Antibacterial compounds-incorporated functional biomaterials for chronic wound healing application via 3D bioprinting: The mechanism of action
Wounds represent a critical issue in the healthcare industry since they are highly susceptible to infections that in turn lead to more serious complications. With bacterial infections gradually growing to be a challenge to wound healing, fighting bacterial resistance has become one of the important pillars of addressing issues faced by healthcare personnel. Thus, gaining an understanding of the distinct stages of wound healing is vital to further improve relevant therapies incorporating the application of antibacterial compounds. Recently, three-dimensional (3D)-printed functional biomaterials have emerged as an alternative treatment or potential carriers incorporating relevant antibacterial agents, offering a new approach to skin tissue engineering. Novel strategies for skin tissue engineering are grounded in the integration of bioactive ingredients and antibacterial agents into biomaterials with different morphologies to improve cell behaviors and promote wound healing by preventing bacterial colonization. This paper reviews the function of natural and synthetic polymers, effects of antibacterial properties, and cell interactions in terms of the wound healing process. Extensive research has demonstrated that 3D functional biomaterials exert their therapeutic effects through multifaceted pathways, including but not limited to, modulating inflammation, facilitating tissue regeneration, promoting cell proliferation, enhancing angiogenesis, and controlling infection. This review also provides general insights into the elegant design for 3D scaffold and further refinement of wound dressing.
- Stan D, Tanase C, Avram M, et al. Wound healing applications of creams and “smart” hydrogels. Exp Dermatol. 2021;30(9):1218-1232. doi: 10.1111/exd.14396
- Wei C, Feng Y, Che D, et al. Biomaterials in skin tissue engineering. Int J Polym Mater Polym Biomater. 2022;71(13):993-1011. doi: 10.1080/00914037.2021.1933977
- Oomens CW, van Vijven M, Peters GW. Skin mechanics. In: Payan Y, Ohayon J, eds. Biomechanics of Living Organs. Elsevier; 2017:347-357. doi: 10.1016/B978-0-12-804009-6.00016-X
- D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222-12248. doi: 10.3390/ijms140612222
- Supe S, Takudage P. Methods for evaluating penetration of drug into the skin: a review. Skin Res Technol. 2021;27(3):299-308. doi: 10.1111/srt.12968
- Darwin E, Tomic-Canic M. Healing chronic wounds: current challenges and potential solutions. Curr Dermatol Rep. 2018;7:296-302. doi: 10.1007/s13671-018-0239-4
- Fadilah NIM, Rahman MBA, Yusof LM, Mustapha NM, Ahmad H. The therapeutic effect and in vivo assessment of Palmitoyl-GDPH on the wound healing process. Pharmaceutics. 2021;13(2):193. doi: 10.3390/pharmaceutics13020193
- Md Fadilah NI, Mohd Abdul Kader Jailani MS, Badrul Hisham MAI, et al. Cell secretomes for wound healing and tissue regeneration: next generation acellular based tissue engineered products. J Tissue Eng. 2022;13:20417314221114273. doi: 10.1177/20417314221114273
- Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020;12(8):735. doi: 10.3390/pharmaceutics12080735
- Li R, Liu K, Huang X, et al. Bioactive materials promote wound healing through modulation of cell behaviors. Adv Sci. 2022;9(10):2105152. doi: 10.1002/advs.202105152
- Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34:599-610. doi: 10.1007/s12325-017-0478-y
- Mir M, Ali MN, Barakullah A, et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater. 2018;7:1-21. doi: 10.1007/s40204-018-0083-4
- Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665-706. doi: 10.1152/physrev.00067.2017
- Sánchez ML, Valdez H, Conde M, Viaña-Mendieta P, Boccaccini AR. Polymers and bioactive compounds with a macrophage modulation effect for the rational design of hydrogels for skin regeneration. Pharmaceutics. 2023;15(6):1655. doi: 10.3390/pharmaceutics15061655
- Shao M, Bigham A, Yousefiasl S, et al. Recapitulating antioxidant and antibacterial compounds into a package for tissue regeneration: dual function materials with synergistic effect. Small. 2023;19(19):2207057. doi: 10.1002/smll.202207057
- Umur E, Bayrak E, Arslan F, et al. Advances in three dimensional bioprinting for wound healing: a comprehensive review. Appl Sci. 2023;13(18):10269. doi: 10.3390/app131810269
- Antezana PE, Municoy S, Álvarez-Echazú MI, et al. The 3D bioprinted scaffolds for wound healing. Pharmaceutics. 2022;14(2):464. doi: 10.3390/pharmaceutics14020464
- Jorgensen AM, Gorkun A, Mahajan N, et al. Multicellular bioprinted skin facilitates human-like skin architecture in vivo. Sci Transl Med. 2023;15(716):eadf7547. doi: 10.1126/scitranslmed.adf7547
- Masri S, Fadilah NIM, Hao LQ, et al. Multifunctionalised skin substitute of hybrid gelatin-polyvinyl alcohol bioinks for chronic wound: injectable vs. 3D bioprinting. Drug Deliv Transl Res. 2024;14(4):1-23. doi: 10.1007/s13346-023-01447-z
- Wan W, Cai F, Huang J, Chen S, Liao Q. A skin-inspired 3D bilayer scaffold enhances granulation tissue formation and anti-infection for diabetic wound healing. J Mater Chem B. 2019;7(18):2954-2961. doi: 10.1039/C8TB03341B
- Tabriz AG, Douroumis D. Recent advances in 3D printing for wound healing: a systematic review. J Drug Deliv Sci Technol. 2022;74:103564. doi: 10.1016/j.jddst.2022.103564
- O’brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88-95. doi: 10.1016/S1369-7021(11)70058-X
- Kruse CR, Nuutila K, Lee CC, et al. The external microenvironment of healing skin wounds. Wound Repair Regen. 2015;23(4):456-464. doi: 10.1111/wrr.12303
- Wang Y, Chen G, Zhang H, Zhao C, Sun L, Zhao Y. Emerging functional biomaterials as medical patches. ACS Nano. 2021;15(4):5977-6007. doi: 10.1021/acsnano.0c10724
- Uchida DT, Bruschi ML. 3D printing as a technological strategy for the personalized treatment of wound healing. AAPS PharmSciTech. 2023;24(1):41. doi: 10.1208/s12249-023-02503-0
- Fadilah NIM, Riha SM, Mazlan Z, et al. Functionalised-biomatrix for wound healing and cutaneous regeneration: future impactful medical products in clinical translation and precision medicine. Front Bioeng Biotechnol. 2023;11:1160577. doi: 10.3389/fbioe.2023.1160577
- Agarwal T, Costantini M, Maiti TK. Extrusion 3D printing with Pectin-based ink formulations: recent trends in tissue engineering and food manufacturing. Biomed Eng Adv. 2021;2:100018. doi: 10.1016/j.bea.2021.100018
- Fadilah NIM, Phang SJ, Kamaruzaman N, et al. Antioxidant biomaterials in cutaneous wound healing and tissue regeneration: a critical review. Antioxidants. 2023;12(4):787. doi: 10.3390/antiox12040787
- Guo L, Liang Z, Yang L, et al. The role of natural polymers in bone tissue engineering. J Control Release. 2021;338: 571-82. doi: 10.1016/j.jconrel.2021.08.055
- Fadilah NIM, Maarof M, Motta A, Tabata Y, Fauzi MB. The discovery and development of natural-based biomaterials with demonstrated wound healing properties: a reliable approach in clinical trials. Biomedicines. 2022;10(9):2226. doi: 10.3390/biomedicines10092226
- Khoeini R, Nosrati H, Akbarzadeh A, et al. Natural and synthetic bioinks for 3D bioprinting. Adv NanoBiomed Res. 2021;1(8):2000097. doi: 10.1002/anbr.202000097
- Gobi R, Ravichandiran P, Babu RS, Yoo DJ. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: a review. Polymers (Basel). 2021;13(12):1962. doi: 10.3390/polym13121962
- Shah SA, Sohail M, Khan S, et al. Biopolymer-based biomaterials for accelerated diabetic wound healing: a critical review. Int J Biol Macromol. 2019;139:975-993. doi: 10.1016/j.ijbiomac.2019.08.007
- Hacker MC, Krieghoff J, Mikos AG. Chapter 33 - synthetic polymers. In: Atala A, Lanza R, Mikos AG, Nerem R, eds. Principles of Regenerative Medicine. 3rd ed. Boston: Academic Press; 2019:559-590. doi: 10.21741/9781644901892-1
- Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463(2):127-136. doi: 10.1016/j.ijpharm.2013.12.015
- Chen L, Song X, Xing F, et al. A review on antimicrobial coatings for biomaterial implants and medical devices. J Biomed Nanotechnol. 2020;16(6):789-809. doi: 10.1116/jbn.2020.2942
- Pang Q, Jiang Z, Wu K, Hou R, Zhu Y. Nanomaterials-based wound dressing for advanced management of infected wound. Antibiotics. 2023;12(2):351-382.
- Almaguer-Flores A, Silva-Bermúdez P, Rodil SE. 4 - Nanostructured biomaterials with antimicrobial activity for tissue engineering. In: Guarino V, Iafisco M, Spriano S, eds. Nanostructured Biomaterials for Regenerative Medicine. Woodhead Publishing; 2020:81-137. doi: 10.1016/B978-0-08-102594-9.00004-8
- Fadilah NIM, Isa ILM, Zaman WSWK, Tabata Y, Fauzi MB. The effect of nanoparticle-incorporated natural-based biomaterials towards cells on activated pathways: a systematic review. Polymers. 2022;14(3):476. doi: 10.3390/polym14030476
- Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482-501. doi: 10.3934/microbiol.2018.3.482
- Zhu J, Jiang G, Song G, et al. Incorporation of ZnO/bioactive glass nanoparticles into alginate/chitosan composite hydrogels for wound closure. ACS Appl Bio Mater. 2019;2(11):5042-5052. doi: 10.1021/acsabm.9b00727
- Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci. 2022;17(3): 353-384. doi: 10.1016/j.ajps.2022.01.001
- Ahmed W, Zhai Z, Gao C. Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio. 2019;2:100017. doi: 10.1016/j.mtbio.2019.100017
- Agarwal R, García AJ. Chapter 37 - surface modification of biomaterials. In: Atala A, Lanza R, Mikos AG, Nerem R, eds. Principles of Regenerative Medicine, 3rd ed. Boston: Academic Press; 2019:651-660. doi: 10.1016/B978-0-12-381422-7.10036-7
- Nouri A, Rohani Shirvan A, Li Y, Wen C. Surface modification of additively manufactured metallic biomaterials with active antipathogenic properties. Smart Mater Manuf. 2023;1:100001. doi: 10.1016/j.smmf.2022.100001
- Klojdová I, Milota T, Smetanová J, Stathopoulos C. Encapsulation: a strategy to deliver therapeutics and bioactive compounds? Pharmaceuticals (Basel). 2023; 16(3):362. doi: 10.3390/ph16030362
- Drobota M, Ursache S, Aflori M. Surface functionalities of polymers for biomaterial applications. Polymers (Basel). 2022;14(12):2307. doi: 10.3390/polym14122307
- Uberoi A, McCready-Vangi A, Grice EA. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol. 2024. doi: 10.1038/s41579-024-01035-z
- Sachdeva C, Satyamoorthy K, Murali TS. Microbial interplay in skin and chronic wounds. Curr Clin Microbiol Rep. 2022;9(3):21-31. doi: 10.1007/s40588-022-00180-4
- Maheswary T, Nurul AA, Fauzi MB. The insights of microbes’ roles in wound healing: a comprehensive review. Pharmaceutics. 2021;13(7):981. doi: 10.3390/pharmaceutics13070981
- Chiller K, Selkin BA, Murakawa GJ. Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc. 2001;6(3):170-174. doi: 10.1046/j.0022-202x.2001.00043.x
- Cavallo I, Sivori F, Mastrofrancesco A, et al. Bacterial biofilm in chronic wounds and possible therapeutic approaches. Biology. 2024;13(2):109. doi: 10.3390/biology13020109
- Latif A, Shehzad A, Niazi S, et al. Probiotics: mechanism of action, health benefits and their application in food industries. Front Microbiol. 2023;14:1216674. doi: 10.3389/fmicb.2023.1216674
- Jørgensen AB, Jonsson I, Friis-Hansen L, Brandstrup B. Collagenase-producing bacteria are common in anastomotic leakage after colorectal surgery: a systematic review. Int J Colorectal Dis. 2023;38(1):275. doi: 10.1007/s00384-023-04562-y
- Puca V, Marulli RZ, Grande R, et al. Microbial species isolated from infected wounds and antimicrobial resistance analysis: data emerging from a three-years retrospective study. Antibiotics (Basel). 2021;10(10):1162. doi: 10.3390/antibiotics10101162
- Rolsma S, Frank DW, Barbieri JT. 5 - Pseudomonas aeruginosa toxins. In: Alouf J, Ladant D, Popoff MR, eds. The Comprehensive Sourcebook of Bacterial Protein Toxins. 4th ed. Boston: Academic Press; 2015:133-160. doi: 10.1007/978-1-4939-0473-0_14
- Alshehri D, Saadah O, Mosli M, Edris S, Alhindi R, Bahieldin A. Dysbiosis of gut microbiota in inflammatory bowel disease: current therapies and potential for microbiota-modulating therapeutic approaches. Bosn J Basic Med Sci. 2021;21(3):270-283. doi: 10.17305/bjbms.2020.5016
- Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed. 2011;1(2): 154-160. doi: 10.1016/s2221-1691(11)60016-6
- Almasaudi S. The antibacterial activities of honey. Saudi J Biol Sci. 2021;28(4):2188-2196. doi: 10.1016/j.sjbs.2020.10.017
- Tashkandi H. Honey in wound healing: an updated review. Open Life Sci. 2021;16(1):1091-1100. doi: 10.1515/biol-2021-0084
- Gardikiotis I, Cojocaru FD, Mihai CT, Balan V, Dodi G. Borrowing the features of biopolymers for emerging wound healing dressings: a review. Int J Mol Sci. 2022;23(15):8778. doi: 10.3390/ijms23158778
- Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol. 2017;199(1):17-24. doi: 10.4049/jimmunol.1700223
- Martin P, Leibovich SJ. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 2005;15(11):599-607. doi: 10.1016/j.tcb.2005.09.002
- Lohmann N, Schirmer L, Atallah P, et al. Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Sci Transl Med. 2017;9(386):eaai9044. doi: 10.1126/scitranslmed.aai9044
- Liu Q, Huang Y, Lan Y, et al. Acceleration of skin regeneration in full‐thickness burns by incorporation of bFGF‐loaded alginate microspheres into a CMCS–PVA hydrogel. J Tissue Eng Regen Med. 2017;11(5):1562-1573. doi: 10.1002/term.2057
- Gull N, Khan SM, Butt OM, et al. Inflammation targeted chitosan-based hydrogel for controlled release of diclofenac sodium. Int J Biol Macromol. 2020;162:175-187. doi: 10.1002/term.2057
- Carrejo NC, Moore AN, Lopez Silva TL, et al. Multidomain peptide hydrogel accelerates healing of full-thickness wounds in diabetic mice. ACS Biomater Sci Eng. 2018;4(4):1386-1396. doi: 10.1021/acsbiomaterials.8b00031
- Oryan A, Alemzadeh E, Mohammadi AA, Moshiri A. Healing potential of injectable Aloe vera hydrogel loaded by adipose-derived stem cell in skin tissue-engineering in a rat burn wound model. Cell Tissue Res. 2019;377:215-227. doi: 10.1007/s00441-019-03015-9
- La Monica F, Campora S, Ghersi G. Collagen-based scaffolds for chronic skin wound treatment. Gels. 2024;10(2):137. doi: 10.3390/gels10020137
- Sankar S, Kodiveri Muthukaliannan G. Deciphering the crosstalk between inflammation and biofilm in chronic wound healing: phytocompounds loaded bionanomaterials as therapeutics. Saudi J Biol Sci. 2024;31(4):103963. doi: 10.1016/j.sjbs.2024.103963
- Guo B, Ma PX. Conducting polymers for tissue engineering. Biomacromolecules. 2018;19(6):1764-1782. doi: 10.1021/acs.biomac.8b00276
- Ghorbani M, Nezhad-Mokhtari P, Ramazani S. Aloe vera-loaded nanofibrous scaffold based on Zein/ Polycaprolactone/Collagen for wound healing. Int J Biol Macromol. 2020;153:921-930. doi: 10.1016/j.ijbiomac.2020.03.036
- Zhang Z, Li Z, Li Y, et al. Sodium alginate/collagen hydrogel loaded with human umbilical cord mesenchymal stem cells promotes wound healing and skin remodeling. Cell Tissue Res. 2021;383(2):809-821. doi: 10.1007/s00441-020-03321-7
- Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4(1):22. doi: 10.1038/s41536-019-0083-6
- Kim K-O, Lee Y, Hwang J-W, et al. Wound healing properties of a 3-D scaffold comprising soluble silkworm gland hydrolysate and human collagen. Colloids Surf B Biointerfaces. 2014;116:318-326. doi: 10.1016/j.colsurfb.2013.12.004
- Liu Y, Liu X, Guo H, et al. 3D bioprinting bioglass to construct vascularized full-thickness skin substitutes for wound healing. Materials Today Bio. 2024;24:100899. doi: 10.1016/j.mtbio.2023.100899
- Chang M, Guo F, Zhou Z, et al. HBP induces the expression of monocyte chemoattractant protein-1 via the FAK/ PI3K/AKT and p38 MAPK/NF-κB pathways in vascular endothelial cells. Cell Signal. 2018;43:85-94. doi: 10.1016/j.cellsig.2017.12.008
- Patenall BL, Carter KA, Ramsey MR. Kick-starting wound healing: a review of pro-healing drugs. Int J Mol Sci. 2024;25(2):1304. doi: 10.3390/ijms25021304
- Hu P, Chiarini A, Wu J, et al. Exosomes of adult human fibroblasts cultured on 3D silk fibroin nonwovens intensely stimulate neoangiogenesis. Burns Trauma. 2021;9:tkab003. doi: 10.1093/burnst/tkab003
- Shi Z, Yao C, Shui Y, Li S, Yan H. Research progress on the mechanism of angiogenesis in wound repair and regeneration. Front Physiol. 2023;14:1284981. doi: 10.3389/fphys.2023.1284981
- Jana S, Datta P, Das H, et al. Copper and cobalt doped bioactive glass-fish dermal collagen electrospun mat triggers key events of diabetic wound healing in full-thickness skin defect model. J Mech Behav Biomed Mater. 2022;134:105414. doi: 10.1016/j.jmbbm.2022.105414
- Tan Q, Chen B, Yan X, et al. Promotion of diabetic wound healing by collagen scaffold with collagen-binding vascular endothelial growth factor in a diabetic rat model. J Tissue Eng Regen Med. 2014;8(3):195-201. doi: 10.1002/term.1513
- Long G, Liu D, He X, et al. A dual functional collagen scaffold coordinates angiogenesis and inflammation for diabetic wound healing. Biomater Sci. 2020;8(22):6337-6349. doi: 10.1039/D0BM00999G
- Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis. 2004;17(2):91-96. doi: 10.1097/00001432-200404000-00004
- Bowler PG. The 10(5) bacterial growth guideline: reassessing its clinical relevance in wound healing. Ostomy Wound Manage. 2003;49(1):44-53.
- Blackburn J, Kopecki Z, Ousey KJ. Skin integrity, antimicrobial stewardship and infection control: a critical review of current best practice. Wound Pract Res. 2024;32(1):34-43. doi: 10.33235/wpr.32.1.34-43
- Gardner SE, Frantz RA, Doebbeling BN. The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair Regen. 2001;9(3):178-186. doi: 10.1046/j.1524-475x.2001.00178.x.
- Salleh A, Naomi R, Utami ND, et al. The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials (Basel). 2020;10(8):1566. doi: 10.3390/nano10081566
- Rybka M, Mazurek Ł, Konop M. Beneficial effect of wound dressings containing silver and silver nanoparticles in wound healing-from experimental studies to clinical practice. Life (Basel). 2022;13(1):69. doi: 10.3390/life13010069
- Fadilah NIM, Ahmat N, Hao LQ, et al. Biological safety assessments of high-purified ovine collagen type i biomatrix for future therapeutic product: International Organisation for Standardisation (ISO) and Good Laboratory Practice (GLP) Settings. Polymers (Basel). 2023;15(11):2436. doi: 10.3390/polym15112436
- Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929-958. doi: 10.1146/annurev.biochem.77.032207.120833
- Baltazar T, Merola J, Catarino C, et al. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells. Tissue Eng Part A. 2020;26(5–6):227-238. doi: 10.1089/ten.tea.2019.0201
- Haruna K, Obot I, Ankah N, Sorour A, Saleh T. Gelatin: a green corrosion inhibitor for carbon steel in oil well acidizing environment. J Mol Liquids. 2018;264:515-525. doi: 10.1016/j.molliq.2018.05.058
- Masri S, Maarof M, Abd Aziz I, Idrus R, Fauzi MB. Performance of hybrid gelatin-PVA bioinks integrated with genipin through extrusion-based 3D bioprinting: an in vitro evaluation using human dermal fibroblasts. Int J Bioprint. 2023;9(3):677. doi: 10.18063/ijb.677
- Mourya V, Inamdar NN. Chitosan-modifications and applications: opportunities galore. React Funct Polym. 2008;68(6):1013-1051. doi: 10.1016/j.reactfunctpolym.2008.03.002
- Aranaz I, Alcántara AR, Civera MC, et al. Chitosan: an overview of its properties and applications. Polymers (Basel). 2021;13(19):56. doi: 10.3390/polym13193256
- Intini C, Elviri L, Cabral J, et al. 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr Polym. 2018;199:593-602. doi: 10.1016/j.carbpol.2018.07.057
- Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front Vet Sci. 2019;6:192. doi: 10.3389/fvets.2019.00192
- Snetkov P, Zakharova K, Morozkina S, Olekhnovich R, Uspenskaya M. Hyaluronic acid: the influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers (Basel). 2020;12(8):1800. doi: 10.3390/polym12081800
- Später T, Mariyanats AO, Syachina MA, et al. In vitro and in vivo analysis of adhesive, anti-inflammatory, and proangiogenic properties of novel 3D printed hyaluronic acid glycidyl methacrylate hydrogel scaffolds for tissue engineering. ACS Biomater Sci Eng. 2020;6(10):5744-5757. doi: 10.1021/acsbiomaterials.0c00741
- Fernando IPS, Lee W, Han EJ, Ahn G. Alginate-based nanomaterials: fabrication techniques, properties, and applications. Chem Eng J. 2020;391:123823. doi: 10.1016/j.cej.2019.123823
- Li Y, Xu Z, Wang J, Pei X, Chen J, Wan Q. Alginate-based biomaterial-mediated regulation of macrophages in bone tissue engineering. Int J Biol Macromol. 2023:230;123246. doi: 10.1016/j.ijbiomac.2023.123246
- Fayyazbakhsh F, Khayat MJ, Leu MC. 3D-printed gelatin-alginate hydrogel dressings for burn wound healing: a comprehensive study. Int J Bioprint. 2022;8(4):618. doi: 10.18063/ijb.v8i4.618
- Dai H, Huang Y, Huang H. Eco-friendly polyvinyl alcohol/ carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr Polym. 2018;185:1-11. doi: 10.1016/j.carbpol.2017.12.073
- Karimi A, Navidbakhsh M. Mechanical properties of PVA material for tissue engineering applications. Mater Technol. 2014;29(2):90-100. doi: 10.1179/1753555713Y.0000000115
- Harmanci S, Dutta A, Cesur S, et al. Production of 3D printed bi-layer and tri-layer sandwich scaffolds with polycaprolactone and poly (vinyl alcohol)-metformin towards diabetic wound healing. Polymers. 2022;14(23):5306. doi: 10.3390/polym14235306
- Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol. 2019;7:259. doi: 10.3389/fbioe.2019.00259
- Ranakoti L, Gangil B, Mishra SK, et al. Critical review on polylactic acid: properties, structure, processing, biocomposites, and nanocomposites. Materials (Basel). 2022;15(12):4312. doi: 10.3390/ma15124312
- Domínguez-Robles J, Martin NK, Fong ML, et al. Antioxidant PLA composites containing lignin for 3d printing applications: a potential material for healthcare applications. Pharmaceutics. 2019;11(4):165. doi: 10.3390/pharmaceutics11040165
- Rahmani S, Maroufkhani M, Mohammadzadeh-Komuleh S, Khoubi-Arani Z. Chapter 7 - Polymer nanocomposites for biomedical applications. In: Barhoum A, Jeevanandam J, Danquah MK, eds. Fundamentals of Bionanomaterials. Elsevier; 2022:175-215. doi: 10.1016/B978-0-12-824147-9.00007-8
- Hillier K. Polyethylene glycol. In: Enna SJ, Bylund DB, eds. xPharm: The Comprehensive Pharmacology Reference. New York: Elsevier; 2007:1-3.
- Ilhan E, Cesur S, Guler E, et al. Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material. Int J Biol Macromol. 2020;161:1040-1054. doi: 10.1016/j.ijbiomac.2020.06.086
- Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC Trends Anal Chem. 2016;80:30-40. doi: 10.1016/j.trac.2015.06.014
- Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015;6(1):41-58. doi: 10.4155/tde.14.91
- Teo YC, Abbas A, Park EJ, et al. 3D printed bioactive PLGA dermal scaffold for burn wound treatment. ACS Mater Au. 2023;3(3):265-272. doi: 10.1021/acsmaterialsau.2c00079
- Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polymer Rev. 2018;58(1):164-207. doi: 10.1080/15583724.2017.1332640
- Guarino V, Gentile G, Sorrentino L, Ambrosio L. Polycaprolactone: synthesis, properties, and applications. In: Encyclopedia of Polymer Science and Technology. Hoboken, New Jersey, US: Wiley; 2002:1-36. doi: 10.1002/0471440264.pst658
- Domínguez-Robles J, Cuartas-Gómez E, Dynes S, et al. Poly(caprolactone)/lignin-based 3D-printed dressings loaded with a novel combination of bioactive agents for wound-healing applications. Sustain Mater Technol. 2023;35:e00581. doi: 10.1016/j.susmat.2023.e00581
- Afghah F, Ullah M, Seyyed Monfared Zanjani J, et al. 3D printing of silver-doped polycaprolactone-poly(propylene succinate) composite scaffolds for skin tissue engineering. Biomed Mater. 2020;15(3):035015. doi: 10.1088/1748-605X/ab7417
- Fang Z, Lin T, Fan S, et al. Antibacterial, injectable, and adhesive hydrogel promotes skin healing. Front Bioeng Biotechnol. 2023;11:1180073. doi: 10.3389/fbioe.2023.1180073
- Hu B, Berkey C, Feliciano T, et al. Thermal-disrupting interface mitigates intercellular cohesion loss for accurate topical antibacterial therapy. Adv Mater. 2020;32(12):e1907030. doi: 10.1002/adma.201907030
- Wei S, Xu P, Yao Z, et al. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater. 2021;124:205-218. doi: 10.1016/j.actbio.2021.01.046
- Zhao X, Pei D, Yang Y, et al. Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment. Adv Funct Mater. 2021;31(18):2009442. doi: 10.1002/adfm.202009442
- Tang X, Chen X, Zhang S, et al. Silk-inspired in situ hydrogel with anti-tumor immunity enhanced photodynamic therapy for melanoma and infected wound healing. Adv Funct Mater. 2021;31(17):2101320. doi: 10.1002/adfm.202101320
- Liang Y, Li Z, Huang Y, Yu R, Guo B. Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano. 2021;15(4):7078-7093. doi: 10.1021/acsnano.1c00204
- Yang Z, Huang R, Zheng B, et al. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Adv Sci. 2021;8(8):2003627. doi: 10.1002/advs.202003627
- Wang L, Zhang X, Yang K, et al. A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment. Adv Funct Mater. 2020;30(1):1904156. doi: 10.1002/adfm.201904156
- Mai B, Jia M, Liu S, et al. Smart hydrogel-based DVDMS/ bFGF nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing. ACS Appl Mater Interfaces. 2020;12(9):10156-10169. doi: 10.1021/acsami.0c00298
- Deng H, Yu Z, Chen S, et al. Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection. Carbohydr Polym. 2020;230:115565. doi: 10.1016/j.carbpol.2019.115565
- Yao X, Zhu G, Zhu P, et al. Omniphobic ZIF-8@hydrogel membrane by microfluidic-emulsion-templating method for wound healing. Adv Funct Mater. 2020;30(13):1909389. doi: 10.1002/adfm.201909389
- Yu N, Wang X, Qiu L, et al. Bacteria-triggered hyaluronan/ AgNPs/gentamicin nanocarrier for synergistic bacteria disinfection and wound healing application. Chem Eng J. 2020;380:122582. doi: 10.1016/j.cej.2019.122582
- Qiu Y, Wang Q, Chen Y, Xia S, Huang W, Wei Q. A novel multilayer composite membrane for wound healing in mice skin defect model. Polymers. 2020;12(3):573. doi: 10.3390/polym12030573.
- Schuhladen K, Mukoo P, Liverani L, Neščáková Z, Boccaccini AR. Manuka honey and bioactive glass impart methylcellulose foams with antibacterial effects for wound-healing applications. Biomed Mater. 2020;15(6):065002. doi: 10.1088/1748-605X/ab87e5