3D bioprinting of betamethasone-loaded gellan gum–polyethyleneimine composite hydrogels for ocular drug delivery
Transparent hydrogels have numerous applications in materials science and tissue engineering, particularly as materials for corneal repair. In this study, we developed a three-dimensional (3D)-bioprinted betamethasone sodium phosphate-loaded gellan gum (GG)–polyethyleneimine (PEI) composite hydrogel and assessed its performance in vitro. The bioinks used for 3D bioprinting were optimized based on their transparency and gelation properties. In the presence of an ionic crosslinker (citric acid), the GG–PEI blend transformed from a liquid precursor to an extrudable hydrogel with good printability and shape fidelity. The 2.5% GG–3% PEI hydrogel formulation had a transparency of 80%, a suitable degradation rate, and sufficient mechanical strength for application in corneal repair. The GG–PEI composite hydrogel displayed controlled and sustained release of betamethasone sodium phosphate. Moreover, the 3D-bioprinted composite hydrogel was biocompatible, as evidenced by the attachment, growth, and proliferation of corneal fibroblasts. Taken together, these findings suggest that the 3D-bioprinted GG–PEI composite hydrogel scaffold has the potential to control ocular inflammation and aid in corneal tissue healing.
- Dhar S, Mishra SK, Joshi A, et al. Evolving trends in corneal surgery. Delhi J Ophthalmol. 2023;33(4):280-289. doi: 10.4103/DLJO.DLJO_163_23
- He B, Wang J, Xie M, et al. 3D printed biomimetic epithelium/ stroma bilayer hydrogel implant for corneal regeneration. Bioact Mater. 2022;17:234-247. doi: 10.1016/j.bioactmat.2022.01.034
- Hancox Z, Keshel SH, Yousaf S, et al. The progress in corneal translational medicine. Biomater Sci. 2020;8(23):6469-6504. doi: 10.1039/D0BM01209B.
- Nosrati H, Abpeikar Z, Mahmoudian ZG, et al. Corneal epithelium tissue engineering: recent advances in regeneration and replacement of corneal surface. Regen Med. 2020;15(8):2029-2044. doi: 10.2217/rme-2019-0055
- Luo X, He X, Zhao H, et al. Research progress of polymer biomaterials as scaffolds for corneal endothelium tissue engineering. Nanomaterials (Basel). 2023;13(13):1976. doi: 10.3390/nano13131976
- Hao Y, Zhou J, Tan J, et al. Preclinical evaluation of the safety and effectiveness of a new bioartificial cornea. Bioact Mater. 2023;29:265-278. doi: 10.1016/j.bioactmat.2023.07.005
- Fuest M, Yam GH-F, Mehta JS, Duarte Campos DF. Prospects and challenges of translational corneal bioprinting. Bioengineering (Basel). 2020;7(3):71. doi: 10.3390/bioengineering7030071
- Zhang B, Xue Q, Li J, et al. 3D bioprinting for artificial cornea: challenges and perspectives. Med Eng Phys. 2019;71:68-78. doi: 10.1016/j.medengphy.2019.05.002
- Holland G, Pandit A, Sánchez-Abella L, et al. Artificial cornea: past, current, and future directions. Front Med (Lausanne). 2021;8:1-19. doi: 10.3389/fmed.2021.770780
- Xue Q, Ma L, Hu H, et al. 3D bioprinting as a prospective therapeutic strategy for corneal limbal epithelial stem cell deficiency. Int J Bioprint. 2023;9(3):710. doi: 10.18063/ijb.710
- Mahdavi SS, Abdekhodaie MJ, Mashayekhan S, Baradaran- Rafii A, Djalilian AR. Bioengineering approaches for corneal regenerative medicine. Tissue Eng Regen Med. 2020;17(5):567-593. doi: 10.1007/s13770-020-00262-8
- Haghighizadeh E, Shahrezaee M, Sharifzadeh SR, Momeni M. Transforming growth factor-β3 relation with osteoporosis and osteoporotic fractures. J Res Med Sci. 2019;24:46. doi: 10.4103/jrms.JRMS_1062_18
- Norouzi M, Naderi MN, Komasi MH, et al. Clinical results of using the proximal humeral internal locking system plate for internal fixation of displaced proximal humeral fractures. Am J Orthop (Belle Mead NJ). 2012;41(5):E64-E68.
- Khoshnood N, Shahrezaee MH, Shahrezaee M, Zamanian A. Three‐dimensional bioprinting of tragacanth/ hydroxyapaptite modified alginate bioinks for bone tissue engineering with tunable printability and bioactivity. J Appl Polym Sci. 2022;139(36):e52833. doi: 10.1002/app.52833
- Khoshnood N, Zamanian A, Abbasi M. The potential impact of polyethylenimine on biological behavior of 3D-printed alginate scaffolds. Int J Biol Macromol. 2021;178:19-28. doi: 10.1016/j.ijbiomac.2021.02.152
- Agostinacchio F, Fitzpatrick V, Dirè S, Kaplan DL, Motta A. Silk fibroin-based inks for in situ 3D printing using a double crosslinking process. Bioact Mater. 2024;35:122-134. doi: 10.1016/j.bioactmat.2024.01.015
- Moreddu R, Vigolo D, Yetisen AK. Contact lens technology: from fundamentals to applications. Adv Healthc Mater. 2019;8(15):e1900368. doi: 10.1002/adhm.201900368
- Alam F, Elsherif M, AlQattan B, et al. Prospects for additive manufacturing in contact lens devices. Adv Eng Mater. 2021;23(1):2000941. doi: 10.1002/adem.202000941
- Grönroos P, Mörö A, Puistola P, et al. Bioprinting of human pluripotent stem cell derived corneal endothelial cells with hydrazone crosslinked hyaluronic acid bioink. Stem Cell Res Ther. 2024;15(1):81. doi: 10.1186/s13287-024-03672-w
- Khoshnood N, Zamanian A. Development of novel alginate-polyethyleneimine cell-laden bioink designed for 3D bioprinting of cutaneous wound healing scaffolds. J Appl Polym Sci. 2022;139(21):1-18. doi: 10.1002/app.52227
- Khoshnood N, Shahrezayee MH, Shahrezayee M, Shams A, Zamanian A. Biological study of polyethyleneimine functionalized polycaprolactone 3D‐printed scaffolds for bone tissue engineering. J Appl Polym Sci. 2022;139(29):e52628. doi: 10.1002/app.52628
- Shin J, Chung H, Kumar H, et al. 3D bioprinting of human iPSC-Derived kidney organoids using a low-cost, high-throughput customizable 3D bioprinting system. Bioprinting. 2024;38:e00337. doi: 10.1016/j.bprint.2024.e00337
- Khoshnood N, Frampton JP, Zaree SRA, et al. The corrosion and biological behavior of 3D-printed polycaprolactone/ chitosan scaffolds as protective coating for Mg alloy implants. Surf Coatings Technol. 2024;477:130368. doi: 10.1016/j.surfcoat.2023.130368
- Khoshnood N, Zamanian A. Decellularized extracellular matrix bioinks and their application in skin tissue engineering. Bioprinting. 2020;20:1-9. doi: 10.1016/j.bprint.2020.e00095
- Pal P, Sambhakar S, Paliwal S, Kumar S, Kalsi V. Biofabrication paradigms in corneal regeneration: bridging bioprinting techniques, natural bioinks, and stem cell therapeutics. J Biomater Sci Polym Ed. 2024;35(5):717-755. doi: 10.1080/09205063.2024.2301817
- Puistola P, Miettinen S, Skottman H, Mörö A. Novel strategy for multi-material 3D bioprinting of human stem cell based corneal stroma with heterogenous design. Mater Today Bio. 2024;24:100924. doi: 10.1016/j.mtbio.2023.100924
- Khoshnood N, Zamanian A. A comprehensive review on scaffold-free bioinks for bioprinting. Bioprinting. 2020;19:e00088. doi: 10.1016/j.bprint.2020.e00088
- Boularaoui S, Al Hussein G, Khan KA, Christoforou N, Stefanini C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting. 2020;20:e00093. doi: 10.1016/j.bprint.2020.e00093
- Ng WL, Huang X, Shkolnikov V, Suntornnond R, Yeong WY. Polyvinylpyrrolidone-based bioink: influence of bioink properties on printing performance and cell proliferation during inkjet-based bioprinting. Bio-Design Manuf. 2023;6(2):676-690. doi: 10.1007/s42242-023-00245-3
- Chartrain NA, Williams CB, Whittington AR. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater. 2018;74:90-111. doi: 10.1016/j.actbio.2018.05.010
- Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel‐based bioinks. Adv Healthc Mater. 2020;9(15):1901648. doi: 10.1002/adhm.201901648
- Duarte Campos DF, Rohde M, Ross M, et al. Corneal bioprinting utilizing collagen‐based bioinks and primary human keratocytes. J Biomed Mater Res Part A. 2019;107(9):1945-1953. doi: 10.1002/jbm.a.36702
- Mörö A, Samanta S, Honkamäki L, et al. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Biofabrication. 2022;15(1):15020. doi: 10.1088/1758-5090/acab34
- Ulag S, Ilhan E, Sahin A, et al. 3D printed artificial cornea for corneal stromal transplantation. Eur Polym J. 2020;133:109744. doi: 10.1016/j.eurpolymj.2020.109744
- Park J, Lee K, Kim H, et al. Biocompatibility evaluation of bioprinted decellularized collagen sheet implanted in vivo cornea using swept‐source optical coherence tomography. J Biophotonics. 2019;12(11):e201900098. doi: 10.1002/jbio.201900098
- Zheng Y, Zhai C-B. Performance of bandage contact lens in patients post-ocular surgeries: a systematic literature review. Eye Contact Lens. 2023;49(11):449-458. doi: 10.1097/ICL.0000000000001021
- Caffin F, Boccara D, Piérard C. The use of hydrogel dressings in sulfur mustard-induced skin and ocular wound management. Biomedicines. 2023;11(6):1626. doi: 10.3390/biomedicines11061626
- Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm. 2021;606:120873. doi: 10.1016/j.ijpharm.2021.120873
- Mishra A, Shaima KA, Sindhu RK. Novel drug delivery system for ocular target. In: Rakesh K. Sindhu, eds. Nanotechnology and Drug Delivery; 2024:205-249. eBook ISBN:9781003430407 doi: 10.1201/9781003430407-6
- Shastri DH, Silva AC, Almeida H. Ocular delivery of therapeutic proteins: a review. Pharmaceutics. 2023;15(1):205. doi: 10.3390/pharmaceutics15010205
- Gholamali I, Yadollahi M. Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent. Int J Biol Macromol. 2020;160:724-735. doi: 10.1016/j.ijbiomac.2020.05.232
- Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative strategies for drug delivery to the ocular posterior segment. Pharmaceutics. 2023;15(7):1862. doi: 10.3390/pharmaceutics15071862
- Du Y, Sun J, Wang L, et al. Development of antimicrobial packaging materials by incorporation of gallic acid into Ca2+ crosslinking konjac glucomannan/gellan gum films. Int J Biol Macromol. 2019;137:1076-1085. doi: 10.1016/j.ijbiomac.2019.06.079
- Lalebeigi F, Alimohamadi A, Afarin S, et al. Recent advances on biomedical applications of gellan gum: a review. Carbohydr Polym. 2024;334:122008. doi: 10.1016/j.carbpol.2024.122008.
- Modi D, Nirmal J, Warsi MH, et al. Formulation and development of tacrolimus-gellan gum nanoformulation for treatment of dry eye disease. Colloids Surf B Biointerfaces 2022;211:112255. doi: 10.1016/j.colsurfb.2021.112255
- Thekkila-Veedu S, Mohanan DP, Banerjee S, Ravichandiran V, Natesan S. Natural biopolymers in ophthalmology. Nat Biopolym Drug Deliv Tissue Eng. 2023:369-405. doi: 10.1016/B978-0-323-98827-8.00002-3
- Gering C. Design Strategies for Polysaccharide Hydrogels Used in Soft Tissue Engineering: Modification, Testing and Applications of Gellan Gum; 2023. eBook ISBN: 978-952- 03-2901-3
- Kumar M, Jha A, Bharti K, Parmar G, Mishra B. Gelation behavior in natural gums: fundamentals of solute–solvent interaction to gel formation. Nat Gums. 2023;95-122. doi: 10.1016/B978-0-323-99468-2.00004-8
- Tomasello L, Fiorica C, Mauceri R, et al. Bioactive scaffolds based on amine-functionalized gellan gum for the osteogenic differentiation of gingival mesenchymal stem cells. ACS Appl Polym Mater. 2022;4(3):1805-1815. doi: 10.1021/acsapm.1c01586
- Palumbo FS, Federico S, Pitarresi G, Fiorica C, Giammona G. Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydr Polym. 2020;229:115430. doi: 10.1016/j.carbpol.2019.115430
- Khoshnood N, Yeganeh M, Zaree SRA, Zamanian A. An investigation on the biological and corrosion response of PEI coating on the AZ31 alloy. J Coatings Technol Res. 2023;20:1691-1701. doi: 10.1007/s11998-023-00774-7
- Chrószcz M, Barszczewska-Rybarek I. Nanoparticles of quaternary ammonium polyethylenimine derivatives for application in dental materials. Polymers (Basel). 2020;12(11):2551. doi: 10.3390/polym12112551
- Chen Z, Lv Z, Sun Y, Chi Z, Qing G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J Mater Chem B. 2020;8(15):2951-2973. doi: 10.1039/c9tb02271f
- Zolghadrnasab M, Mousavi A, Farmany A, Arpanaei A. Ultrasound-mediated gene delivery into suspended plant cells using polyethyleneimine-coated mesoporous silica nanoparticles. Ultrason Sonochem. 2021;73:105507. doi: 10.1016/j.ultsonch.2021.105507
- Zhao C, Zhou B. Polyethyleneimine-based drug delivery systems for cancer theranostics. J Funct Biomater. 2022;14(1):12. doi: 10.3390/jfb14010012.
- Cardoso JF, Perasoli FB, Almeida TC, et al. Vancomycin-loaded N, N-dodecyl, methyl-polyethylenimine nanoparticles coated with hyaluronic acid to treat bacterial endophthalmitis: development, characterization, and ocular biocompatibility. Int J Biol Macromol. 2021;169:330-341. doi: 10.1016/j.ijbiomac.2020.12.057.
- Mayandi V, Sridhar S, Fazil MHUT, et al. Protective action of linear polyethylenimine against Staphylococcus aureus colonization and exaggerated inflammation in vitro and in vivo. ACS Infect Dis. 2019;5(8):1411-1422. doi: 10.1021/acsinfecdis.9b00102
- de Oliveira FA, Albuquerque LJC, Nascimento-Sales M, et al. Balancing gene transfection and cytotoxicity of nucleic acid carriers with focus on ocular and hepatic disorders: evaluation of hydrophobic and hydrophilic polyethyleneimine derivatives. J Mater Chem B. 2023;11(20):4556-4571. doi: 10.1039/D3TB00477E
- Sharma A, Tandon A, Tovey JCK, et al. Polyethylenimine-conjugated gold nanoparticles: gene transfer potential and low toxicity in the cornea. Nanomedicine. 2011;7(4): 505-513. doi: 10.1016/j.nano.2011.01.006
- Mohan RR, Martin LM, Sinha NR. Novel insights into gene therapy in the cornea. Exp Eye Res. 2021;202:108361. doi: 10.1016/j.exer.2020.108361
- Hazur J, Detsch R, Karakaya E, et al. Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication. 2020;12(4):1-17. doi: 10.1088/1758-5090/ab98e5
- You F, Wu X, Kelly M, Chen X. Bioprinting and in vitro characterization of alginate dialdehyde–gelatin hydrogel bio-ink. Bio-Design Manuf. 2020;3(10):48-59. doi: 10.1007/s42242-020-00058-8
- Goyal R, Tripathi SK, Tyagi S, et al. Gellan gum blended PEI nanocomposites as gene delivery agents: evidences from in vitro and in vivo studies. Eur J Pharm Biopharm. 2011;79(1):3-14. doi: 10.1016/j.ejpb.2011.01.009
- Dogan D, Erdem U, Bozer BM, et al. Resorbable membrane design: in vitro characterization of silver doped-hydroxyapatite-reinforced XG/PEI semi-IPN composite. J Mech Behav Biomed Mater. 2023;142(4): 105887. doi: 10.1016/j.jmbbm.2023.105887
- Amiri MS, Mohammadzadeh V, Yazdi MET, et al. Plant-based gums and mucilages applications in pharmacology and nanomedicine: a review. Molecules. 2021;26(6):1770. doi: 10.3390/molecules26061770
- Gomes D, Costa D, Queiroz JA, Passarinha LA, Sousa A. A new insight in gellan microspheres application to capture a plasmid DNA vaccine from an Escherichia coli lysate. Sep Purif Technol. 2021;274:119013. doi: 10.1016/j.seppur.2021.119013
- Kaewpirom S, Boonsang S. Influence of alcohol treatments on properties of silk-fibroin-based films for highly optically transparent coating applications. RSC Adv. 2020;10(27):15913-15923. doi: 10.1039/D0RA02634D
- Duffy GL, Liang H, Williams RL, Wellings DA, Black K. 3D reactive inkjet printing of poly-ε-lysine/gellan gum hydrogels for potential corneal constructs. Mater Sci Eng C. 2021;131:112476. doi: 10.1016/j.msec.2021.112476
- Semitela Â, Girão AF, Fernandes C, et al. Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications. J Biomater Appl. 2020;35(4–5):471-484. doi: 10.1177/0885328220940194
- Hashimoto Y, Michihata N, Yamana H, et al. Ophthalmic corticosteroids in pregnant women with allergic conjunctivitis and adverse neonatal outcomes: propensity score analyses. Am J Ophthalmol. 2020;220:91-101. doi: 10.1016/j.ajo.2020.07.011
- Ali FM, Al-Shohani AD. Preparation and evaluation of in situ ophthalmic gel with a dual triggered mechanism for the delivery of gatifloxacin and betamethasone. Al-Rafidain J Med Sci. (ISSN 2789-3219) 2024;6(2):56-63. doi: 10.54133/ajms.v6i2.597
- Wu Q, Yao R, Deng H, et al. Synergistic interactions of citric acid grafted β-cyclodextrin and polyethyleneimine for improving interfacial properties of basalt fiber/epoxy composites. Compos Sci Technol. 2024;251:110575. doi: 10.1016/j.compscitech.2024.110575.
- Guo X, Zhu T, Yu X, et al. Betamethasone-loaded dissolvable microneedle patch for oral ulcer treatment. Colloids Surf B Biointerfaces. 2023;222:113100. doi: 10.1016/j.colsurfb.2022.113100
- Burgalassi S, Zucchetti E, Ling L, et al. Hydrogels as corneal stroma substitutes for in vitro evaluation of drug ocular permeation. Pharmaceutics. 2022;14(4):850. doi: 10.3390/pharmaceutics14040850
- De Hoon I, Barras A, Swebocki T, et al. Influence of the size and charge of carbon quantum dots on their corneal penetration and permeation enhancing properties. ACS Appl Mater Interfaces. 2023;15(3):3760-3771. doi: 10.1021/acsami.2c18598
- Shafiq M, Rafique M, Cui Y, et al. An insight on ophthalmic drug delivery systems: focus on polymeric biomaterials-based carriers. J Control Release. 2023;362:446-467. doi: 10.1016/j.jconrel.2023.08.041
- Tang Y, Wang J, Cao Q, et al. Dopamine/DOPAC-assisted immobilization of bone morphogenetic protein-2 loaded Heparin/PEI nanogels onto three-dimentional printed calcium phosphate ceramics for enhanced osteoinductivity and osteogenicity. Biomater Adv. 2022;140:213030. doi: 10.1016/j.bioadv.2022.213030
- Wang Y, Han L, Zhang X, et al. 3D bioprinting of an electroactive and self‐healing polysaccharide hydrogels. J Tissue Eng Regen Med. 2022;16(1):76-85. doi: 10.1002/term.3238
- Tidu A, Schanne-Klein M-C, Borderie VM. Development, structure, and bioengineering of the human corneal stroma: a review of collagen-based implants. Exp Eye Res. 2020;200:108256. doi: 10.1016/j.exer.2020.108256
- Formisano N, van der Putten C, Grant R, et al. Mechanical properties of bioengineered corneal stroma. Adv Healthc Mater. 2021;10(20):2100972. doi: 10.1002/adhm.202100972
- Fontes AB, Marcomini RF. 3D bioprinting: a review of materials, processes and bioink properties. J Eng Exact Sci. 2020;6(5):617-639. doi: 10.18540/jcecvl6iss5pp0617-0639
- Gillispie G, Prim P, Copus J, et al. Assessment methodologies for extrusion-based bioink printability. Biofabrication. 2020;12(2):22003. doi: 10.1088/1758-5090/ab6f0d
- Sahi AK, Varshney N, Poddar S, Gundu S, Mahto SK. Fabrication and characterization of silk fibroin-based nanofibrous scaffolds supplemented with gelatin for corneal tissue engineering. Cells Tissues Organs. 2021; 210(3):173-194. doi: 10.1159/000515946
- Sun X, Yang X, Song W, Ren L. Construction and evaluation of collagen-based corneal grafts using polycaprolactone to improve tension stress. ACS Omega. 2020;5(1):674-682. doi: 10.1021/acsomega.9b03297
- Uyanıklar M, Gunal G, Tevlek A, Hosseinian P, Aydin HM. Hybrid cornea: cell laden hydrogel incorporated decellularized matrix. ACS Biomater Sci Eng. 2019;6(1): 122-133. doi: 10.1021/acsbiomaterials.9b01286
- Kilic Bektas C, Hasirci V. Cell loaded GelMA: HEMA IPN hydrogels for corneal stroma engineering. J Mater Sci Mater Med. 2019;31(1):1–15. doi: 10.1007/s10856-019-6345-4
- Xu Z, Li Z, Jiang S, Bratlie KM. Chemically modified gellan gum hydrogels with tunable properties for use as tissue engineering scaffolds. ACS Omega. 2018;3(6):6998-7007. doi: 10.1021/acsomega.8b00683
- Lotfy VF, Basta AH. Optimizing the chitosan-cellulose based drug delivery system for controlling the ciprofloxacin release versus organic/inorganic crosslinker, characterization and kinetic study. Int J Biol Macromol. 2020; 165(Pt A):1496-1506. doi: 10.1016/j.ijbiomac.2020.10.047
- Kianersi S, Solouk A, Saber-Samandari S, Keshel SH, Pasbakhsh P. Alginate nanoparticles as ocular drug delivery carriers. J Drug Deliv Sci Technol. 2021;66:102889. doi: 10.1016/j.jddst.2021.102889
- Osire T, Wang Y, Lu G, et al. Functionalized bacteriophages silk fibroin-based films with antimicrobial potential. Preprints. 2023;2023121238. doi: 10.20944/preprints202312.1238.v1
- Pilato S, Moffa S, Siani G, et al. 3D graphene oxide-polyethylenimine scaffolds for cardiac tissue engineering. ACS Appl Mater Interfaces. 2023;15(11):14077-14088. doi: 10.1021/acsami.3c00216
- Pacelli S, Paolicelli P, Petralito S, et al. Investigating the role of polydopamine to modulate stem cell adhesion and proliferation on gellan gum-based hydrogels. ACS Appl Bio Mater. 2020;3(2):945-951. doi: 10.1021/acsabm.9b00989