularized bone regeneration. Adv Healthc Mater. 2022;11(6):e2101911. doi: 10.1002/adhm.202101911
  29. Zhang X, Zhang H, Zhang Y, et al. 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration. J Mater Chem B. 2023;11(6):1288-1301. doi: 10.1039/d2tb01979e
  30. Xavier Mendes A, Moraes Silva S, O’Connell CD, et al. Enhanced electroactivity, mechanical properties, and printability through the addition of graphene oxide to photo-cross-linkable gelatin methacryloyl hydrogel. ACS Biomater Sci Eng. 2021;7(6):2279-2295. doi: 10.1021/acsbiomaterials.0c01734
  31. Choi E, Kim D, Kang D, et al. 3D-printed gelatin methacrylate (GelMA)/silanated silica scaffold assisted by two-stage cooling system for hard tissue regeneration. Regen Biomater. 2021;8(2):rbab001. doi: 10.1093/rb/rbab001
  32. Gui XY, Zhang BQ, Song P, et al. 3D printing of biomimetic hierarchical porous architecture scaffold with dual osteoinduction and osteoconduction biofunctions for large size bone defect repair. Appl Mater Today. 2024; 37:102085. doi: 10.1016/j.apmt.2024.102085
  33. Pu X, Tong L, Wang X, et al. Bioinspired hydrogel anchoring 3DP GelMA/HAp scaffolds accelerates bone reconstruction. ACS Appl Mater Interfaces. 2022;14(18):20591-20602. doi: 10.1021/acsami.1c25015
  34. Song P, Li MX, Zhang BQ, et al. DLP fabricating of precision GelMA/HAp porous composite scaffold for bone tissue engineering application. Compos B Eng. 2022;244:110163. doi: 10.1016/j.compositesb.2022.110163
  35. Chen S, Shi Y, Zhang X, Ma J. Biomimetic synthesis of Mg-substituted hydroxyapatite nanocomposites and three-dimensional printing of composite scaffolds for bone regeneration. J Biomed Mater Res A. 2019;107(11): 2512-2521. doi: 10.1002/jbm.a.36757
  36. Zhou H, Liang B, Jiang HT, Deng ZL, Yu KX. Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application. J Magnes Alloy. 2021;9(3):779-804. doi: 10.1016/j.jma.2021.03.004
  37. Chen S, Wang Y, Zhang X, Ma J, Wang M. Double-crosslinked bifunctional hydrogels with encapsulated anti-cancer drug for bone tumor cell ablation and bone tissue regeneration. Colloids Surf B Biointerfaces. 2022;213:112364. doi: 10.1016/j.colsurfb.2022.112364
  38. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020. doi: 10.1088/1758-5090/8/3/035020
  39. Ma J, Wang J, Ai X, Zhang S. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates. Biotechnol Adv. 2014;32(4):744-60. doi: 10.1016/j.biotechadv.2013.10.014
  40. Luo Y, Chen S, Shi Y, Ma J. 3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects. Biomed Mater. 2018;13(6):065004. doi: 10.1088/1748-605X/aad923
  41. Kang Y, Xu C, Meng L, Dong X, Qi M, Jiang D. Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioact Mater. 2022;18:26-41. doi: 10.1016/j.bioactmat.2022.02.012
  42. Antoniac IV, Antoniac A, Vasile E, et al. In vitro characterization of novel nanostructured collagen-hydroxyapatite composite scaffolds doped with magnesium with improved biodegradation rate for hard tissue regeneration. Bioact Mater. 2021;6(10):3383-3395. doi: 10.1016/j.bioactmat.2021.02.030
  43. Chen SS, Li JZ, Zheng LW, Huang J, Wang M. Biomimicking trilayer scaffolds with controlled estradiol release for uterine tissue regeneration. Exploration. 2024:20230141. doi: 10.1002/Exp.20230141
  44. Kumar H, Sakthivel K, Mohamed MGA, Boras E, Shin SR, Kim K. Designing gelatin methacryloyl (GelMA)-based bioinks for visible light stereolithographic 3D biofabrication. Macromol Biosci. 2021;21(1):e2000317. doi: 10.1002/mabi.202000317
  45. Lee BH, Lum N, Seow LY, Lim PQ, Tan LP. Synthesis and characterization of types A and B gelatin methacryloyl for bioink applications. Materials (Basel). 2016;9(10):797. doi: 10.3390/ma9100797
  46. Wang Z, Duan Y, Duan Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release. 2018;290:56-74. doi: 10.1016/j.jconrel.2018.10.009
  47. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271. doi: 10.1016/j.biomaterials.2015.08.045
  48. Outrequin TCR, Gamonpilas C, Siriwatwechakul W, Sreearunothai P. Extrusion-based 3D printing of food biopolymers: a highlight on the important rheological parameters to reach printability. J Food Eng. 2023; 342:111371. doi: 10.1016/j.jfoodeng.2022.111371
  49. Sanchez-Sanchez R, Rodriguez-Rego JM, Macias-Garcia A, Mendoza-Cerezo L, Diaz-Parralejo A. Relationship between shear-thinning rheological properties of bioinks and bioprinting parameters. Int J Bioprint. 2023; 9(2):687. doi: 10.18063/ijb.687
  50. Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS. ‘Printability’ of candidate biomaterials for extrusion based 3D printing: state-of-the-art. Adv Healthc Mater. 2017;6(16):1700264. doi: 10.1002/adhm.201700264
  51. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084
  52. Ning L, Mehta R, Cao C, et al. Embedded 3D bioprinting of gelatin methacryloyl-based constructs with highly tunable structural fidelity. ACS Appl Mater Interfaces. 2020;12(40):44563-44577. doi: 10.1021/acsami.0c15078
  53. Mora-Boza A, Wlodarczyk-Biegun MK, Del Campo A, Vazquez-Lasa B, Roman JS. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Biomater Sci. 2019;8(1):506-516. doi: 10.1039/c9bm01271k
  54. Latif M, Jiang Y, Kumar B, Song JM, Cho HC, Kim J. High content nanocellulose 3D‐printed and esterified structures with strong interfacial adhesion, high mechanical properties, and shape fidelity. Adv Mater Interfaces. 2022;9(16):202200280. doi: 10.1002/admi.202200280
  55. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496-504. doi: 10.1016/j.mattod.2013.11.017
  56. Wang ZC, Huang CZ, Han X, et al. Fabrication of aerogel scaffolds with adjustable macro/micro-pore structure through 3D printing and sacrificial template method for tissue engineering. Mater Design. 2022;217(1):110662. doi: 10.1016/j.matdes.2022.110662
  57. Rizwan M, Chan SW, Comeau PA, Willett TL, Yim EKF. Effect of sterilization treatment on mechanical properties, biodegradation, bioactivity and printability of GelMA hydrogels. Biomed Mater. 2020;15(6):065017. doi: 10.1088/1748-605X/aba40c
  58. O’Connell CD, Zhang B, Onofrillo C, et al. Tailoring the mechanical properties of gelatin methacryloyl hydrogels through manipulation of the photocrosslinking conditions. Soft Matter. 2018;14(11):2142-2151. doi: 10.1039/c7sm02187a
  59. Bashir S, Hina M, Iqbal J, et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers (Basel). 2020;12(11):2702. doi: 10.3390/polym12112702
  60. Piao Y, You H, Xu T, et al. Biomedical applications of gelatin methacryloyl hydrogels. Eng Regen. 2021;2:47-56. doi: 10.1016/j.engreg.2021.03.002
  61. Zhang XA, Wei H, Dong C, et al. 3D printed hydrogel/ bioceramics core/shell scaffold with NIR-II triggered drug release for chemo-photothermal therapy of bone tumors and enhanced bone repair. Chem Eng J. 2023; 461:141855. doi: 10.1016/j.cej.2023.141855
  62. Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: working as “drug” carriers. Bioact Mater. 2020;5(3):522-541. doi: 10.1016/j.bioactmat.2020.04.003
  63. Cheng W, Nie JP, Gao NS, et al. A multifunctional nanoplatform against multidrug resistant cancer: merging the best of targeted chemo/gene/photothermal therapy. Adv Funct Mater. 2017;27(45):1704135. doi: 10.1002/adfm.201704135
  64. Shahzadi I, Islam M, Saeed H, et al. Formation of biocompatible MgO/cellulose grafted hydrogel for efficient bactericidal and controlled release of doxorubicin. Int J Biol Macromol. 2022;220:1277-1286. doi: 10.1016/j.ijbiomac.2022.08.142
  65. Chu X, Zhang L, Li Y, He Y, Zhang Y, Du C. NIR responsive doxorubicin-loaded hollow copper ferrite @ polydopamine for dynergistic chemodynamic/photothermal/chemo-therapy. Small. 2023;19(7):e2205414. doi: 10.1002/smll.202205414
  66. Gao P, Fan B, Yu X, et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact Mater. 2020;5(3):680-693. doi: 10.1016/j.bioactmat.2020.04.019
  67. Qian Y, Zhao X, Han Q, Chen W, Li H, Yuan W. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nat Commun. 2018;9(1):323. doi: 10.1038/s41467-017-02598-7
  68. Yang Z, Si J, Cui Z, et al. Biomimetic composite scaffolds based on surface modification of polydopamine on electrospun poly(lactic acid)/cellulose nanofibrils. Carbohydr Polym. 2017;174:750-759. doi: 10.1016/j.carbpol.2017.07.010
  69. Cheng H, Chabok R, Guan X, et al. Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 2018;69:342-351. doi: 10.1016/j.actbio.2018.01.016
  70. Liu X, Wei Y, Xuan C, et al. A biomimetic biphasic osteochondral scaffold with layer-specific release of stem cell differentiation inducers for the reconstruction of osteochondral defects. Adv Healthc Mater. 2020;9(23):e2000076. doi: 10.1002/adhm.202000076
  71. Li D, Zhang D, Yuan Q, et al. In vitro and in vivo assessment of the effect of biodegradable magnesium alloys on osteogenesis. Acta Biomater. 2022;141:454-465. doi: 10.1016/j.actbio.2021.12.032
  72. Wang L, Pang Y, Tang Y, et al. A biomimetic piezoelectric scaffold with sustained Mg(2+) release promotes neurogenic and angiogenic differentiation for enhanced bone regeneration. Bioact Mater. 2023;25:399-414. doi: 10.1016/j.bioactmat.2022.11.004
  73. Sun M, Liu A, Shao H, et al. Systematical evaluation of mechanically strong 3D printed diluted magnesium doping wollastonite scaffolds on osteogenic capacity in rabbit calvarial defects. Sci Rep. 2016;6:34029. doi: 10.1038/srep34029



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing