AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3440
RESEARCH ARTICLE

3D bioprinting of betamethasone-loaded gellan gum–polyethyleneimine composite hydrogels for ocular drug delivery

Negin Khoshnood1 John P. Frampton2* Armin Badri1 Ali Zamanian1*
Show Less
1 Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Karaj, Alborz, Iran
2 Department of Biochemistry and Molecular Biology, School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
IJB 2024, 10(4), 3440 https://doi.org/10.36922/ijb.3440
Submitted: 17 April 2024 | Accepted: 6 June 2024 | Published: 16 July 2024
(This article belongs to the Special Issue Bioprinting for Tissue Engineering and Modeling)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Transparent hydrogels have numerous applications in materials science and tissue engineering, particularly as materials for corneal repair. In this study, we developed a three-dimensional (3D)-bioprinted betamethasone sodium phosphate-loaded gellan gum (GG)–polyethyleneimine (PEI) composite hydrogel and assessed its performance in vitro. The bioinks used for 3D bioprinting were optimized based on their transparency and gelation properties. In the presence of an ionic crosslinker (citric acid), the GG–PEI blend transformed from a liquid precursor to an extrudable hydrogel with good printability and shape fidelity. The 2.5% GG–3% PEI hydrogel formulation had a transparency of 80%, a suitable degradation rate, and sufficient mechanical strength for application in corneal repair. The GG–PEI composite hydrogel displayed controlled and sustained release of betamethasone sodium phosphate. Moreover, the 3D-bioprinted composite hydrogel was biocompatible, as evidenced by the attachment, growth, and proliferation of corneal fibroblasts. Taken together, these findings suggest that the 3D-bioprinted GG–PEI composite hydrogel scaffold has the potential to control ocular inflammation and aid in corneal tissue healing.

Graphical abstract
Keywords
Gellan gum hydrogel
Polyethyleneimine
Bioink
3D-bioprinted scaffold
Ocular drug delivery
Corneal tissue engineering
Funding
This work was supported by funds from the Materials and Energy Research Center (MERC) (Grant No. 14023050).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Dhar S, Mishra SK, Joshi A, et al. Evolving trends in corneal surgery. Delhi J Ophthalmol. 2023;33(4):280-289. doi: 10.4103/DLJO.DLJO_163_23
  2. He B, Wang J, Xie M, et al. 3D printed biomimetic epithelium/ stroma bilayer hydrogel implant for corneal regeneration. Bioact Mater. 2022;17:234-247. doi: 10.1016/j.bioactmat.2022.01.034
  3. Hancox Z, Keshel SH, Yousaf S, et al. The progress in corneal translational medicine. Biomater Sci. 2020;8(23):6469-6504. doi: 10.1039/D0BM01209B.
  4. Nosrati H, Abpeikar Z, Mahmoudian ZG, et al. Corneal epithelium tissue engineering: recent advances in regeneration and replacement of corneal surface. Regen Med. 2020;15(8):2029-2044. doi: 10.2217/rme-2019-0055
  5. Luo X, He X, Zhao H, et al. Research progress of polymer biomaterials as scaffolds for corneal endothelium tissue engineering. Nanomaterials (Basel). 2023;13(13):1976. doi: 10.3390/nano13131976
  6. Hao Y, Zhou J, Tan J, et al. Preclinical evaluation of the safety and effectiveness of a new bioartificial cornea. Bioact Mater. 2023;29:265-278. doi: 10.1016/j.bioactmat.2023.07.005
  7. Fuest M, Yam GH-F, Mehta JS, Duarte Campos DF. Prospects and challenges of translational corneal bioprinting. Bioengineering (Basel). 2020;7(3):71. doi: 10.3390/bioengineering7030071
  8. Zhang B, Xue Q, Li J, et al. 3D bioprinting for artificial cornea: challenges and perspectives. Med Eng Phys. 2019;71:68-78. doi: 10.1016/j.medengphy.2019.05.002
  9. Holland G, Pandit A, Sánchez-Abella L, et al. Artificial cornea: past, current, and future directions. Front Med (Lausanne). 2021;8:1-19. doi: 10.3389/fmed.2021.770780
  10. Xue Q, Ma L, Hu H, et al. 3D bioprinting as a prospective therapeutic strategy for corneal limbal epithelial stem cell deficiency. Int J Bioprint. 2023;9(3):710. doi: 10.18063/ijb.710
  11. Mahdavi SS, Abdekhodaie MJ, Mashayekhan S, Baradaran- Rafii A, Djalilian AR. Bioengineering approaches for corneal regenerative medicine. Tissue Eng Regen Med. 2020;17(5):567-593. doi: 10.1007/s13770-020-00262-8
  12. Haghighizadeh E, Shahrezaee M, Sharifzadeh SR, Momeni M. Transforming growth factor-β3 relation with osteoporosis and osteoporotic fractures. J Res Med Sci. 2019;24:46. doi: 10.4103/jrms.JRMS_1062_18
  13. Norouzi M, Naderi MN, Komasi MH, et al. Clinical results of using the proximal humeral internal locking system plate for internal fixation of displaced proximal humeral fractures. Am J Orthop (Belle Mead NJ). 2012;41(5):E64-E68.
  14. Khoshnood N, Shahrezaee MH, Shahrezaee M, Zamanian A. Three‐dimensional bioprinting of tragacanth/ hydroxyapaptite modified alginate bioinks for bone tissue engineering with tunable printability and bioactivity. J Appl Polym Sci. 2022;139(36):e52833. doi: 10.1002/app.52833
  15. Khoshnood N, Zamanian A, Abbasi M. The potential impact of polyethylenimine on biological behavior of 3D-printed alginate scaffolds. Int J Biol Macromol. 2021;178:19-28. doi: 10.1016/j.ijbiomac.2021.02.152
  16. Agostinacchio F, Fitzpatrick V, Dirè S, Kaplan DL, Motta A. Silk fibroin-based inks for in situ 3D printing using a double crosslinking process. Bioact Mater. 2024;35:122-134. doi: 10.1016/j.bioactmat.2024.01.015
  17. Moreddu R, Vigolo D, Yetisen AK. Contact lens technology: from fundamentals to applications. Adv Healthc Mater. 2019;8(15):e1900368. doi: 10.1002/adhm.201900368
  18. Alam F, Elsherif M, AlQattan B, et al. Prospects for additive manufacturing in contact lens devices. Adv Eng Mater. 2021;23(1):2000941. doi: 10.1002/adem.202000941
  19. Grönroos P, Mörö A, Puistola P, et al. Bioprinting of human pluripotent stem cell derived corneal endothelial cells with hydrazone crosslinked hyaluronic acid bioink. Stem Cell Res Ther. 2024;15(1):81. doi: 10.1186/s13287-024-03672-w
  20. Khoshnood N, Zamanian A. Development of novel alginate-polyethyleneimine cell-laden bioink designed for 3D bioprinting of cutaneous wound healing scaffolds. J Appl Polym Sci. 2022;139(21):1-18. doi: 10.1002/app.52227
  21. Khoshnood N, Shahrezayee MH, Shahrezayee M, Shams A, Zamanian A. Biological study of polyethyleneimine functionalized polycaprolactone 3D‐printed scaffolds for bone tissue engineering. J Appl Polym Sci. 2022;139(29):e52628. doi: 10.1002/app.52628
  22. Shin J, Chung H, Kumar H, et al. 3D bioprinting of human iPSC-Derived kidney organoids using a low-cost, high-throughput customizable 3D bioprinting system. Bioprinting. 2024;38:e00337. doi: 10.1016/j.bprint.2024.e00337
  23. Khoshnood N, Frampton JP, Zaree SRA, et al. The corrosion and biological behavior of 3D-printed polycaprolactone/ chitosan scaffolds as protective coating for Mg alloy implants. Surf Coatings Technol. 2024;477:130368. doi: 10.1016/j.surfcoat.2023.130368
  24. Khoshnood N, Zamanian A. Decellularized extracellular matrix bioinks and their application in skin tissue engineering. Bioprinting. 2020;20:1-9. doi: 10.1016/j.bprint.2020.e00095
  25. Pal P, Sambhakar S, Paliwal S, Kumar S, Kalsi V. Biofabrication paradigms in corneal regeneration: bridging bioprinting techniques, natural bioinks, and stem cell therapeutics. J Biomater Sci Polym Ed. 2024;35(5):717-755. doi: 10.1080/09205063.2024.2301817
  26. Puistola P, Miettinen S, Skottman H, Mörö A. Novel strategy for multi-material 3D bioprinting of human stem cell based corneal stroma with heterogenous design. Mater Today Bio. 2024;24:100924. doi: 10.1016/j.mtbio.2023.100924
  27. Khoshnood N, Zamanian A. A comprehensive review on scaffold-free bioinks for bioprinting. Bioprinting. 2020;19:e00088. doi: 10.1016/j.bprint.2020.e00088
  28. Boularaoui S, Al Hussein G, Khan KA, Christoforou N, Stefanini C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting. 2020;20:e00093. doi: 10.1016/j.bprint.2020.e00093
  29. Ng WL, Huang X, Shkolnikov V, Suntornnond R, Yeong WY. Polyvinylpyrrolidone-based bioink: influence of bioink properties on printing performance and cell proliferation during inkjet-based bioprinting. Bio-Design Manuf. 2023;6(2):676-690. doi: 10.1007/s42242-023-00245-3
  30. Chartrain NA, Williams CB, Whittington AR. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater. 2018;74:90-111. doi: 10.1016/j.actbio.2018.05.010
  31. Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel‐based bioinks. Adv Healthc Mater. 2020;9(15):1901648. doi: 10.1002/adhm.201901648
  32. Duarte Campos DF, Rohde M, Ross M, et al. Corneal bioprinting utilizing collagen‐based bioinks and primary human keratocytes. J Biomed Mater Res Part A. 2019;107(9):1945-1953. doi: 10.1002/jbm.a.36702
  33. Mörö A, Samanta S, Honkamäki L, et al. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Biofabrication. 2022;15(1):15020. doi: 10.1088/1758-5090/acab34
  34. Ulag S, Ilhan E, Sahin A, et al. 3D printed artificial cornea for corneal stromal transplantation. Eur Polym J. 2020;133:109744. doi: 10.1016/j.eurpolymj.2020.109744
  35. Park J, Lee K, Kim H, et al. Biocompatibility evaluation of bioprinted decellularized collagen sheet implanted in vivo cornea using swept‐source optical coherence tomography. J Biophotonics. 2019;12(11):e201900098. doi: 10.1002/jbio.201900098
  36. Zheng Y, Zhai C-B. Performance of bandage contact lens in patients post-ocular surgeries: a systematic literature review. Eye Contact Lens. 2023;49(11):449-458. doi: 10.1097/ICL.0000000000001021
  37. Caffin F, Boccara D, Piérard C. The use of hydrogel dressings in sulfur mustard-induced skin and ocular wound management. Biomedicines. 2023;11(6):1626. doi: 10.3390/biomedicines11061626
  38. Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm. 2021;606:120873. doi: 10.1016/j.ijpharm.2021.120873
  39. Mishra A, Shaima KA, Sindhu RK. Novel drug delivery system for ocular target. In: Rakesh K. Sindhu, eds. Nanotechnology and Drug Delivery; 2024:205-249. eBook ISBN:9781003430407 doi: 10.1201/9781003430407-6
  40. Shastri DH, Silva AC, Almeida H. Ocular delivery of therapeutic proteins: a review. Pharmaceutics. 2023;15(1):205. doi: 10.3390/pharmaceutics15010205
  41. Gholamali I, Yadollahi M. Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent. Int J Biol Macromol. 2020;160:724-735. doi: 10.1016/j.ijbiomac.2020.05.232
  42. Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative strategies for drug delivery to the ocular posterior segment. Pharmaceutics. 2023;15(7):1862. doi: 10.3390/pharmaceutics15071862
  43. Du Y, Sun J, Wang L, et al. Development of antimicrobial packaging materials by incorporation of gallic acid into Ca2+ crosslinking konjac glucomannan/gellan gum films. Int J Biol Macromol. 2019;137:1076-1085. doi: 10.1016/j.ijbiomac.2019.06.079
  44. Lalebeigi F, Alimohamadi A, Afarin S, et al. Recent advances on biomedical applications of gellan gum: a review. Carbohydr Polym. 2024;334:122008. doi: 10.1016/j.carbpol.2024.122008.
  45. Modi D, Nirmal J, Warsi MH, et al. Formulation and development of tacrolimus-gellan gum nanoformulation for treatment of dry eye disease. Colloids Surf B Biointerfaces 2022;211:112255. doi: 10.1016/j.colsurfb.2021.112255
  46. Thekkila-Veedu S, Mohanan DP, Banerjee S, Ravichandiran V, Natesan S. Natural biopolymers in ophthalmology. Nat Biopolym Drug Deliv Tissue Eng. 2023:369-405. doi: 10.1016/B978-0-323-98827-8.00002-3
  47. Gering C. Design Strategies for Polysaccharide Hydrogels Used in Soft Tissue Engineering: Modification, Testing and Applications of Gellan Gum; 2023. eBook ISBN: 978-952- 03-2901-3
  48. Kumar M, Jha A, Bharti K, Parmar G, Mishra B. Gelation behavior in natural gums: fundamentals of solute–solvent interaction to gel formation. Nat Gums. 2023;95-122. doi: 10.1016/B978-0-323-99468-2.00004-8
  49. Tomasello L, Fiorica C, Mauceri R, et al. Bioactive scaffolds based on amine-functionalized gellan gum for the osteogenic differentiation of gingival mesenchymal stem cells. ACS Appl Polym Mater. 2022;4(3):1805-1815. doi: 10.1021/acsapm.1c01586
  50. Palumbo FS, Federico S, Pitarresi G, Fiorica C, Giammona G. Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydr Polym. 2020;229:115430. doi: 10.1016/j.carbpol.2019.115430
  51. Khoshnood N, Yeganeh M, Zaree SRA, Zamanian A. An investigation on the biological and corrosion response of PEI coating on the AZ31 alloy. J Coatings Technol Res. 2023;20:1691-1701. doi: 10.1007/s11998-023-00774-7
  52. Chrószcz M, Barszczewska-Rybarek I. Nanoparticles of quaternary ammonium polyethylenimine derivatives for application in dental materials. Polymers (Basel). 2020;12(11):2551. doi: 10.3390/polym12112551
  53. Chen Z, Lv Z, Sun Y, Chi Z, Qing G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J Mater Chem B. 2020;8(15):2951-2973. doi: 10.1039/c9tb02271f
  54. Zolghadrnasab M, Mousavi A, Farmany A, Arpanaei A. Ultrasound-mediated gene delivery into suspended plant cells using polyethyleneimine-coated mesoporous silica nanoparticles. Ultrason Sonochem. 2021;73:105507. doi: 10.1016/j.ultsonch.2021.105507
  55. Zhao C, Zhou B. Polyethyleneimine-based drug delivery systems for cancer theranostics. J Funct Biomater. 2022;14(1):12. doi: 10.3390/jfb14010012.
  56. Cardoso JF, Perasoli FB, Almeida TC, et al. Vancomycin-loaded N, N-dodecyl, methyl-polyethylenimine nanoparticles coated with hyaluronic acid to treat bacterial endophthalmitis: development, characterization, and ocular biocompatibility. Int J Biol Macromol. 2021;169:330-341. doi: 10.1016/j.ijbiomac.2020.12.057.
  57. Mayandi V, Sridhar S, Fazil MHUT, et al. Protective action of linear polyethylenimine against Staphylococcus aureus colonization and exaggerated inflammation in vitro and in vivo. ACS Infect Dis. 2019;5(8):1411-1422. doi: 10.1021/acsinfecdis.9b00102
  58. de Oliveira FA, Albuquerque LJC, Nascimento-Sales M, et al. Balancing gene transfection and cytotoxicity of nucleic acid carriers with focus on ocular and hepatic disorders: evaluation of hydrophobic and hydrophilic polyethyleneimine derivatives. J Mater Chem B. 2023;11(20):4556-4571. doi: 10.1039/D3TB00477E
  59. Sharma A, Tandon A, Tovey JCK, et al. Polyethylenimine-conjugated gold nanoparticles: gene transfer potential and low toxicity in the cornea. Nanomedicine. 2011;7(4): 505-513. doi: 10.1016/j.nano.2011.01.006
  60. Mohan RR, Martin LM, Sinha NR. Novel insights into gene therapy in the cornea. Exp Eye Res. 2021;202:108361. doi: 10.1016/j.exer.2020.108361
  61. Hazur J, Detsch R, Karakaya E, et al. Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication. 2020;12(4):1-17. doi: 10.1088/1758-5090/ab98e5
  62. You F, Wu X, Kelly M, Chen X. Bioprinting and in vitro characterization of alginate dialdehyde–gelatin hydrogel bio-ink. Bio-Design Manuf. 2020;3(10):48-59. doi: 10.1007/s42242-020-00058-8
  63. Goyal R, Tripathi SK, Tyagi S, et al. Gellan gum blended PEI nanocomposites as gene delivery agents: evidences from in vitro and in vivo studies. Eur J Pharm Biopharm. 2011;79(1):3-14. doi: 10.1016/j.ejpb.2011.01.009
  64. Dogan D, Erdem U, Bozer BM, et al. Resorbable membrane design: in vitro characterization of silver doped-hydroxyapatite-reinforced XG/PEI semi-IPN composite. J Mech Behav Biomed Mater. 2023;142(4): 105887. doi: 10.1016/j.jmbbm.2023.105887
  65. Amiri MS, Mohammadzadeh V, Yazdi MET, et al. Plant-based gums and mucilages applications in pharmacology and nanomedicine: a review. Molecules. 2021;26(6):1770. doi: 10.3390/molecules26061770
  66. Gomes D, Costa D, Queiroz JA, Passarinha LA, Sousa A. A new insight in gellan microspheres application to capture a plasmid DNA vaccine from an Escherichia coli lysate. Sep Purif Technol. 2021;274:119013. doi: 10.1016/j.seppur.2021.119013
  67. Kaewpirom S, Boonsang S. Influence of alcohol treatments on properties of silk-fibroin-based films for highly optically transparent coating applications. RSC Adv. 2020;10(27):15913-15923. doi: 10.1039/D0RA02634D
  68. Duffy GL, Liang H, Williams RL, Wellings DA, Black K. 3D reactive inkjet printing of poly-ε-lysine/gellan gum hydrogels for potential corneal constructs. Mater Sci Eng C. 2021;131:112476. doi: 10.1016/j.msec.2021.112476
  69. Semitela Â, Girão AF, Fernandes C, et al. Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications. J Biomater Appl. 2020;35(4–5):471-484. doi: 10.1177/0885328220940194
  70. Hashimoto Y, Michihata N, Yamana H, et al. Ophthalmic corticosteroids in pregnant women with allergic conjunctivitis and adverse neonatal outcomes: propensity score analyses. Am J Ophthalmol. 2020;220:91-101. doi: 10.1016/j.ajo.2020.07.011
  71. Ali FM, Al-Shohani AD. Preparation and evaluation of in situ ophthalmic gel with a dual triggered mechanism for the delivery of gatifloxacin and betamethasone. Al-Rafidain J Med Sci. (ISSN 2789-3219) 2024;6(2):56-63. doi: 10.54133/ajms.v6i2.597
  72. Wu Q, Yao R, Deng H, et al. Synergistic interactions of citric acid grafted β-cyclodextrin and polyethyleneimine for improving interfacial properties of basalt fiber/epoxy composites. Compos Sci Technol. 2024;251:110575. doi: 10.1016/j.compscitech.2024.110575.
  73. Guo X, Zhu T, Yu X, et al. Betamethasone-loaded dissolvable microneedle patch for oral ulcer treatment. Colloids Surf B Biointerfaces. 2023;222:113100. doi: 10.1016/j.colsurfb.2022.113100
  74. Burgalassi S, Zucchetti E, Ling L, et al. Hydrogels as corneal stroma substitutes for in vitro evaluation of drug ocular permeation. Pharmaceutics. 2022;14(4):850. doi: 10.3390/pharmaceutics14040850
  75. De Hoon I, Barras A, Swebocki T, et al. Influence of the size and charge of carbon quantum dots on their corneal penetration and permeation enhancing properties. ACS Appl Mater Interfaces. 2023;15(3):3760-3771. doi: 10.1021/acsami.2c18598
  76. Shafiq M, Rafique M, Cui Y, et al. An insight on ophthalmic drug delivery systems: focus on polymeric biomaterials-based carriers. J Control Release. 2023;362:446-467. doi: 10.1016/j.jconrel.2023.08.041
  77. Tang Y, Wang J, Cao Q, et al. Dopamine/DOPAC-assisted immobilization of bone morphogenetic protein-2 loaded Heparin/PEI nanogels onto three-dimentional printed calcium phosphate ceramics for enhanced osteoinductivity and osteogenicity. Biomater Adv. 2022;140:213030. doi: 10.1016/j.bioadv.2022.213030
  78. Wang Y, Han L, Zhang X, et al. 3D bioprinting of an electroactive and self‐healing polysaccharide hydrogels. J Tissue Eng Regen Med. 2022;16(1):76-85. doi: 10.1002/term.3238
  79. Tidu A, Schanne-Klein M-C, Borderie VM. Development, structure, and bioengineering of the human corneal stroma: a review of collagen-based implants. Exp Eye Res. 2020;200:108256. doi: 10.1016/j.exer.2020.108256
  80. Formisano N, van der Putten C, Grant R, et al. Mechanical properties of bioengineered corneal stroma. Adv Healthc Mater. 2021;10(20):2100972. doi: 10.1002/adhm.202100972
  81. Fontes AB, Marcomini RF. 3D bioprinting: a review of materials, processes and bioink properties. J Eng Exact Sci. 2020;6(5):617-639. doi: 10.18540/jcecvl6iss5pp0617-0639
  82. Gillispie G, Prim P, Copus J, et al. Assessment methodologies for extrusion-based bioink printability. Biofabrication. 2020;12(2):22003. doi: 10.1088/1758-5090/ab6f0d
  83. Sahi AK, Varshney N, Poddar S, Gundu S, Mahto SK. Fabrication and characterization of silk fibroin-based nanofibrous scaffolds supplemented with gelatin for corneal tissue engineering. Cells Tissues Organs. 2021; 210(3):173-194. doi: 10.1159/000515946
  84. Sun X, Yang X, Song W, Ren L. Construction and evaluation of collagen-based corneal grafts using polycaprolactone to improve tension stress. ACS Omega. 2020;5(1):674-682. doi: 10.1021/acsomega.9b03297
  85. Uyanıklar M, Gunal G, Tevlek A, Hosseinian P, Aydin HM. Hybrid cornea: cell laden hydrogel incorporated decellularized matrix. ACS Biomater Sci Eng. 2019;6(1): 122-133. doi: 10.1021/acsbiomaterials.9b01286
  86. Kilic Bektas C, Hasirci V. Cell loaded GelMA: HEMA IPN hydrogels for corneal stroma engineering. J Mater Sci Mater Med. 2019;31(1):1–15. doi: 10.1007/s10856-019-6345-4
  87. Xu Z, Li Z, Jiang S, Bratlie KM. Chemically modified gellan gum hydrogels with tunable properties for use as tissue engineering scaffolds. ACS Omega. 2018;3(6):6998-7007. doi: 10.1021/acsomega.8b00683
  88. Lotfy VF, Basta AH. Optimizing the chitosan-cellulose based drug delivery system for controlling the ciprofloxacin release versus organic/inorganic crosslinker, characterization and kinetic study. Int J Biol Macromol. 2020; 165(Pt A):1496-1506. doi: 10.1016/j.ijbiomac.2020.10.047
  89. Kianersi S, Solouk A, Saber-Samandari S, Keshel SH, Pasbakhsh P. Alginate nanoparticles as ocular drug delivery carriers. J Drug Deliv Sci Technol. 2021;66:102889. doi: 10.1016/j.jddst.2021.102889
  90. Osire T, Wang Y, Lu G, et al. Functionalized bacteriophages silk fibroin-based films with antimicrobial potential. Preprints. 2023;2023121238. doi: 10.20944/preprints202312.1238.v1
  91. Pilato S, Moffa S, Siani G, et al. 3D graphene oxide-polyethylenimine scaffolds for cardiac tissue engineering. ACS Appl Mater Interfaces. 2023;15(11):14077-14088. doi: 10.1021/acsami.3c00216
  92. Pacelli S, Paolicelli P, Petralito S, et al. Investigating the role of polydopamine to modulate stem cell adhesion and proliferation on gellan gum-based hydrogels. ACS Appl Bio Mater. 2020;3(2):945-951. doi: 10.1021/acsabm.9b00989

 

 

 




 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing