AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3520
RESEARCH ARTICLE

Development of embedded bioprinting for fabricating zonally stratified articular cartilage

Yang Wu1,2* Xue Yang1 Tianying Yuan3 Seung Yeon Lee4 Minghao Qin1 Sung Jun Min4 Bingxian Lu1 Pengkun Guo1 Jiarui Xie1 Shengli Mi3,5* Dong Nyoung Heo6,7*
Show Less
1 School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China
2 Guangdong Provincial Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics, Harbin Institute of Technology, Shenzhen, China
3 Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Shenzhen, China
4 Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Republic of Korea
5 Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Shenzhen, China
6 Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
7 Biofriends Inc., Seoul, Republic of Korea
IJB 2024, 10(4), 3520 https://doi.org/10.36922/ijb.3520
Submitted: 28 April 2024 | Accepted: 4 June 2024 | Published: 15 July 2024
(This article belongs to the Special Issue 3D printing of bioinspired materials)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Embedded bioprinting enables direct deposition of bioinks in three dimensions inside a support bath with shear-thinning and self-healing capabilities, and it has been used to fabricate complex tissues and organs for several biomedical applications. In this study, a support bath comprising gelatin/alginate microparticles and oxidized alginate solution was developed and crosslinked in situ with carbonyl hydrazide-modified gelatin bioink via the Schiff base reaction. The numerical model of embedded printing was established to analyze the extrusion process and disturbance of the support bath. The process window (e.g., extrusion pressure, nozzle moving speed, nozzle size, and support bath composition) was established experimentally to ensure stable fiber formation. In addition, the compressive modulus of the printed construct has been reinforced due to the formation of interpenetrating polymer networks in the microparticles. Based on the process investigation, a zonally stratified artificial cartilage with a three-layered structure was designed: vertically printed fibers in the bottom, oblique fibers in the middle, and horizontally printed fibers in the superficial layer. The bioprinted cartilage supported cell survival, proliferation, and spreading, with the observed deposition of cartilage-specific proteins, offering a new strategy for developing tissue-engineered cartilage constructs with biological and histological relevance.

Keywords
Embedded bioprinting
Printability
Zonally stratified cartilage
Schiff base
Interpenetrating polymer network
Funding
This work was funded by the Guangdong Natural Science Foundation (grant number 2023A1515012439), the National Natural Science Foundation of China (grant number 52205305), and the Shenzhen Natural Science Foundation (the Stable Support Plan Program; grant number GXWD20231129125422001). This work was also supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare (grant number HI22C1572).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Pap T, Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis--two unequal siblings. Nat Rev Rheumatol. 2015;11(10):606-615. doi: 10.1038/nrrheum.2015.95
  2. Farr J, Cole B, Dhawan A, et al. Clinical cartilage restoration: evolution and overview. Clin Orthop Relat Res. 2011;469(10):2696-2705. doi: 10.1007/s11999-010-1764-z
  3. Zeng Y, Wan Y, Yuan Z, et al. Healthcare-seeking behavior among Chinese older adults: patterns and predictive factors. Int J Environ Res Public Health. 2021; 18(6):2969. doi: 10.3390/ijerph18062969
  4. Harris JD, Siston RA, Pan X, et al. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am. 2010;92(12): 2220-2233. doi: 10.2106/JBJS.J.00049
  5. Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11(1):21-34. doi: 10.1038/nrrheum.2014.157
  6. Wu Y, Ayan B, Moncal KK, et al. Hybrid bioprinting of zonally stratified human articular cartilage using scaffold-free tissue strands as building blocks. Adv Healthc Mater. 2020;9(22):e2001657. doi: 10.1002/adhm.202001657
  7. Mardones R, Jofré CM, Minguell JJ. Cell therapy and tissue engineering approaches for cartilage repair and/or regeneration. Int J Stem Cells. 2015;8(1):48-53. doi: 10.15283/ijsc.2015.8.1.48
  8. Wu Y, Kennedy P, Bonazza N, et al. Three-dimensional bioprinting of articular cartilage: a systematic review. Cartilage. 2021;12(1):76-92. doi: 10.1177/1947603518809410
  9. Markstedt K, Mantas A, Tournier I, et al. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16(5):1489-1496. doi: 10.1021/acs.biomac.5b00188
  10. Cui X, Breitenkamp K, Finn M, et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18(11-12):1304-1312. doi: 10.1089/ten.TEA.2011.0543
  11. Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Nanotechnology. 2018;29(18):185101. doi: 10.1088/1361-6528/aaafa1
  12. Ayan B, Wu Y, Karuppagounder V, et al. Aspiration-assisted bioprinting of the osteochondral interface. Sci Rep. 2020;10(1): 13148. doi: 10.1038/s41598-020-69960-6
  13. Ren X, Wang F, Chen C, et al. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet Disord. 2016;17:1-10. doi: 10.1186/s12891-016-1130-8
  14. Tamaddon M, Blunn G, Tan R, et al. In vivo evaluation of additively manufactured multi-layered scaffold for the repair of large osteochondral defects. Bio-des Manuf. 2022;5(3):481-496. doi: 10.1007/s42242-021-00177-w
  15. Levato R, Visser J, Planell JA, et al. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication. 2014;6(3):035020. doi: 10.1088/1758-5082/6/3/035020
  16. Shim JH, Jang KM, Hahn SK, et al. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication. 2016;8(1):014102. doi: 10.1088/1758-5090/8/1/014102
  17. Lee A, Hudson A, Shiwarski D, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365(6452):482-487. doi: 10.1126/science.aav9051
  18. Fang Y, Guo Y, Wu B, et al. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv Mater. 2023;35(22):e2205082. doi: 10.1002/adma.202205082
  19. Ren B, Song K, Sanikommu AR, et al. Study of sacrificial ink-assisted embedded printing for 3D perfusable channel creation for biomedical applications. Appl Phys Rev. 2022;9(1):011408. doi: 10.1063/5.0068329
  20. Kajtez J, Wesseler MF, Birtele M, et al. Embedded 3D printing in self‐healing annealable composites for precise patterning of functionally mature human neural constructs. Adv Sci (Weinh). 2022;9(25):e2201392. doi: 10.1002/advs.202201392
  21. Zhang S, Qi C, Zhang W, et al. In situ endothelialization of free-form 3d network of interconnected tubular channels via interfacial coacervation by aqueous-in-aqueous embedded bioprinting. Adv Mater. 2023;35(7): e2209263. doi: 10.1002/adma.202209263
  22. Chen Z, Huang C, Liu H, et al. 3D bioprinting of complex biological structures with tunable elastic modulus and porosity using freeform reversible embedding of suspended hydrogels. Bio-des Manuf. 2023;6(5):550-562. doi: 10.1007/s42242-023-00251-5
  23. Hinton TJ, Jallerat Q, Palchesko RN, et al., 2015, Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi: 10.1126/sciadv.1500758
  24. Bhattacharjee T, Zehnder SM, Rowe KG, et al. Writing in the granular gel medium. Sci Adv. 2015;1(8):e1500655. doi: 10.1126/sciadv.1500655
  25. Hinton TJ, Hudson A, Pusch K, et al. 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomater Sci Eng. 2016;2(10):1781-1786. doi: 10.1021/acsbiomaterials.6b00170
  26. Yang J, He H, Li D, et al. Advanced strategies in the application of gelatin-based bioink for extrusion bioprinting. Bio-des Manuf. 2023;6(5):586-608. doi: 10.1007/s42242-023-00236-4
  27. Heo DN, Alioglu MA, Wu Y, et al. 3D bioprinting of carbohydrazide-modified gelatin into microparticle-suspended oxidized alginate for the fabrication of complex-shaped tissue constructs. ACS Appl Mater Interfaces. 2020;12(18):20295-20306. doi: 10.1021/acsami.0c05096
  28. Hozumi T, Kageyama T, Ohta S, et al. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by Schiff ’s base formation. Biomacromolecules. 2018;19(2):288-297. doi: 10.1021/acs.biomac.7b01133
  29. Friedrich LM, Seppala JE. Simulated filament shapes in embedded 3D printing. Soft Matter. 2021;17(35): 8027-8046. doi: 10.1039/D1SM00731A
  30. Xu Y, Qi J, Zhou W, et al. Generation of ring-shaped human iPSC-derived functional heart microtissues in a Möbius strip configuration. Bio-des Manuf. 2022; 5(4):687-699. doi: 10.1007/s42242-022-00204-4
  31. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461-468. doi: 10.1177/1941738109350438
  32. Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13(2):67-97. doi: 10.1016/0142-9612(92)90001-5
  33. Kiani C, Chen L, Wu YJ, et al. Structure and function of aggrecan. Cell Res. 2002;12(1):19-32. doi: 10.1038/sj.cr.7290106
  34. Hua W, Mitchell K, Raymond L, et al. Fluid bath-assisted 3D printing for biomedical applications: from pre-to postprinting stages. ACS Biomater Sci Eng. 2021;7(10): 4736-4756. doi: 10.1021/acsbiomaterials.1c00910
  35. Tang G, Luo Z, Lian L, et al. Liquid-embedded (bio) printing of alginate-free, standalone, ultrafine, and ultrathin-walled cannular structures. Proc Natl Acad Sci U S A. 2023;120(7):e2206762120. doi: 10.1073/pnas.2206762120
  36. Wen C, Lu L, and Li X. Mechanically robust gelatin-A lginate IPN hydrogels by a combination of enzymatic and ionic crosslinking approaches. Macromol Mater Eng. 2014;299(4):504-513. doi: 10.1002/mame.201300274
  37. Chen S, Tan WS, Bin Juhari MA, et al. Freeform 3D printing of soft matters: recent advances in technology for biomedical engineering. Biomed Eng Lett. 2020;10:453-479. doi: 10.1007/s13534-020-00171-8
  38. Becker M, Gurian M, Schot M, et al. Aqueous two-phase enabled low viscosity 3d (LoV3D) bioprinting of living matter. Adv Sci (Weinh). 2023;10(8):2204609. doi: 10.1002/advs.202370046
  39. O’Bryan C S, Bhattacharjee T, Niemi SR, et al. Three-dimensional printing with sacrificial materials for soft matter manufacturing. MRS Bull. 2017;42(8):571-577. doi: 10.1557/mrs.2017.167
  40. Bakht SM, Gomez‐Florit M, Lamers T, et al. 3D bioprinting of miniaturized tissues embedded in self-assembled nanoparticle-based fibrillar platforms. Adv Funct Mater. 2021;31(46):2104245. doi: 10.1002/adfm.202104245
  41. Huo X, Zhang B, Han Q, et al. Numerical simulation and printability analysis of fused deposition modeling with dual-temperature control. Bio-des Manuf. 2023;6(2):174-188. doi: 10.1007/s42242-023-00239-1
  42. LeBlanc KJ, Niemi SR, Bennett AI, et al. Stability of high speed 3D printing in liquid-like solids. ACS Biomater Sci Eng. 2016;2(10):1796-1799. doi: 10.1021/acsbiomaterials.6b00184
  43. Li Q, Ma L, Gao Z, et al. Regulable supporting baths for embedded printing of soft biomaterials with variable stiffness. ACS Appl Mater Interfaces. 2022;14(37):41695-41711. doi: 10.1021/acsami.2c09221

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing