AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3229
RESEARCH ARTICLE

 

Spatiotemporal delivery of BMP-2 and FGF-18 in 3D-bioprinted tri-phasic osteochondral scaffolds enhanced compartmentalized osteogenic and chondrogenic differentiation of mesenchymal stem cells isolated from rats with varied organizational morphologies

Weiwei Su1,2 Shiyu Li1,3 Panjing Yin1,3 Weihan Zheng1,3 Ling Wang4 Zhuosheng Lin1 Ziyue Li1,3 Zi Yan1,3 Yaobin Wu1* Chong Wang5* Wenhua Huang1,2,3*
Show Less
1 Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
2 Department of Orthopedics, Affiliated Hospital of Putian University, Putian University, Putian, Fujian, China
3 The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou, Guangdong, China
4 Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
5 Department of Intelligent Manufacturing Engineering, School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, Guangdong, China
Submitted: 21 March 2024 | Accepted: 13 May 2024 | Published: 2 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Replicating the heterogeneous structure and promoting compartmentalized osteogenesis/chondrogenesis are critical considerations in designing scaffolds for osteochondral tissue regeneration. However, desirable osteochondral regeneration cannot be achieved mainly due to the absence of effective delivery strategies for growth factors (GFs) and the insufficiency of desirable organizational morphologies for seed cells. Herein, we developed a tri-phasic osteochondral scaffold consisting of bone morphogenetic protein-2 (BMP-2)-loaded subchondral layer, fibroblast growth factor-18 (FGF-18)-loaded cartilage layer, and an interface layer that acted as a barrier to reduce the mutual interference of GFs, via cryogenic 3D bioprinting. BMP-2 could exert osteogenic effects for 14 days, and FGF-18 could exert chondrogenic effects for 21 days, demonstrating the time-controlled release function of BMP-2 and FGF-18. By further seeding discrete rat bone marrow mesenchymal stem cells (rBMSCs) and rBMSC microspheres, respectively, onto the subchondral layer and cartilage layer, the engineered cell-laden osteochondral tissue was constructed. The spatiotemporal release of BMP-2 and FGF-18 in the subchondral layer and cartilage layer promoted the osteogenic differentiation of discrete rBMSCs and chondrogenic differentiation of rBMSC microspheres in the subchondral layer and cartilage layer, respectively. In summary, by seeding rBMSCs with varied organizational morphologies in 3D-printed osteochondral scaffolds with a spatiotemporally controlled strategy, engineered osteochondral tissue with compartmentalized osteogenic/chondrogenic differentiation potent can be formed, displaying a facile and promising way to achieve desirable osteochondral tissue regeneration.

Keywords
3D printing
Growth factor
Controlled release
Cell microspheres
Osteochondral regeneration
Osteogenic/chondrogenic differentiation
Funding
This work was supported by the National Key R&D Program of China (2022YFB4600600), the National Natural Science Foundation of China (32271181 and 82300018), the Guangdong Basic and Applied Basic Research Foundation (2021A1515111074), the Department of Education of Guangdong Province, China (2021ZDZX2014), the Dongguan Science and Technology of Social Development Program, Guangdong, China (20211800904542).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Olstad K, Ekman S, Carlson CS. An update on the pathogenesis of osteochondrosis. Vet Pathol. 2015;52(5):7 85-802. doi: 10.1177/0300985815588778
  2. He Y, Li Z, Alexander PG, et al. Pathogenesis of osteoarthritis: risk factors, regulatory pathways in chondrocytes, and experimental models. Biology. 2020;9(8):194. doi: 10.3390/biology9080194
  3. Abramoff B, Caldera FE. Osteoarthritis pathology, diagnosis, and treatment options. Méd Clin North Am. 2020;104(2):293-311. doi: 10.1016/j.mcna.2019.10.007
  4. Hermann W, Lambova S, Muller-Ladner U. Current treatment options for osteoarthritis. Curr Rheumatol Rev. 2017;14(2):108-116. doi: 10.2174/1573397113666170829155149
  5. Madry H. Surgical therapy in osteoarthritis. Osteoarthr Cartil. 2022;30(8):1019-1034. doi: 10.1016/j.joca.2022.01.012
  6. Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges. Bioact Mater. 2021;6(12):4830-4855. doi: 10.1016/j.bioactmat.2021.05.011
  7. Zhou L, Gjvm VO, Malda J, et al. Innovative tissue‐engineered strategies for osteochondral defect repair and regeneration: current progress and challenges. Adv Healthc Mater. 2020;9(23):e2001008. doi: 10.1002/adhm.202001008
  8. Colella F, Garcia JP, Sorbona M, et al. Drug delivery in intervertebral disc degeneration and osteoarthritis: selecting the optimal platform for the delivery of disease-modifying agents. J Control Release. 2020;328:985-999. doi: 10.1016/j.jconrel.2020.08.041
  9. Rahimi M, Charmi G, Matyjaszewski K, Banquy X, Pietrasik J. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta Biomater. 2021;123:31-50. doi: 10.1016/j.actbio.2021.01.003
  10. Zhan A, Chen L, Sun W, et al. Enhancement of diabetic wound healing using a core-shell nanofiber platform with sequential antibacterial, angiogenic, and collagen deposition activities. Mater Des. 2022;218:110660. doi: 10.1016/j.matdes.2022.110660
  11. He W, Li C, Zhao S, et al. Integrating coaxial electrospinning and 3D printing technologies for the development of biphasic porous scaffolds enabling spatiotemporal control in tumor ablation and osteochondral regeneration. Bioact Mater. 2024;34:338-353. doi: 10.1016/j.bioactmat.2023.12.020
  12. Li S, Zheng W, Deng W, et al. Logic‐based strategy for spatiotemporal release of dual extracellular vesicles in osteoarthritis treatment. Adv Sci. (Weinh). 2024:e2403227. doi: 10.1002/advs.202403227
  13. Bhat BB, Mehta CH, Suresh A, Velagacherla V, Nayak UY. Controlled release technologies for chronotherapy: current status and future perspectives. Curr Pharm Des. 2023;29(14):1069-1091.doi: 10.2174/1381612829666230423144232
  14. Santo VE, Gomes ME, Mano JF, Reis RL. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine. 2012;7(7):1045-1066. doi: 10.2217/nnm.12.78
  15. Lu S, Lam J, Trachtenberg JE, et al. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials. 2014;35(31):8829-8839. doi: 10.1016/j.biomaterials.2014.07.006
  16. Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011;469(10):2706-2715. doi: 10.1007/s11999-011-1857-3
  17. Devescovi V, Leonardi E, Ciapetti G, Cenni E. Growth factors in bone repair. Chir Organi Mov. 2008;92(3):161-168. doi: 10.1007/s12306-008-0064-1
  18. Kim S, Lee S, Kim K. Cutting-edge enabling technologies for regenerative medicine. Adv Exp Med Biol. 2018;1078: 233-244. doi: 10.1007/978-981-13-0950-2_12
  19. Augustyniak E, Trzeciak T, Richter M, Kaczmarczyk J, Suchorska W. The role of growth factors in stem cell-directed chondrogenesis: a real hope for damaged cartilage regeneration. Int Orthop. 2015;39(5):995-1003. doi: 10.1007/s00264-014-2619-0
  20. Ansari S, Khorshidi S, Karkhaneh A. Engineering of gradient osteochondral tissue: from nature to lab. Acta Biomater. 2019;87:41-54. doi: 10.1016/j.actbio.2019.01.071
  21. Hoemann C, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzmán-Morales J. The cartilage-bone interface. J Knee Surg. 2012;25(2):85-98. doi: 10.1055/s-0032-1319782
  22. Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A, Hwang YS. Stem cells in bone tissue engineering. Biomed Mater. 2010;5(6):062001. doi: 10.1088/1748-6041/5/6/062001
  23. Li Q, Xu S, Feng Q, et al. 3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration. Bioact Mater. 2021;6(10):3396-3410. doi: 10.1016/j.bioactmat.2021.03.013
  24. Sarem M, Otto O, Tanaka S, Shastri VP. Cell number in mesenchymal stem cell aggregates dictates cell stiffness and chondrogenesis. Stem Cell Res Ther. 2019;10(1):10. doi: 10.1186/s13287-018-1103-y
  25. Karim A, Amin AK, Hall AC. The clustering and morphology of chondrocytes in normal and mildly degenerate human femoral head cartilage studied by confocal laser scanning microscopy. J Anat. 2018;232(4):686-698.doi: 10.1111/joa.12768
  26. Xiang XN, Zhu SY, He HC, Yu X, Xu Y, He CQ. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res Ther. 2022; 13(1):14. doi: 10.1186/s13287-021-02689-9
  27. Liu Y, Zhou G, Cao Y. Recent progress in cartilage tissue engineering—our experience and future directions. Engineering. 2017;3(1):28-35. doi: 10.1016/j.eng.2017.01.010
  28. Buchanan JL. Types of fibrocartilage. Clin Podiatr Med Surg. 2022;39(3):357-361. doi: 10.1016/j.cpm.2022.02.001
  29. Kheir E, Shaw D. Hyaline articular cartilage. Orthop Trauma. 2009;23(6):450-455. doi: 10.1016/j.mporth.2009.01.003
  30. Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage - why does hyaline cartilage fail to repair? Adv Drug Deliv Rev. 2019;146:289-305. doi: 10.1016/j.addr.2018.12.015
  31. Osch GJVMV, Brittberg M, Dennis JE, et al. Cartilage repair: past and future – lessons for regenerative medicine. J Cell Mol Med. 2009;13(5):792-810. doi: 10.1111/j.1582-4934.2009.00789.x
  32. Goodson HV, Jonasson EM. Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol. 2018;10(6):a022608. doi: 10.1101/cshperspect.a022608
  33. Li J, Jiang H, Lv Z, et al. Articular fibrocartilage-targeted therapy by microtubule stabilization. Sci Adv. 2022;8(46):eabn8420. doi: 10.1126/sciadv.abn8420
  34. Li J, Fan C, Lv Z, et al. Microtubule stabilization targeting regenerative chondrocyte cluster for cartilage regeneration. Theranostics. 2023;13(10):3480-3496. doi: 10.7150/thno.85077
  35. Hall AC. The role of chondrocyte morphology and volume in controlling phenotype—implications for osteoarthritis, cartilage repair, and cartilage engineering. Curr Rheumatol Rep. 2019;21(8):38. doi: 10.1007/s11926-019-0837-6
  36. Yang Y, Zheng W, Tan W, et al. Injectable MMP1-sensitive microspheres with spatiotemporally controlled exosome release promote neovascularized bone healing. Acta Biomater. 2023;157:321-336. doi: 10.1016/j.actbio.2022.11.065
  37. Beck EC, Barragan M, Tadros MH, Gehrke SH, Detamore MS. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater. 2016;38: 94-105. doi: 10.1016/j.actbio.2016.04.019
  38. Little CJ, Bawolin NK, Chen X. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng Part B: Rev. 2011;17(4):213-227. doi: 10.1089/ten.teb.2010.0572
  39. Keaveny TM, Hayes WC. A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng. 1993;115(4B):534-542. doi: 10.1115/1.2895536
  40. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18): 3413-3431. doi: 10.1016/j.biomaterials.2006.01.039
  41. Zhang N, Wang Y, Zhang J, Guo J, He J. Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration. Acta Biomater. 2021;135:304-317. doi: 10.1016/j.actbio.2021.08.029
  42. Yildirim N, Amanzhanova A, Kulzhanova G, Mukasheva F, Erisken C. Osteochondral interface: regenerative engineering and challenges. ACS Biomater Sci Eng. 2023;9(3):1205-1223. doi: 10.1021/acsbiomaterials.2c01321
  43. Niu X, Li N, Du Z, Li X. Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives. Bioact Mater. 2023;20: 574-597. doi: 10.1016/j.bioactmat.2022.06.011
  44. Santos-Beato P, Midha S, Pitsillides AA, Miller A, Torii R, Kalaskar DM. Biofabrication of the osteochondral unit and its applications: current and future directions for 3D bioprinting. J Tissue Eng. 2022;13:20417314221133480. doi: 10.1177/20417314221133480
  45. Vyas C, Mishbak H, Cooper G, Peach C, Pereira RF, Bartolo P. Biological perspectives and current biofabrication strategies in osteochondral tissue engineering. Biomanufacturing Rev. 2020;5(1):2. doi: 10.1007/s40898-020-00008-y
  46. Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020;5(1):82-91. doi: 10.1016/j.bioactmat.2020.01.004
  47. Zaszczyńska A, Moczulska-Heljak M, Gradys A, Sajkiewicz P. Advances in 3D printing for tissue engineering. Materials (Basel). 2021;14(12):3149. doi: 10.3390/ma14123149
  48. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
  49. Li Z, Xu M, Wang J, Zhang F. Recent advances in cryogenic 3D printing technologies. Adv Eng Mater. 2022;24(10):2200245. doi: 10.1002/adem.202200245
  50. Maia FR, Bastos AR, Oliveira JM, Correlo VM, Reis RL. Recent approaches towards bone tissue engineering. Bone. 2022;154:116256. doi: 10.1016/j.bone.2021.116256
  51. Wasyłeczko M, Sikorska W, Chwojnowski A. Review of synthetic and hybrid scaffolds in cartilage tissue engineering. Membranes (Basel). 2020;10(11):348. doi: 10.3390/membranes10110348
  52. Wang C, Yue H, Huang W, et al. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF- 1 for osteochondral tissue regeneration. Biofabrication. 2020;12(2):025030. doi: 10.1088/1758-5090/ab7ab5
  53. Li D, Guo Y, Lu H, et al. The effect of local delivery of adiponectin from biodegradable microsphere–scaffold composites on new bone formation in adiponectin knockout mice. J Mater Chem B. 2016;4(27):4771-4779. doi: 10.1039/c6tb00704j
  54. Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for bone regenerative engineering. Adv Healthc Mater. 2015;4(9):1268-1285. doi: 10.1002/adhm.201400760
  55. Salaris V, Leonés A, Lopez D, Kenny JM, Peponi L. Shape-memory materials via electrospinning: a review. Polymers (Basel). 2022;14(5):995. doi: 10.3390/polym14050995
  56. Pérez-Luna VH, González-Reynoso O. Encapsulation of biological agents in hydrogels for therapeutic applications. Gels. 2018;4(3):61. doi: 10.3390/gels4030061
  57. Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene. 2006;366(1):51-57. doi: 10.1016/j.gene.2005.10.011
  58. Wu M, Chen F, Liu H, et al. Bioinspired sandwich-like hybrid surface functionalized scaffold capable of regulating osteogenesis, angiogenesis, and osteoclastogenesis for robust bone regeneration. Mater Today Bio. 2022; 17:100458. doi: 10.1016/j.mtbio.2022.100458
  59. Lu Q, Diao J, Wang Y, et al. 3D printed pore morphology mediates bone marrow stem cell behaviors via RhoA/ROCK2 signaling pathway for accelerating bone regeneration. Bioact Mater. 2023;26:413-424. doi: 10.1016/j.bioactmat.2023.02.025
  60. Bradley EW, Carpio LR, Newton AC, Westendorf JJ. Deletion of the PH-domain and Leucine-rich repeat protein phosphatase 1 (Phlpp1) increases fibroblast growth factor (Fgf) 18 expression and promotes chondrocyte proliferation*. J Biol Chem. 2015;290(26):16272-16280. doi: 10.1074/jbc.m114.612937
  61. Davidson D, Blanc A, Filion D, et al. Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis*. J Biol Chem. 2005;280(21): 20509-20515. doi: 10.1074/jbc.m410148200
  62. Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45-54. doi: 10.1038/nrrheum.2014.164
  63. Li M, Yin H, Yan Z, et al. The immune microenvironment in cartilage injury and repair. Acta Biomater. 2022;140: 23-42. doi: 10.1016/j.actbio.2021.12.006
  64. Taskin MB, Klausen LH, Dong M, Chen M. Emerging wet electrohydrodynamic approaches for versatile bioactive 3D interfaces. Nano Res. 2020;13(2):315-327. doi: 10.1007/s12274-020-2635-x
  65. Lee S, Lee K, Kim SH, Jung Y. Enhanced cartilaginous tissue formation with a cell aggregate-fibrin-polymer scaffold complex. Polymers (Basel). 2017;9(8):348. doi: 10.3390/polym9080348
  66. Ghadially FN. Structure and function of articular cartilage. Clin Rheum Dis. 1981;7(1):3-28. doi: 10.1016/s0307-742x(21)00330-1
  67. Xiao S, Zhao T, Wang J, et al. Gelatin methacrylate (GelMA)- based hydrogels for cell transplantation: an effective strategy for tissue engineering. Stem Cell Rev Rep. 2019;15(5): 664-679. doi: 10.1007/s12015-019-09893-4
  68. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103(4):655-663. doi: 10.1002/bit.22361

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing