AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3395
RESEARCH ARTICLE

Mimicking human skin constructs using norbornene-pullulan-based hydrogels

Angela Cirulli1 Livia Neves Borgheti-Cardoso1 Núria Torras1* Elena Martínez1,2,3*
Show Less
1 Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
2 Centro de Investigación Biomédica en Red, Madrid, Spain
3 Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
IJB 2024, 10(4), 3395 https://doi.org/10.36922/ijb.3395
Submitted: 9 April 2024 | Accepted: 24 May 2024 | Published: 3 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

There has been a huge demand for engineered skin tissues in the realms of both in vitro and in vivo applications. Selecting the right material scaffold is a critical consideration in making engineered skin tissues, since it should possess a good balance between elasticity and mechanical stability while promoting an adequate cell microenvironment to support both the dermal and the epidermal compartments of skin tissue. In this study, 3D-bioprinted norbornene-pullulan photocrosslinkable hydrogels were utilized as alternative scaffolds to produce epithelized dermal skin models. By employing visible light, 2.5 mm3 cell-laden hydrogels could be printed in 10 s. The thiol-ene photocrosslinking chemistry employed in this work enabled the formation of a well-defined extracellular matrix with orthogonal crosslinks, where encapsulated fibroblasts maintained high cellular viability rates. Through this method, an epidermal layer could be grown on top of the fibroblasts. The coexistence and interaction of human fibroblasts and keratinocytes were visualized by determining the expression of specific markers. This approach represents a promising starting point for the development of photocrosslinkable hydrogel-based human skin constructs by using thiol-ene norbornene chemistry, paving the way toward manufacture of complex in vitro models of human tissues.  

Keywords
Skin models
Photocrosslinkable hydrogels
Pullulan
Light-based 3D bioprinting
Funding
This work was supported by the European Union’s Horizon Europe Research and Innovation Programme (B-BRIGHTER project, grant agreement no. 101057894), the Department of Research and Universities of the Generalitat de Catalunya (2021 SGR 01495), and the CERCA Programme of the Generalitat de Catalunya. N.T. acknowledges the Spanish Ministry of Science and Innovation (MCIN) for her Juan de la Cierva grant (IJC2019-040289-I, MCIN/AEI/ 10.13039/501100011033). Views and opinions expressed in this work are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Moniz T, Costa Lima SA, Reis S. Human skin models: from healthy to disease-mimetic systems; characteristics and applications. Br J Pharmacol. 2020;177(19):4314-4329. doi: 10.1111/bph.15184
  2. Dearman BL, Boyce ST, Greenwood JE. Advances in skin tissue bioengineering and the challenges of clinical translation. Front Surg. 2021;8:640879. doi: 10.3389/fsurg.2021.640879
  3. Shores JT, Gabriel A, Gupta S. Skin substitutes and alternatives. Adv Skin Wound Care. 2007;20(9):493-508. doi: 10.1097/01.ASW.0000288217.83128.f3
  4. Manon-Jensen T, Kjeld NG, Karsdal MA. Collagen-mediated hemostasis. J Thromb Haemost. 2016;14(3):438-448. doi: 10.1111/jth.13249
  5. Sorushanova A, Delgado LM, Wu Z, et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater. 2019;31(1):e1801651. doi: 10.1002/adma.201801651
  6. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. doi: 10.1126/scitranslmed.3009337
  7. Silvipriya KS, Krishna Kumar K, Bhat AR, Dinesh Kumar B, John A, Lakshmanan P. Collagen: animal sources and biomedical application. J Appl Pharm Sci. 2015;5(3): 123-127. doi: 10.7324/JAPS.2015.50322
  8. Schmidt FF, Nowakowski S, Kluger PJ. Improvement of a three-layered in vitro skin model for topical application of irritating substances. Front Bioeng Biotechnol. 2020;8(May):1-11. doi: 10.3389/fbioe.2020.00388
  9. Wang H. A review of the effects of collagen treatment in clinical studies. Polymers (Basel). 2021;13(22):3868. doi: 10.3390/polym13223868
  10. Keefe J, Wauk L, Chu S, DeLustro F. Clinical use of injectable bovine collagen: a decade of experience. Clin Mater. 1992;9(3-4):155-162. doi: 10.1016/0267-6605(92)90095-b
  11. Bacakova M, Pajorova J, Broz A, et al. A two-layer skin construct consisting of a collagen hydrogel reinforced by a fibrin-coated polylactide nanofibrous membrane. Int J Nanomedicine. 2019;14:5033-5050. doi: 10.2147/IJN.S200782
  12. Ackermann K, Lombardi Borgia S, Korting HC, Mewes KR, Schäfer-Korting M. The Phenion® full-thickness skin model for percutaneous absorption testing. Skin Pharmacol Physiol. 2010;23(2):105-112. doi: 10.1159/000265681
  13. Zhang Y, Wang Y, Li Y, et al. Application of collagen-based hydrogel in skin wound healing. Gels. 2023;9(3):185. doi: 10.3390/gels9030185
  14. Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8(5):607-626. doi: 10.1586/erd.11.27
  15. Sun M, Sun X, Wang Z, Guo S, Yu G, Yang H. Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers (Basel). 2018;10(11):1290. doi: 10.3390/polym10111290
  16. Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym. 2018;198:385-400. doi: 10.1016/j.carbpol.2018.06.086
  17. Park D, Kim Y, Kim H, et al. Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFβ receptor interaction via CD44-PKCδ. Mol Cells. 2012;33(6):563-574. doi: 10.1007/s10059-012-2294-1
  18. Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4(7):528-539. doi: 10.1038/nrc1391
  19. Gobi R, Ravichandiran P, Babu RS, Yoo DJ. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: a review. Polymers (Basel). 2021;13(12):1962. doi: 10.3390/polym13121962
  20. Li R, Tomasula P, de Sousa AMM, et al. Electrospinning pullulan fibers from salt solutions. Polymers (Basel). 2017;9(1):32. doi: 10.3390/polym9010032
  21. Leathers TD. Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol. 2003;62(5-6): 468-473. doi: 10.1007/s00253-003-1386-4
  22. Cheng N, Jeschke MG, Sheikholeslam M, Datu A, Oh HH, Amini‐Nik S. Promotion of dermal regeneration using pullulan/gelatin porous skin substitute. J Tissue Eng Regen Med. 2019;13(11):1965-1977. doi: 10.1002/term.2946
  23. Wang Y, Yuan X, Yao B, Zhu S, Zhu P, Huang S. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact Mater. 2022;17:178-194. doi: 10.1016/j.bioactmat.2022.01.024
  24. Antezana PE, Municoy S, Álvarez-Echazú MI, et al. The 3D bioprinted scaffolds for wound healing. Pharmaceutics. 2022;14(2):464. doi: 10.3390/pharmaceutics14020464
  25. Zhang Q, Bei HP, Zhao M, Dong Z, Zhao X. Shedding light on 3D printing: Printing photo-crosslinkable constructs for tissue engineering. Biomaterials. 2022;286:121566. doi: 10.1016/j.biomaterials.2022.121566
  26. Yu C, Schimelman J, Wang P, et al. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem Rev. 2020;120(19): 10695-10743. doi: 10.1021/acs.chemrev.9b00810
  27. Torras N, Zabalo J, Abril E, Carré A, García-Díaz M, Martínez E. A bioprinted 3D gut model with crypt-villus structures to mimic the intestinal epithelial-stromal microenvironment. Biomater Adv. 2023;153:213534. doi: 10.1016/j.bioadv.2023.213534
  28. Lin CC, Raza A, Shih H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials. 2011;32(36):9685-9695. doi: 10.1016/j.biomaterials.2011.08.083
  29. McCall JD, Anseth KS. Thiol–ene photopolymerizations provide a facile method to encapsulate proteins and maintain their bioactivity. Biomacromolecules. 2012;13(8):2410-2417. doi: 10.1021/bm300671s
  30. Fairbanks BD, Schwartz MP, Halevi AE. A Versatile Synthetic Extracellular Matrix Mimic via Thio-Norbornene Photopolymerization. Adv Mater. 2009;21(48):5005-5010. doi: 10.1002/adma.200901808
  31. Lin CC, Ki CS, Shih H. Thiol-norbornene photoclick hydrogels for tissue engineering applications. J Appl Polym Sci. 2015;132(8):1-11. doi: 10.1002/app.41563
  32. Van Hoorick J, Dobos A, Markovic M, et al. Thiol-norbornene gelatin hydrogels: Influence of thiolated crosslinker on network properties and high definition 3D printing. Biofabrication. 2020;13(1): 1-22. doi: 10.1088/1758-5090/abc95f
  33. Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination. Biomaterials. 1996;17(17):1647-1657. doi: 10.1016/0142-9612(96)87644-7
  34. Vila A, Torras N, Castaño AG, et al. Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa. Biofabrication. 2020;12(2):025008. doi: 10.1088/1758-5090/ab5f50
  35. Nguyen AL, Grothe S, Luong JHT. Applications of pullulan in aqueous two-phase systems for enzyme production, purification and utilization. Appl Microbiol Biotechnol. 1988:27;341-346. doi: 10.1007/BF00251765
  36. Singh RS, Kaur N, Singh D, Kennedy JF. Investigating aqueous phase separation of pullulan from Aureobasidium pullulans and its characterization. Carbohydr Polym. 2019;223:115103. doi: 10.1016/j.carbpol.2019.115103
  37. Knight CG, Willenbrock F, Murphy G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett. 1992;296(3):263-266. doi: 10.1016/0014-5793(92)80300-6
  38. Holback H, Yeo Y, Park K. Hydrogel swelling behavior and its biomedical applications. Biomed Hydrogels. 2011;1:3-24. doi: 10.1533/9780857091383.1.3
  39. Chyzy A, Plonska-Brzezinska ME. Hydrogel properties and their impact on regenerative medicine and tissue engineering. Molecules. 2020;25(24):5795. doi: 10.3390/molecules25245795
  40. Suhaeri M, Noh MH, Moon JH, et al. Novel skin patch combining human fibroblast-derived matrix and ciprofloxacin for infected wound healing. Theranostics. 2018;8(18):5025-5038. doi: 10.7150/thno.26837
  41. Wu DQ, Zhu J, Han H, et al. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: in vitro and in vivo study. Acta Biomater. 2018;65:305-316. doi: 10.1016/j.actbio.2017.08.048
  42. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27-46. doi: 10.1016/S0939-6411(00)00090-4
  43. Lai VK, Nedrelow DS, Lake SP, et al. Swelling of collagen-hyaluronic acid co-gels: an in vitro residual stress model. Ann Biomed Eng. 2016;44(10):2984-2993. doi: 10.1007/s10439-016-1636-0
  44. Bachmann B, Spitz S, Schädl B, et al. Stiffness matters: fine-tuned hydrogel elasticity alters chondrogenic redifferentiation. Front Bioeng Biotechnol. 2020;8:373. doi: 10.3389/fbioe.2020.00373
  45. Ahearne M, Yang Y, El Haj AJ, Then KY, Liu KK. Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface. 2005;2(5):455-463. doi: 10.1098/rsif.2005.0065
  46. Orwin EJ, Borene ML, Hubel A. Biomechanical and optical characteristics of a corneal stromal equivalent. J Biomech Eng. 2003;125(4):439-444. doi: 10.1115/1.1589773
  47. Awad HA, Quinn Wickham M, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004;25(16):3211-3222. doi: 10.1016/j.biomaterials.2003.10.045
  48. R. Ibañez RI, do Amaral RJFC, Reis RL, Marques AP, Murphy CM, O’Brien FJ. 3D-printed gelatin methacrylate scaffolds with controlled architecture and stiffness modulate the fibroblast phenotype towards dermal regeneration. Polymers (Basel). 2021;13(15):2510. doi: 10.3390/polym13152510
  49. Raub CB, Putnam AJ, Tromberg BJ, George SC. Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy. Acta Biomater. 2010;6(12): 4657-4665. doi: 10.1016/j.actbio.2010.07.004
  50. Weng T, Zhang W, Xia Y, et al. 3D bioprinting for skin tissue engineering: current status and perspectives. J Tissue Eng. 2021;12:204173142110285. doi: 10.1177/20417314211028574
  51. Tahri S, Maarof M, Masri S, Che Man R, Masmoudi H, Fauzi MB. Human epidermal keratinocytes and human dermal fibroblasts interactions seeded on gelatin hydrogel for future application in skin in vitro 3-dimensional model. Front Bioeng Biotechnol. 2023;11:1200618. doi: 10.3389/fbioe.2023.1200618
  52. Bott K, Upton Z, Schrobback K, et al. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials. 2010;31(32):8454-8464. doi: 10.1016/j.biomaterials.2010.07.046
  53. Feng Z, Li J, Zhou D, Song H, Lv J, Bai W. A novel photocurable pullulan-based bioink for digital light processing 3D printing. Int J Bioprint. 2022;9(2):104-117. doi: 10.18063/ijb.v9i2.657
  54. Boelsma E, Verhoeven MCH, Ponec M. Reconstruction of a human skin equivalent using a spontaneously transformed keratinocyte cell line (HaCaT). J Invest Dermatol. 1999;112(4):489-498. doi: 10.1046/j.1523-1747.1999.00545.x
  55. Schoop VM, Fusenig NE, Mirancea N. Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J Invest Dermatol. 1999;112(3):343-353. doi: 10.1046/j.1523-1747.1999.00524.x
  56. Maas-Szabowski N, Stärker A, Fusenig NE. Epidermal tissue regeneration and stromal interaction in HaCaT cells is initiated by TGF-α. J Cell Sci. 2003;116(Pt 14):2937-2948. doi: 10.1242/jcs.00474
  57. Wilson VG. Growth and differentiation of HaCaT keratinocytes. Methods Mol Biol. 2014;1195:33-41. doi: 10.1007/7651_2013_42
  58. Zhao X, Lang Q, Yildirimer L, et al. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv Healthc Mater. 2016;5(1):108-118. doi: 10.1002/adhm.201500005
  59. Meyle J, Guttig K, Rascher G, Wolburg H. Transepithelial electrical resistance and tight junctions of human gingival keratinocvtes. J Periodontal Res. 1999;34(4):214-222. doi: 10.1111/j.1600-0765.1999.tb02244.x
  60. Le Ferrec E, Chesne C, Artusson P, et al. In vitro models of the intestinal barrier: the report and recommendations of ECVAM workshop 46. Altern Lab Anim. 2001;29(6): 649-668. doi: 10.1177/026119290102900604
  61. Lenselink EA. Role of fibronectin in normal wound healing. Int Wound J. 2015;12(3):313-316. doi: 10.1111/iwj.12109
  62. Flaten GE, Palac Z, Engesland A, Filipović-Grčić J, Vanić Ž, Škalko-Basnet N. In vitro skin models as a tool in optimization of drug formulation. Eur J Pharm Sci. 2015;75:10-24. doi: 10.1016/j.ejps.2015.02.018
  63. Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K. Advances in the biofabrication of 3D skin in vitro: healthy and pathological models. Front Bioeng Biotechnol. 2018;6:154. doi: 10.3389/fbioe.2018.00154
  64. Yun YE, Jung YJ, Choi YJ, Choi JS, Cho YW. Artificial skin models for animal-free testing. J Pharm Investig. 2018;48(2):215-223. doi: 10.1007/s40005-018-0389-1
  65. Abd E, Yousef SA, Pastore MN, et al. Skin models for the testing of transdermal drugs. Clin Pharmacol. 2016;8: 163-176. doi: 10.2147/CPAA.S64788
  66. Cirulli A, Neves Borgheti-Cardoso L, Torras N, García-Díaz M, Martínez E. Hydrogels as tissue barriers. In: Oliveira JM, Silva-Correia J, Reis RL, eds. Hydrogels for Tissue Engineering and Regenerative Medicine. Elsevier; 2024:433-466. doi: 10.1016/B978-0-12-823948-3.00017-8
  67. Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S. Recent applications of chitosan and its derivatives in antibacterial, anticancer, wound healing, and tissue engineering fields. Polymers (Basel). 2024;16(10):1351. doi: 10.3390/polym16101351

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing